GALOIS EXTENSIONS OF MOTIVIC RING SPECTRA

Agnès Beaudry, Kathryn Hess, Magadalena Kędziorek, Mona Merling, Vesna Stojanoska

> Alpine Algebraic and Applied Topology Conference Saas, August 2016

GALOIS EXTENSIONS IN ALGEBRA

FIELDS

Given L/K an extension of fields, it is Galois if

- it is normal and separable
- \Leftrightarrow L is the splitting field of a polynomial with coefficients in K which has no repeated roots
- $\Leftrightarrow |Aut(L/K)| = [L:K]$

RINGS [AUSLANDER-GOLDMAN, CHASE-HARRISON-ROSENBERG] A map of rings $R \rightarrow S$ is *G*-Galois if

• $R \to S^G$ and

• $S \otimes_R S \to \operatorname{Hom}(G, S) = \prod_G S \quad \Leftrightarrow \quad S\langle G \rangle \to \operatorname{Hom}_R(S, S)$

are isomorphisms.

GALOIS EXTENSIONS IN ALGEBRA

GALOIS CORRESPONDENCE

Suppose $R \to S$ is a *G*-Galois extension.

- For any subgroup $H \subseteq G$, $S^H \to S$ is an *H*-Galois extension. If *H* is normal in *G*, then also $R \to S^H$ is a *G*/*H*-Galois extension.
- Suppose given a separable (over *R*) intermediate extension $R \to T \to S$, and assume *S* is connected (no non-trivial idempotents). Then $T \to S$ is Galois, with group $H_T = Stab_G(T) = Alg_T(S, S)$.

GALOIS EXTENSIONS IN HOMOTOPY THEORY

DEFINITION (ROGNES)

A map $\phi : R \to S$ of commutative ring spectra is *G*-Galois if

- G acts on S and ϕ induces an equivalence $R \simeq S^{hG}$, and
- the natural map $S \wedge_R S \to F(G_+, S)$ is an equivalence.

GALOIS CORRESPONDENCE [ROGNES]

Suppose $R \rightarrow S$ is a *faithful G*-Galois extension of commutative ring spectra.

- For any subgroup $H \subseteq G$, $S^{hH} \to S$ is a *faithful* H-Galois extension. If H is normal, then also $R \to S^{hH}$ is G/H-Galois.
- Suppose given a separable (over *R*) intermediate extension $R \to T \to S$, with *S* connected, and $T \to S$ *faithful*. Then $T \to S$ is Galois with group $H_T = \pi_0 \mathsf{Alg}_T(S, S)$.

ABSTRACT SETTING FOR GALOIS THEORY

ASSUMPTIONS

Start with \mathcal{M} , a locally presentable symmetric monoidal model category with cofibrant unit object. For $A \in Alg(\mathcal{M})$, and G a dualizable Hopf algebra in \mathcal{M} (eg. finite group), assume Mod_A , $GMod_A$, Alg_A , $GAlg_A$, admit model structures, such that a bunch of natural adjunctions between them are Quillen.

In such a situation, we can define (homotopical) Galois extensions á la Rognes.

ABSTRACT SETTING FOR GALOIS THEORY

DEFINITION

Let $A \rightarrow B$ be a map in GAlg, where A has trivial G-action. This is called a G-Galois extension if the induced maps

- $A \to B^{hG}$, and
- $B \wedge_A B \to F(G,B)$

are equivalences.

THEOREM (BHKMS)

If the assumptions hold, the forward Galois correspondence holds, i.e. if $A \rightarrow B$ is a G-Galois extension, then for any $H \subseteq G$, $B^{hH} \rightarrow B$ is H-Galois.

MOTIVIC SPACES

Homotopy theory for schemes/varieties rather than topological spaces

CONSTRUCTION

 $Sm_k \Rightarrow sPre(Sm_k) \Rightarrow sPre(Sm_k)_{Nis} \Rightarrow Mot_k$

ISSUE Not all colimits exist in Sm_k

 \Rightarrow Formally adjoin colimits

ISSUE Information about geometry got lost

 \Rightarrow Re-enforce Nisnevich covers

Contract \mathbb{A}^1 to obtain the category of *motivic spaces*.

MOTIVIC SPECTRA

Some motivic spaces

- Any smooth scheme, via the Yoneda embedding
- Any simplicial set, as a constant presheaf
- \Rightarrow Two circles: \mathbb{G}_m and S^1

CONSTRUCTION (MOTIVIC SPECTRA)

Invert $S^{2,1} := \mathbb{P}^1 = S^1 \wedge \mathbb{G}_m$ *in* Mot_k *to obtain* Sp_k .

