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THE CYCLIC BAR CONSTRUCTION

Let (A, ®, 1) be a symmetric monoidal category and let A be a
monoid in A.

DEFINITION
The cyclic bar construction of A is the simplicial object
BY(A): A® — A, Kl A®...®A.
N———
k+1 copies

The face and degeneracy maps are as follows:

A X...0 34+ Q... ak if i<k
akdo X ... & ak_1 if i=k
Si(ay®..0a)=ay®..0a1Ra1®...0a

d,-(a0®...®ak):{

Via cyclic permutation of ®-factors, BsY(A) extends to a cyclic
object AP — A.
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TOPOLOGICAL HOCHSCHILD HOMOLOGY

The smash product of symmetric spectra is symmetric
monoidal. Its unit is the sphere spectrum S. Monoids in
(SpT, A, S) are known as (symmetric) ring spectra.

DEFINITION
The topological Hochschild homology of a (sufficiently
cofibrant) symmetric ring spectrum A is

THH(A) = [BJ (A)l,

the realization of the cyclic bar construction of Ain (Sp¥, A, S).

EXAMPLE

Any discrete ring R gives rise to a symmetric ring spectrum
HR, the Eilenberg—Mac Lane spectrum of R. The topological
Hochschild homology of R is defined by THH(R) = THH(HR).
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TRACE MAPS

Let A be a ring spectrum. Topological Hochschild homology is
useful because there are trace maps

TC(A)

> |

K(A) —5% THH(A).

e K(A) is the algebraic K-theory of A. For many A, it is both
hard and interesting to compute K(A).
(K(S) is Waldhausen’s A(x) and K(HR) is Quillen’s K(R).)

o TC(A) is the topological cyclic homology of A, a refinement
of THH(A) constructed from fixed point information of an
S'-action on THH(A).

¢ In some examples of interest, trc: K(A) — TC(A) is close
to being an equivalence.
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TRACE MAPS FOR PERIODIC RING SPECTRA?

When trying to understand how algebraic K-theory of ring
spectra interacts with localization and étale descent, it is natural
to also consider K(A) for periodic A (or, more general, for
non-connective A).

EASIEST EXAMPLES
A= KU, A= KO, A =L (the p-local Adams summand)

PROBLEM
The trace map K(A) — THH(A) is less useful for periodic A.

One indication: If A is commutative, THH(A) is an A-module
spectrum.
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LOCALIZATION SEQUENCES

Blumberg and Mandell established compatible homotopy
cofiber sequences

K(Z) —— K(ku) —— K(KU) —— TK(Z)

1 ! | !

THH(Z) — THH(ku) — THH(ku|KU) — ¥ THH(Z).

The relative THH-term THH(ku|KU) is defined using
localization techniques and THH of Waldhausen categories.
THH(ku|KU) is not equivalent to THH(KU).
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A MOTIVATION FOR LOGARITHMIC THH

We like to give an alternative construction of relative
THH-terms such as THH(ku|KU) which is

e more accessible to computations and
o takes logarithmic ring spectra as input data.
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DISCRETE LOG RINGS

DEFINITION
A discrete pre-log ring (A, M) is a commutative ring A and a
commutative monoid M together with a monoid homomorphism

a:M— (A)
to the multiplicative monoid of A.
The inclusion of the units A* — A induces a pullback square
a1 (AX) —— A~

1

— % A

DEFINITION
A pre-log ring (A, M) is a log ring if o~ 1(A*) — A* is an
isomorphism.
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EXAMPLE FOR DISCRETE LOG RINGS

Let A be an integral domain with quotient field K.
e (A A¥)and (K, K*) are (trivial) log rings.
e (A A\ {0}) is alog ring that sits in a factorization
(A, A*) — (A,A\{0}) = (K,K™).

