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BACKGROUND ON GALOIS EXTENSIONS

GALOIS EXTENSIONS IN ALGEBRA

FIELDS

Given L/K an extension of fields, it is Galois if

it is normal and separable

⇔ L is the splitting field of a polynomial with coefficients in K which has
no repeated roots

⇔ |Aut(L/K)| = [L : K]

RINGS [AUSLANDER-GOLDMAN, CHASE-HARRISON-ROSENBERG]
A map of rings R→ S is G-Galois if

R→ SG and

S⊗R S→ Hom(G, S) =
∏

G S ⇔ S〈G〉 → HomR(S, S)

are isomorphisms.
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BACKGROUND ON GALOIS EXTENSIONS

GALOIS EXTENSIONS IN ALGEBRA

GALOIS CORRESPONDENCE

Suppose R→ S is a G-Galois extension.

For any subgroup H ⊆ G, SH → S is an H-Galois extension. If H is
normal in G, then also R→ SH is a G/H-Galois extension.

Suppose given a separable (over R) intermediate extension R→ T → S,
and assume S is connected (no non-trivial idempotents). Then T → S is
Galois, with group HT = StabG(T) = AlgT(S, S).
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BACKGROUND ON GALOIS EXTENSIONS

GALOIS EXTENSIONS IN HOMOTOPY THEORY

DEFINITION (ROGNES)
A map φ : R→ S of commutative ring spectra is G-Galois if

G acts on S and φ induces an equivalence R ' ShG, and

the natural map S ∧R S→ F(G+, S) is an equivalence.

GALOIS CORRESPONDENCE [ROGNES]
Suppose R→ S is a faithful G-Galois extension of commutative ring spectra.

For any subgroup H ⊆ G, ShH → S is a faithful H-Galois extension. If H
is normal, then also R→ ShH is G/H-Galois.

Suppose given a separable (over R) intermediate extension R→ T → S,
with S connected, and T → S faithful. Then T → S is Galois with group
HT = π0AlgT(S, S).
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HOMOTOPICAL GALOIS EXTENSIONS, ABSTRACTLY

ABSTRACT SETTING FOR GALOIS THEORY

ASSUMPTIONS

Start with M, a locally presentable symmetric monoidal model category with
cofibrant unit object. For A ∈ Alg(M), and G a dualizable Hopf algebra in M

(eg. finite group), assume ModA, GModA, AlgA, GAlgA, admit model
structures, such that a bunch of natural adjunctions between them are Quillen.

In such a situation, we can define (homotopical) Galois extensions á la
Rognes.
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HOMOTOPICAL GALOIS EXTENSIONS, ABSTRACTLY

ABSTRACT SETTING FOR GALOIS THEORY

DEFINITION

Let A→ B be a map in GAlg, where A has trivial G-action. This is called a
G-Galois extension if the induced maps

A→ BhG, and

B ∧A B→ F(G,B)

are equivalences.

THEOREM (BHKMS)
If the assumptions hold, the forward Galois correspondence holds, i.e. if
A→ B is a G-Galois extension, then for any H ⊆ G, BhH → B is H-Galois.
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

MOTIVIC SPACES

Homotopy theory for schemes/varieties rather than topological spaces

CONSTRUCTION

Smk ⇒ sPre(Smk)⇒ sPre(Smk)Nis ⇒ Motk

ISSUE Not all colimits exist in Smk

⇒ Formally adjoin colimits

ISSUE Information about geometry got lost
⇒ Re-enforce Nisnevich covers

Contract A1 to obtain the category of motivic spaces.
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

MOTIVIC SPECTRA

SOME MOTIVIC SPACES

Any smooth scheme, via the Yoneda embedding

Any simplicial set, as a constant presheaf

⇒ Two circles: Gm and S1

CONSTRUCTION (MOTIVIC SPECTRA)

Invert S2,1 := P1 = S1 ∧Gm in Motk to obtain Spk.

HOMOTOPY

SHEAVES πp,qX(U) = [Sp−q ∧Gq
m ∧ U+,X]

GROUPS πp,qX = πp,qX(Spec k)
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

EXAMPLES OF MOTIVIC SPECTRA

EILENBERG-MACLANE SPECTRA HA
We have π0,0HA = A, but
πp,qHA(U) = H−p,−q(U; A) = H−p(U; A(−q)) is non-zero in many
degrees with q < 0, eg.

H1,1(U;Z) = O×(U) H2,1(U;Z) = Pic(U)

K-THEORY

KGL is the analogue of complex K-theory

KO is the analogue of real K-theory,

Σ1,1KO
η−→ KO→ KGL

KT = KO[η−1] is a non-zero analogue of zero, as the motivic η is not
nilpotent
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

MOTIVIC HOMOTOPY WITH GROUP ACTIONS

G is a finite (constant) group

GENUINE EQUIVARIANT MOTIVIC SPACES AND SPECTRA

[Heller-Krishna-Østvær]

sPre(GSmk)⇒ sPre(GSmk)GNis ⇒ MotGk

[Gepner-Heller]
Form spectra by inverting choices of representation spheres.

A VARIANT

Start with GSmfree
k to get MotG−free

k .
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

MOTIVIC HOMOTOPY WITH GROUP ACTIONS

G is a finite (constant) group

GENUINE EQUIVARIANT MOTIVIC SPACES AND SPECTRA

[Heller-Krishna-Østvær]

sPre(GSmk)⇒ sPre(GSmk)GNis ⇒ MotGk

[Gepner-Heller]
Form spectra by inverting choices of representation spheres.