Номотору

SHEAVES
$$\underline{\pi}_{p,q}X(U) = [S^{p-q} \wedge \mathbb{G}_m^q \wedge U_+, X]$$

GROUPS $\pi_{p,q}X = \underline{\pi}_{p,q}X(\operatorname{Spec} k)$

EXAMPLES OF MOTIVIC SPECTRA

EILENBERG-MACLANE SPECTRA HA

• We have
$$\pi_{0,0}HA = A$$
, but
 $\underline{\pi}_{p,q}HA(U) = H^{-p,-q}(U;A) = H^{-p}(U;A(-q))$ is non-zero in many degrees with $q < 0$, eg.

$$H^{1,1}(U;\mathbb{Z}) = \mathcal{O}^{\times}(U) \qquad H^{2,1}(U;\mathbb{Z}) = \operatorname{Pic}(U)$$

K-THEORY

- KGL is the analogue of complex *K*-theory
- KO is the analogue of real *K*-theory,

$$\Sigma^{1,1}$$
KO $\xrightarrow{\eta}$ KO \rightarrow KGL

 KT = KO[η⁻¹] is a non-zero analogue of zero, as the motivic η is not nilpotent

MOTIVIC HOMOTOPY WITH GROUP ACTIONS

G is a finite (constant) group

GENUINE EQUIVARIANT MOTIVIC SPACES AND SPECTRA [Heller-Krishna-Østvær]

$$\operatorname{sPre}(GSm_k) \Rightarrow \operatorname{sPre}(GSm_k)_{GNis} \Rightarrow \operatorname{Mot}_k^G$$

[Gepner-Heller] Form spectra by inverting choices of representation spheres.

A VARIANT Start with GSm_k^{free} to get Mot_k^{G-free} .

MOTIVIC HOMOTOPY WITH GROUP ACTIONS

G is a finite (constant) group

GENUINE EQUIVARIANT MOTIVIC SPACES AND SPECTRA [Heller-Krishna-Østvær]

```
sPre(GSm_k) \Rightarrow sPre(GSm_k)_{GNis} \Rightarrow Mot_k^G
```

[Gepner-Heller] Form spectra by inverting choices of representation spheres.

Remark

The category Mot_k^G is not exactly the category of *G*-objects $GMot_k$ in Mot_k . However, there is a full and faithful monoidal map $Mot_k^G \to GMot_k$ (given by the identity on *G*-schemes).

CLASSIFYING SPACES

SIMPLICIAL APPROACH

The simplicial $E_{\bullet}G$ is in Mot_S^G , but is not a universal free *G*-space

Example If $k \to L$ is a *G*-Galois extension of fields, Spec *L* is a free *G*-space in Mot_k^G , but there are no maps $Spec L \to E_{\bullet}G$.

GEOMETRIC APPROACH

Let V be a faithful representation of G. The colimit of

$$\cdots \hookrightarrow \left(\mathbb{A}(V^{\oplus n}) - \bigcup_{1 \neq H \leq G} \mathbb{A}(V^{\oplus n})^H \right) \hookrightarrow \cdots$$

is the universal free *G*-space $\mathbb{E}G$.

SIMPLICIAL MOTIVIC GALOIS EXTENSIONS

CONSTRUCTION

$$\operatorname{Sm} \xrightarrow{F=G \times -} G\operatorname{Sm} \implies \operatorname{sPre}(\operatorname{Sm}) \xrightarrow{F^* = Lan_F} \operatorname{sPre}(G\operatorname{Sm})$$
Pass to localizations, and use Mot $\xrightarrow{F^*}_{\overbrace{\underset{F_*}{\longrightarrow}}} \operatorname{Mot}^G$ to right-induce a model structure to $\operatorname{Mot}^G \implies \operatorname{Mot}^G_{\mathsf{E}_{\bullet}G}$.
Stabilize $\implies \operatorname{Sp}^G_{\mathsf{E}_{\bullet}G}$.

SIMPLICIAL SETTING FOR GALOIS THEORY

We get a corresponding model structure on $Alg^G_{E_{\bullet}G}$, with requisite Quillen adjunctions.

SIMPLICIAL MOTIVIC GALOIS EXTENSIONS

PROPOSITION [BHKMS]

In $Mot_{E_{\bullet}G}^{G}$ and $Sp_{E_{\bullet}G}^{G}$, a map *f* is an equivalence if and only if $f \wedge E_{\bullet}G_{+}$ is an equivalence before the $E_{\bullet}G$ -localization. Fibrant replacement is formed by

 $X \to \operatorname{Map}(\mathsf{E}_{\bullet}G_+, \tilde{X}),$

where \tilde{X} is fibrant before the $\mathsf{E}_{\bullet}G$ -localization.

DEFINITION

A map $A \rightarrow B$ of motivic rings is a simplicial *G*-Galois extension if

•
$$A \to F(\mathsf{E}_{\bullet}G_+, B)^G =: B^{h_s G}$$
, and

• $B \wedge_A B \to F(G_+, B)$

are equivalences.