It is useful to think of A\ {0} as (A — K)*(K*).
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TOPOLOGICAL GENERALIZATIONS OF LOG RINGS

e The classical notions of multiplicative E., spaces and units
of ring spectra lead to a version of logarithmic ring spectra.

e However, this framework makes it difficult to produce
interesting topological examples lying beyond
Eilenberg—Mac Lane specitra.

e To generalize log rings to log ring spectra in a more
interesting way, we need graded notions of multiplicative
monoids and units for ring spectra that detect units in
non-zero degree.
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COMMUTATIVE J-SPACE MONOIDS
Let 7 = X~ 'Y be Quillen’s localization construction on the
category X of finite sets and bijections. The category 7 is
symmetric monoidal under concatenation LI, and B ~ QSP°.

DEFINITION
A TJ-space is a functor X: J — S to the category of spaces S.

The functor category SY inherits a symmetric monoidal
convolution product X from the product of 7. By definition,
X XY is the left Kan extension of

IxT XN e85 s

alongu: g xJ = J.

DEFINITION
A commutative J -space monoid is a commutative monoid in
(87, ).
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GRADED E,, SPACES

The category of commutative [7-space monoids CSY admits a
model structure where f: M — N is a weak equivalence iff

hocolim f: hocolim; M — hocolim s N

is a weak homotopy equivalence in S.

THEOREM (S.—SCHLICHTKRULL)
There is a chain of Quillen equivalences

cS7~ E.-spaces/QS°
sending a commutative J -space monoid M to

hocolim; M — hocolim_; const 7(x) = BJ ~ QS°.

We view the augmentation hocolim; M — QS° as a grading of
the E,, space hocolim; M.
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GRADED E,, SPACES AND THOM SPECTRA

There is a Quillen-adjunction
s7:¢87 = cspr: Q7

relating CSY to commutative symmetric ring spectra.

e QJ(A) models the graded multiplicative E., space of A.

e There is a notion of units GL{(A) c Q7(A) that captures
T« (A)* C mi(A).

e SY[M] models the graded spherical monoid ring of M.

THEOREM (S.—SCHLICHTKRULL)

If M is sufficiently cofibrant, then S7 [M)] is equivalent to the
Thom spectrum of the virtual vector bundle classified by

hocolim s M — hocolim_; const 7 () ~ QS® — Z x BO.
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LOGARITHMIC RING SPECTRA

DEFINITION

A pre-log ring spectrum (A, M) is a commutative symmetric ring
spectrum A together with a commutative [7-space monoid M
andamap a: M — Q7(A)inCS7.

DEFINITION
A pre-log ring spectrum (A, M) is a log ring spectrum if
a~1(GL{ (A)) — GLY(A) is a weak equivalence in CS7.

Every commutative symmetric ring spectrum A gives rise to the
trivial log ring spectrum (A, GL{(A)).
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EXAMPLES FOR LOGARITHMIC RING SPECTRA

Let E be a d-periodic commutative symmetric ring spectrum,
let x € m4(E) be a unit of minimal positive degree, and let
j: e — E be the connective cover of E.

Consider the pullback j.(GLY (E)) of
GL{(E) — Q7 (E) + Q7 (e).
We write (e, (x)) for the log ring spectrum (e,j*(GLf(E)).

This log ring spectrum comes with a factorization
(e,GL{ (e)) — (e, (x)) — (E,GL{ (E)).

EXAMPLE
The Bott class u € mo(KU) gives rise to a factorization
(ku,GLY (ku)) — (ku, (u)) — (KU, GLY (KU)).
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THE REPLETE BAR CONSTRUCTION
Let M be a commutative [7-space monoid.

DEFINITION
Let BY(M) = |B.Y(M)] be the realization of the cyclic bar

construction of M in (S7,X).

DEFINITION
The replete bar construction of M is the (homotopy) pullback

BrP(M) —— BY (M)

| |

M——— MeP
in commutative 7-space monoids.

e M — MeP is the group completion of M.
e There is a canonical repletion map p: BY(M) — B"P(M).
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REPLETE BAR CONSTRUCTION OF N
One can also consider B and B*P for discrete monoids.

