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Motivation |: Picard groups

» Classical example: R commutative ring. The set of
isomorphism classes of invertible R-modules together with the
tensor product forms a group Pic(R), the Picard group of R.

» More generally: (C, ®, e) symmetric monoidal category. The
set of isomorphism classes of invertible objects in C together
with the monoidal product forms a group Pic(C), the Picard
group of C.

SymMonCat —PicardCat — Top

C take in\'/eﬂ>ble cells COI“G(C) —— BCore C

mo(B Core C) = Pic(C)
m1(B Core C) = Aut(e)

» B Core(C) is an infinite loop space: Q°°K(Core(C))



Motivation |: Picard groups

In addition to Pic(R) and Aut(R) = R, we are interested in the
Brauer group Br(R) of R.

» Have symmetric monoidal bicategory Alg(R):
invertible
0-cells R-algebras A Azumaya algebra
1-cells A-B-bimodules M: A — B  Morita equivalence
2-cells  bimodule hom. f: M — N isomorphism

Br(R) := {Azumaya algebras}/Morita equivalence
Pic(R) = {Morita equivalences R — R} /isomorphism
R* = {automorphisms of the R-R-bimodule R}



Motivation |: Picard groups

v

(D, @, e) symmetric monoidal bicategory

take invertible cells

D +— Core(D) +— BCore(D)

mo(B Core(D)) = {invertible objects} /invertible 1-cells
m1(B Core(D)) = {invertible 1-cells e — e}/isomorphisms
m2(B Core(D)) = {automorphisms of the 1-cell id.: e — e}

v

Want: B Core(D) is an infinite loop space: Q*°K(Core(D))
Need: K

v



Motivation Il: Algebraic/categorical models for homotopy
types

Stable Homotopy Hypothesis

The category of Picard n-categories with the categorical
equivalences and the category of stable n-types have equivalent
homotopy categories.

» Holds for n = 0: Picard 0O-categories are abelian groups

» Unstable analogue: Grothendieck's Homotopy Hypothesis,
many results (Whitehead, MacLane-Whitehead, Loday,
Brown, Moerdijk-Svensson, .. .)



n=1

K: SymMonCat — Sp[opo]
induces an equivalence on
homotopy categories (Thomason)

Stable Homotopy Hypothesis
holds (folklore, several)

Every Picard category is
equivalent to a skeletal and strict
one.

In particular, have nice model for
the 1-truncation of the sphere
spectrum S.

Express k-invariant categorically.

What we know and what we would like to know

n=2

K: SymMonBiCat — Spyg
induces an equivalence on
homotopy categories (GJO)

Stable Homotopy Hypothesis holds
(GJO, forthcoming work)



Strict symmetric monoidal n-categories

Actually, the K-theory functors are defined for strict symmetric
monoidal categories and 2-categories.

n=1 n=2

Every symmetric monoidal
bicategory is equivalent to a strict
symmetric monoidal 2-category.
(Schommer-Pries, GO)

Every symmetric monoidal
category is equvialent to a strict
one. (MacLane)



Strict symmetric monoidal n-categories

n=1

A strict symmetric monoidal
category is a monoid

(C,®: CxC—C,e)in
(Cat, x, *) together with a
natural isomorphism

Cx C—Witch  _cxcC

D%

satisfying some axioms.

n=2

A strict symmetric monoidal
2-category is a monoid

(D,®: D®D — D,e) in

(2Cat, Gray ®, x) together with a
2-natural isomorphism

DD switch DD

satisfying some axioms.