REMARK

The category MotGk is not exactly the category of G-objects GMotk in Motk.
However, there is a full and faithful monoidal map MotGk → GMotk (given by
the identity on G-schemes).
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BACKGROUND ON MOTIVIC HOMOTOPY THEORY

CLASSIFYING SPACES

SIMPLICIAL APPROACH

The simplicial E•G is in MotGS , but is not a universal free G-space

Example If k→ L is a G-Galois extension of fields, Spec L is a free G-space
in MotGk , but there are no maps Spec L→ E•G.

GEOMETRIC APPROACH

Let V be a faithful representation of G. The colimit of

· · · ↪→

A(V⊕n)−
⋃

16=H≤G

A(V⊕n)H

 ↪→ · · ·

is the universal free G-space EG.
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RESULTS AND EXAMPLES

SIMPLICIAL MOTIVIC GALOIS EXTENSIONS

CONSTRUCTION

Sm F=G×−−−−−−→ GSm ⇒ sPre(Sm)
F∗=LanF //
⊥ sPre(GSm)
F∗

oo

Pass to localizations, and use Mot
F∗

//
⊥ MotG
F∗

oo to right-induce a

model structure to MotG ⇒ MotG
E•G.

Stabilize ⇒ SpG
E•G.

SIMPLICIAL SETTING FOR GALOIS THEORY

We get a corresponding model structure on AlgG
E•G, with requisite Quillen

adjunctions.
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RESULTS AND EXAMPLES

SIMPLICIAL MOTIVIC GALOIS EXTENSIONS

PROPOSITION [BHKMS]

In MotG
E•G and SpG

E•G, a map f is an equivalence if and only if f ∧E•G+ is an
equivalence before the E•G-localization.
Fibrant replacement is formed by

X → Map(E•G+, X̃),

where X̃ is fibrant before the E•G-localization.

DEFINITION

A map A→ B of motivic rings is a simplicial G-Galois extension if

A→ F(E•G+,B)G =: BhsG, and

B ∧A B→ F(G+,B)

are equivalences.
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RESULTS AND EXAMPLES

THE EILENBERG-MACLANE EXAMPLE

THEOREM [BHKMS]
A map R→ S of commutative rings is a G-Galois extension if and only if the
induced map HR→ HS on motivic Eilenberg-Maclane spectra is a simplicial
G-Galois extension.

PROOF.
Difficulties arise because π∗,∗HR is not concentrated in one degree.
If R→ S is G-Galois, S is an invertible R[G]-module

⇒ HS ∧HR HS ' H(S⊗R S) '
∏

G HS
⇒ π∗,∗HS ∼= π∗,∗HR⊗R S

⇒ HR ' HShsG.
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RESULTS AND EXAMPLES

THE EILENBERG-MACLANE EXAMPLE

THEOREM [BHKMS]
A map R→ S of commutative rings is a G-Galois extension if and only if the
induced map HR→ HS on motivic Eilenberg-Maclane spectra is a simplicial
G-Galois extension.

PROOF.
Difficulties arise because π∗,∗HR is not concentrated in one degree.
If HR→ HS is G-Galois,

⇒
∏

G π0,0HS = π0,0(HS ∧HR HS) ∼= S⊗R S

⇒ π0,0(HShsG) ∼= π0,0HR.
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RESULTS AND EXAMPLES

THE K-THEORY SEMI-EXAMPLE

THEOREM [HU-KRIZ-ORMSBY]
Assume we work over a field k of characteristic zero. The simplicial
homotopy fixed points of KGL are equivalent to KO

if the 2-cohomological dimension of k[i] is finite, and

after 2-completion,

but not in general.

CONSEQUENCE

KO→ KGL is a simplicial Galois extension only in a setting as above, but not
in general.
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RESULTS AND EXAMPLES

GEOMETRIC MOTIVIC GALOIS EXTENSIONS

CONSTRUCTION

GSmfree i
↪→ GSm ⇒ sPre(GSmfree)

i∗=Lani //
⊥ sPre(GSm)

i∗
oo

Pass to localizations, and use MotG−free
i∗ //
⊥ MotG

i∗
oo to right-induce

a model structure to MotG ⇒ MotG
EG.

Stabilize ⇒ SpG
EG.

GEOMETRIC SETTING FOR GALOIS THEORY

We get a corresponding model structure on AlgG
EG, with requisite Quillen

adjunctions.
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RESULTS AND EXAMPLES

GEOMETRIC MOTIVIC GALOIS EXTENSIONS

PROPOSITION [BHKMS]

In MotG
EG and SpG

EG, a map f is an equivalence if and only if f ∧ EG+ is an
equivalence before the EG-localization.
Fibrant replacement is formed by

X → Map(EG+, X̃),

where X̃ is fibrant before the EG-localization.

DEFINITION

A map A→ B of motivic rings is a geometric G-Galois extension if

A→ F(EG+,B)G =: BhgG, and

B ∧A B→ F(G+,B)

are equivalences.

BHKMS MOTIVIC GALOIS EXTENSIONS SAAS 2016 19 / 20



RESULTS AND EXAMPLES

THE K-THEORY EXAMPLE

THEOREM [HELLER, BHKMS]
Assume our base is a field of characteristic different from 2. Then

KO→ KGL

is a geometric C2-Galois extension.

PROOF.
Difficulty is that η is not nilpotent motivically.
We know KO = KGLC2 ; to get KO ' KGLhgC2 , we show that
F(ẼC2,KGL)C2 ' ∗, using ẼC2 ' S0[e−1

P1
−

] ' S0[e−1
S1
−
, e−1

G−
m

].

After inverting eS1
−

in KGL, e−1
G−

m
must be nilpotent.
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