BY(N) = {+} I [ §'

k>1
BY(z)=]] S
keZ
Brep(N) _ H 81
k>0

In homology, the repletion map B%Y(N) — B"P(N) takes the form
px: P(X)QE(dx) — P(Xx)®E(dlogx), p«(Xx) = X, p«(dx) = x-dlogx

where P denotes a polynomial algebra, E denotes an exterior
algebra, and the generators have degrees

x| =(0,1), |dx| = (1,1), and |dlogx| = (1,0).
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DEFINITION OF LOGARITHMIC THH

Let (A, M) be a (cofibrant) pre-log ring spectrum. The repletion
and the adjoint S7[M] — A of M — Q7 (A) induce a diagram of
commutative symmetric ring spectra

THH(A) < THH(S7[M)) = ST[BY(M)] — ST [B*P(M)]

DEFINITION
The logarithmic topological Hochschild homology is defined to
be the pushout

THH(A, M) = THH(A) Aga (g (m ST[BP(M)]

in commutative symmetric ring spectra.

EXAMPLE
For trivial log ring spectra, we have

THH(A) = THH(A, GL{ (A)).
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LOCALIZATION SEQUENCES FOR LOG THH

Let E be a d-periodic commutative symmetric ring spectrum
with periodicity class x € mq(E) and connective cover e — E.
We write e[0, d) for the dth Postnikov section of e.

THEOREM (ROGNES—S.—SCHLICHTKRULL)
There is a localization homotopy cofiber sequence

THH(e) — THH(e, (x)) — X THH(e[0, d)).

The resulting homotopy cofiber sequence
THH(ku) — THH(ku, (u)) — X THH(Z)

is analogous to the cofiber sequence established by
Blumberg—Mandell. We expect the relative THH-terms to be
equivalent when both are defined.
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TAME RAMIFICATION

Let p be an odd prime, let ku = ku,) be the p-local connective
complex K-theory spectrum, and let £ — ku be the inclusion of
the connective p-local Adams summand.

On ., the map ¢ — ku induces Zg)[V] — Zp[u], v — uP~.

There are compatible homotopy cofiber sequences

THH(¢) — THH(Z, (v)) — X THH(Z )

! | |

THH(ku) — THH(ku, (u)) — ETHH(Z(p)) -

THEOREM (ROGNES—S.—SCHLICHTKRULL)
The diagram induces a stable equivalence

ku Ne THH(& <V>) - THH(kU, <U>),

i.e., L — ku is formally log-THH étale.
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COMPUTATIONS FOR £ AND KUp)
For a spectrum X, let V(1).X = m.(V(1) A X) denote the
V(1)-homotopy groups. (Here

V(1) = cone(vq: ¥2P2S/p — S/p)

is a Smith—Toda complex of type 2).
THEOREM (BOKSTEDT)
V(). THH(Z) = EC . N ) @ P(R)
THEOREM (MCCLURE-STAFFELDT)
V(). THHO = ECY, 500 ) @ P
THEOREM (ROGNES—S —~SCHLICHTKRULL)

V(). THH(Z, (v)) = ECA; . diogv)  P(#))
COROLLARY (ROGNES—S.—SCHLICHTKRULL)
V1), THH(ku, (1) 2= Po_y(8) ® E( A diogu) @ P(5)
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TOWARDS LOGARITHMIC TC

Currently there appear to be 3 possible constructions of TC:

(1) The original construction by Bokstedt—Hsiang—Madsen,
exploiting the cyclotomic structure on the Bokstedt model
for THH.

(2) The approach by
Angeltveit—-Blumberg—Gerhardt—Hill-Lawson—Mandell
building on a property of the geometric fixed points of
norms of orthogonal spectra and the Blumberg—Mandell
description of cyclotomic spectra.

(3) The Nikolaus-Scholze approach using an S'-equivariant
map to the Cp-Tate construction of THH(A).

WORK IN PROGRESS

For an interesting class of pre-log ring spectra (A, M), our
model of THH(A, M) is cyclotomic in the sense of (2). The
approach (3) is likely to also produce cyclotomic structures on
THH(A, M).
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