THE EILENBERG-MACLANE EXAMPLE

THEOREM [BHKMS]

A map $R \rightarrow S$ of commutative rings is a *G*-Galois extension if and only if the induced map $HR \rightarrow HS$ on motivic Eilenberg-Maclane spectra is a simplicial *G*-Galois extension.

PROOF.

Difficulties arise because $\pi_{*,*}$ HR is not concentrated in one degree. If $R \to S$ is G-Galois, S is an invertible R[G]-module

$$\Rightarrow$$
 HS \wedge_{HR} HS \simeq H(S \otimes_R S) $\simeq \prod_G$ HS

$$\Rightarrow \underline{\pi}_{*,*}\mathsf{HS} \cong \underline{\pi}_{*,*}\mathsf{HR} \otimes_R S$$

 \Rightarrow HR \simeq HS^{h_sG}.

THE EILENBERG-MACLANE EXAMPLE

THEOREM [BHKMS]

A map $R \rightarrow S$ of commutative rings is a *G*-Galois extension if and only if the induced map $HR \rightarrow HS$ on motivic Eilenberg-Maclane spectra is a simplicial *G*-Galois extension.

PROOF.

Difficulties arise because $\pi_{*,*}$ HR is not concentrated in one degree. If HR \rightarrow HS is *G*-Galois,

$$\Rightarrow \prod_{G} \pi_{0,0} \mathsf{HS} = \pi_{0,0} (\mathsf{HS} \wedge_{\mathsf{HR}} \mathsf{HS}) \cong S \otimes_{\mathcal{R}} S$$

$$\Rightarrow \pi_{0,0}(\mathsf{HS}^{h_s G}) \cong \pi_{0,0}\mathsf{HR}.$$

THE K-THEORY SEMI-EXAMPLE

THEOREM [HU-KRIZ-ORMSBY]

Assume we work over a field k of characteristic zero. The simplicial homotopy fixed points of KGL are equivalent to KO

- if the 2-cohomological dimension of k[i] is finite, and
- after 2-completion,

but not in general.

CONSEQUENCE

 $\mathsf{KO}\to\mathsf{KGL}$ is a simplicial Galois extension only in a setting as above, but not in general.

GEOMETRIC MOTIVIC GALOIS EXTENSIONS

CONSTRUCTION

$$GSm^{free} \stackrel{i}{\hookrightarrow} GSm \implies SPre(GSm^{free}) \xrightarrow[i_*]{} \stackrel{i^*=Lan_i}{\swarrow} SPre(GSm)$$
Pass to localizations, and use $Mot^{G-free} \xrightarrow[i_*]{} Mot^{G}$ to right-induce

a model structure to $\mathsf{Mot}^G \Rightarrow \mathsf{Mot}^G_{\mathbb{E}G}$. Stabilize $\Rightarrow \mathsf{Sp}^G_{\mathbb{E}G}$.

GEOMETRIC SETTING FOR GALOIS THEORY

We get a corresponding model structure on $\mathsf{Alg}^G_{\mathbb{E}G}$, with requisite Quillen adjunctions.

GEOMETRIC MOTIVIC GALOIS EXTENSIONS

PROPOSITION [BHKMS]

In $Mot_{\mathbb{E}G}^G$ and $Sp_{\mathbb{E}G}^G$, a map *f* is an equivalence if and only if $f \wedge \mathbb{E}G_+$ is an equivalence before the $\mathbb{E}G$ -localization. Fibrant replacement is formed by

 $X \to \operatorname{Map}(\mathbb{E}G_+, \tilde{X}),$

where \tilde{X} is fibrant before the $\mathbb{E}G$ -localization.

DEFINITION

A map $A \rightarrow B$ of motivic rings is a geometric *G*-Galois extension if

- $A \to F(\mathbb{E}G_+, B)^G =: B^{h_g G}$, and
- $B \wedge_A B \to F(G_+, B)$

are equivalences.

THE K-THEORY EXAMPLE

THEOREM [HELLER, BHKMS]

Assume our base is a field of characteristic different from 2. Then

 $\mathrm{KO}
ightarrow \mathrm{KGL}$

is a geometric C_2 -Galois extension.

PROOF.

Difficulty is that η is not nilpotent motivically. We know $KO = KGL^{C_2}$; to get KO \simeq KGL h_gC_2 , we show that $F(\widetilde{\mathbb{E}}C_2, \text{KGL})^{C_2} \simeq *$, using $\widetilde{\mathbb{E}}C_2 \simeq S^0[e_{\mathbb{P}_-}^{-1}] \simeq S^0[e_{S_-}^{-1}, e_{\mathbb{G}_m}^{-1}]$. After inverting $e_{S_-}^1$ in KGL, $e_{\mathbb{G}_m}^{-1}$ must be nilpotent.