Homotopy Types of Gauge Groups over 4-manifolds

Tse Leung So

University of Southampton

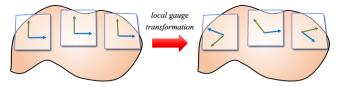
tls1g14@soton.ac.uk

Alpine Algebraic and Applied Topology Conference 16 August 2016

Introduction

What are gauge groups?

• A group of *local gauge transformations*, i.e. pointwise transformations of local frames



Why do we study gauge groups?

- Modern physics: gauge theory
- Mathematics: topology, geometry

Gauge groups

G: simple, simply-connected, compact Lie group M: orientable, closed, compact 4-manifold

$$\left\{\begin{array}{c} \text{isomorphism classes of} \\ \text{principal } G\text{-bundles over } M\end{array}\right\} \quad \longleftrightarrow \quad [M, BG]$$

$$P_k \qquad \qquad \longleftrightarrow \quad k \in \mathbb{Z}$$

Definition

The gauge group associated to $\pi: P \to M$ is defined by

$$\mathcal{G}(P; M) = \{\phi \in Aut(P) | \phi \text{ is } G \text{-equivariant} \},\$$

i.e.

$$\begin{array}{cccc} P & \stackrel{\varphi}{\longrightarrow} & P & & P \\ \downarrow_{\pi} & \downarrow_{\pi} & \text{and} & \downarrow_{g} & \downarrow_{g} \\ M & \stackrel{W}{==} & M & & P & \stackrel{\varphi}{\longrightarrow} & P \end{array}$$

Theorem (Atiyah and Bott, 82)

There is a weak homotopy equivalence

```
B\mathcal{G}(P; M) \simeq \operatorname{Map}_{P}(M, BG),
```

where $Map_P(M, BG)$ is the connected component containing the inducing map of P.

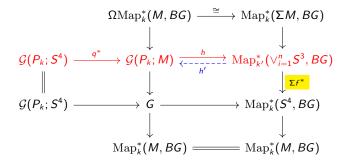
Theorem (Theriault,10)

If M is an orientable simply-connected closed 4-manifold, then

$$\mathcal{G}(P_k; M) \simeq \mathcal{G}(P_k; S^4) imes \prod_{i=1}^n \Omega^2 G$$

for the spin case, and the equivalence still holds for non-spin case after localized away from 2.

Cofibration $S^3 \xrightarrow{f} \vee_{i=1}^n S^2 \hookrightarrow M \xrightarrow{q} S^4 \xrightarrow{\Sigma f} \vee_{i=1}^n S^3$ induces



 $\Sigma f \simeq * \Rightarrow h' \text{ exists } \Rightarrow \text{ homotopy equivalence}$

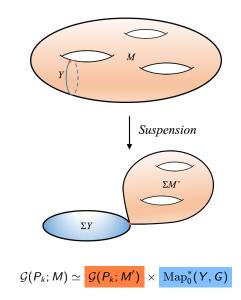
Idea: To find a subcomplex $Y \subset M_3$ such that " Σf does not attach to ΣY ".

Theorem

If there is a complex Y of dimension ≤ 3 and a map $\phi : Y \to M$ such that $\Sigma \phi : \Sigma Y \to \Sigma M$ has a left homotopy inverse, then

 $\mathcal{G}(P_k; M) \simeq \mathcal{G}(P_k; M') \times \operatorname{Map}_0^*(Y, G),$

where $M' = M/\phi(Y)$ and $Map_0^*(Y, G)$ is the connected component containing the basepoint.



implies that

Example

If $\pi_1(M) = \mathbb{Z}^{*m}$, then $M_3 \simeq (\bigvee^m S^3) \lor (\bigvee^d S^2) \lor (\bigvee^m S^1)$ [Matumoto & Katanaga, 95] and we have:

(1)

$$\Sigma M \simeq S^5 \vee \bigvee_{i=1}^m S^4 \vee \bigvee_{j=1}^d S^3 \vee \bigvee_{k=1}^m S^2$$
$$\mathcal{G}(P_k; M) \simeq \mathcal{G}(P_k; S^4) \times \prod_{i=1}^m \Omega_0^3 G \times \prod_{j=1}^d \Omega^2 G \times \prod_{k=1}^m \Omega G$$

(2)

$$\Sigma M \simeq \Sigma \mathbb{CP}^2 \vee \bigvee_{i=1}^m S^4 \vee \bigvee_{j=1}^{d-1} S^3 \vee \bigvee_{k=1}^m S^2$$
$$\mathcal{G}(P_k; M) \simeq \mathcal{G}(P_k; \mathbb{CP}^2) \times \prod_{i=1}^m \Omega_0^3 G \times \prod_{j=1}^{d-1} \Omega^2 G \times \prod_{k=1}^m \Omega G$$

I calculate the homotopy types of ΣM and $\mathcal{G}(P_k; M)$ when

•
$$\pi_1(M) = \mathbb{Z}^{*m};$$

- $\pi_1(M) = \mathbb{Z}_{p^r}$, where p is an odd prime;
- $\pi_1(M) = (\mathbb{Z}^{*m}) * (*_{j=1}^n \mathbb{Z}_{q_j})$, where q_j is a power of an odd prime.

All $\mathcal{G}(P_k; M)$ are related to $\mathcal{G}(P_k; S^4), \mathcal{G}(P_k; \mathbb{CP}^2)$, and some "loop spaces" of G.

Thank you for your attention.