Strict Picard n-categories

n=1

(C,®,e) is a strict Picard
category if every cell of C is
invertible

n=2

(D, @, e) is a strict Picard
2-category if every cell of D is
invertible



Postnikov tower of a

connective spectrum X

k2

T2 H(mpX) — 2 Xa T4H(m3X)
TH(mX) —" X, M Y3H(mX)

-

Xo = H(moX) —— X2H(m1X)



ko algebraically

Facts (Eilenberg-MacLane, '54)
» There is a natural isomorphism
[HA, X?HB] = Ab(A® Z/2, B)
for any abelian groups A, B.
» Under this identification:

[H(moX), Z2H(m1.X)] = Ab((mX) ® Z/2, 11X)
ko — (precomposition with the Hopf element : £S — S)



Example: X = S the sphere spectrum

S2H(Z,/2)

X2

TH(Z/2) e Xy

|

Xo = HZ —~ $2H(7,/2)

Y3H(Z/2)

> 70(S) ® Z/2 — m1(S) is an isomorphism, ids ® 1 +— 7
» kiip corresponds to Sq? € (HZ/2)*(HZ/?2)



Main result [: triviality of some Postnikov data

Definition

A strict Picard 2-category is called skeletal if it satisfies the
following condition: if there exists an invertible 1-cell between two
objects x and y, then x = y.

Theorem (GJOS)

Let D be a skeletal, strict Picard 2-category. If
ko: moKD ® Z/2 — w1 KD is surjective, then kyiy is trivial in
[ZH(71KD), L3H(mKD)].

Corollary

There is no skeletal, strict Picard 2-category whose K-theory
spectrum realizes the 2-truncation of the sphere spectrum.



Stable Postnikov data of strict Picard n-categories

n=1 n=2

C strict Picard category D strict Picard 2-category
BC = Q*KC BD = QKD

mo(KC) = obC/1-cells mo(KD) = obD/1-cells
m1(KC) = C(e, e) m1(KD) = obD(e, €)/2-cells

m(KD) = D(e, e)(ide, ide)

ko: 7T0(KC) ®Z/2 — 7T1(KC) ko =7, ki =7 or at least kyiy =7
B

[X] @1 — (e = xx*x* X ot X e)



An adjunction modelling the 1-truncation

Proposition
The functors

(—)1: StrictSymMon2Cat = StrictSymMonCat: d
(obC, C(x,y), identity 2-cells) <+ C
D (ObD7 7I-OZD(X7 y))

form an adjunction. If D is a strict Picard 2-category, then
K(D) — K(d(D1))

is the 1-truncation of K(D).



Bottom stable Postnikov invariant

It is straightforward to check that K(C) ~ K(dC) for any strict
symmetric monoidal category C.

Corollary

Let D be a strict Picard 2-category with unit e and symmetry (3.
The bottom stable Postnikov invariant

ko: H(moKD) — L2H(m KD)
is modelled by the map mo(KD) ® Z/2 — 71 (KD)

B

[X] ® 1 [e > xxx"x T oot e],

where x is an object of D and x* denotes an inverse of x.



An adjunction modelling the O-connected cover

Proposition
The functors

Y : StrictSymMonCat = StrictSymMon2Cat:
C +— (*,0bC, morC)
D(e,e) <D

form an adjunction. If D is a strict Picard 2-category, then
K(XQD) —» K(D)

is the 0-connected cover of K(D).



Main result |l: categorical suspension

Theorem (GJOS)

For any strict symmetric monoidal category C, the spectra LK (C)
and K(XC) are stably equivalent.



First Postnikov layer kiiy

Corollary

Let (D, @, e) be a strict Picard 2-category with Gray structure
2-cells X.¢ g under ©. The composite

kiiy: TH(m1KD) — Y3H(mKD)
is modelled by the map m1(KD) ® Z/2 — m(KD)

Ygfrof*
—

[fl@1l— [ide 2 fofofof” fofof*of*=id],

where f: e = e is a 1-cell of D and f* denotes an inverse of f.



Back to main result |

Theorem (GJOS)

Let D be a skeletal, strict Picard 2-category. If
ko: moKD ® Z/2 — w1 KD is surjective, then kyiy is trivial.

> k1i1: 7['1(KD) ® Z/Q — 7T2(KD)
(ol [ide = fofofrof "5 fofofrof =id]
» To show: X ¢ ¢ is an identity 2-cell

» Use of assumptions:

B

kot [x] @1 [e ~ oo x* 725 oo x* ~ e

surjective and D skeletal

> Reduction to the case f = [, x*x*.



