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Report on my ongoing PhD project.

Main Goal

Explain how geometric fixed points can be used to give an
algebraic model for the rational global homotopy category.

Note:
We only deal with finite groups, so this is actually fin-global
homotopy theory.
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Quick reminder about global homotopy theory

Let X ∈ SpO be an orthogonal spectrum.

G : finite group  can regard X as a G -orthogonal spectrum
X 〈G 〉 ∈ G - SpO with trivial G -action.
By evaluating at orthogonal G -representations V we obtain
non-trivial G -spaces X (V ).

This gives us the equivariant homotopy groups of X :

πGk X = πGk X 〈G 〉 = colimn∈N[Sk+n·ρG ,X (n · ρG )]G ,

where k ∈ Z and ρG = R[G ] = regular representation of G .

A map f : X → Y is called a global equivalence if it induces
isomorphisms on all equivariant homotopy groups
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The global homotopy category

Definition

The global homotopy category is the localization

GH = SpO[(gl. equivalences)−1].

This is the homotopy category of a stable monoidal model
category, in particular a tensor triangulated category.

A set of compact generators is given by (suspension spectra
of) global classifying spaces BglG which corepresent the
equivariant homotopy groups:

πGk X = [ΣkBglG+,X ]GH.

Global classifying spaces: The underlying K -homotopy type
(BglG )〈K 〉 ' BF(K ;G ) is that of a classifying space for the
family of graph subgroups of K × G .
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Global functors

Algebraic structure as G varies:

For every homomorphisms of groups α : G → K there is a
restriction map (only depends on the conjugacy class)

resα : πK∗ X −→ πG∗ X .

For subgroup inclusions H ≤ G we also have transfer maps

trGH : πH∗ X −→ πG∗ X .

Transfers commute with restrictions along surjections and
there is a double coset formula for restrictions along subgroup
inclusions.

Notation:

GF = the abelian category of global functors
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Geometric fixed points

In equivariant stable homotopy theory there are also geometric
fixed point homotopy groups:

ΦG
k X = colimn∈N[Sk+n,X (n · ρG )G ].

Have a comparison map, the geometric fixed points map:

φG : πG∗ X −→ ΦG
∗ X ,

Functoriality:

There are still restrictions, but only along surjections

α : G � K  resα : ΦK
∗ X → ΦG

∗ X

Only depends on the conjugacy class of α, compatible with
composition
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Geometric fixed points

Definition

Let Out be the category with

objects: finite groups

morphisms: conjugacy classes of epimorphisms

So the geometric fixed points are contravariant functors from the
category Out:

Φ
( )
∗ X ∈ Outop -mod

The geometric fixed points map commutes with restrictions and
annihilates transfers from proper subgroups:

φG (trGH(x)) = 0 ∈ ΦG
∗ X , H � G .
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Time to rationalize

Question

How does the global homotopy category simplify if we look at it
rationally ?

Definition

The rational global homotopy category is the localization

GHQ = SpO[(rational gl. equivalences)−1].

Rational global equivalence:
A map inducing isomorphisms on all πG∗ ( )⊗Q.
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Rational global homotopy theory

Here is some evidence that it’s reasonable to look at geometric
fixed points:

Proposition

There is an equivalence of abelian categories

τ : GFQ
'−→ modQ- Out .

The functor τ is defined by dividing out proper transfers:

τ(F )(G ) = F (G )/
∑
H�G

im(trGH),F ∈ GF

Proposition

The geometric fixed points map factors over a rational isomorphism

φ : τ(π∗X )
∼=Q−→ Φ∗X

Christian Wimmer Rational global homotopy theory



Rational global homotopy theory

Strategy:
Use geometric fixed point spectra to produce a functor

SpO −→ Outop - SpO

which induces an equivalence

GHQ
'−→ Ho(Outop - SpO)Q ' D(Outop -modQ).

(Doesn’t quite work that way)
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Geometric fixed points spectra

There is a nice model ΦGX ∈ SpO for the geometric fixed points
spectrum of X :
At an inner product space V it is given by

(ΦGX )(V ) = X (V ⊗ ρG )G .

Functoriality in G :

Given a surjection α : G � K summation over the fibers
defines a G -equivariant isometry

α∗ρK ↪→ ρG , g 7→ 1√
| kerα|

∑
g∈α−1(k)

g

This induces a map

X (V ⊗ ρK )K = X (V ⊗ α∗ρK )G → X (V ⊗ ρG )G
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Geometric fixed points spectra

Putting these together we obtain a map of spectra

α∗ : ΦKX → ΦGX

and we end up with

Φ( )X ∈ Epiop - SpO .

Here Epi is the category of finite groups and surjective
homomorphisms.

Example

ΦKBglG+
∼=

∨
ψ∈Rep(K ,G)

BC (ψ)+

is a wedge of classifying spaces of centralizers indexed by
conjugacy classes of homomorphisms.
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Identifying the rational global homotopy category

We form the following composite:

κ : SpO Φ−→ Epiop- SpO c−→ Epiop -ChQ
Lan−→ Outop -ChQ

c is defined by applying a rational chain functor
c : SpO → ChQ, H∗cX ∼= (π∗X )Q at each group G

The left Kan extension just divides out by the conjugation
actions:

Lan(C ( ))(G ) = C (G )/ Inn(G ), C ∈ Epiop -ChQ

Rationally this is exact and commutes with taking homology

So if C arises as the geometric fixed points of a spectrum X
this has no effect on homology
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Identifying the rational global homotopy category

Upshot:

We obtain a functor κ together with a natural isomorphism
H∗κX ∼= (Φ∗X )Q. In particular it is homotopical and descends
to a functor on homotopy categories.

κ(BglG+) ' Q[Rep( ,G )] (concentrated in degree 0) and
these form a set of compact generators of D(Outop -ChQ)

Calculational fact: Fully faithful on global classifying spaces

Theorem (W.)

Geometric fixed points induce a monoidal equivalence

GHQ
'−→ D(modQ- Out)

between the rational global homotopy category and the derived
category of rational Outop-modules with the groupwise tensor
product of chain complexes.
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Decompositions into Eilenberg-MacLane objects

Classical case: Rational G -Mackey functors are projective
=⇒ rational G -spectra split as a wedges of
Eilenberg-MacLane spectra.

Globally this is no longer true. The abelian category
GFQ ' modQ- Out does not split.

Example (Non-projective)

Let Q = Q[Out( , e)] be the constant Outop-module (projective)
and Qe = Q concentrated at the trivial group. Then the surjection

Q� Qe

does not split.

The symmetric powers Spn of the sphere spectrum are naturally
ocuring global homotopy types that are not Eilenberg-MacLane
spectra (Markus Hausmann).
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Ex: Global K -theory

Global K -theory: Global homotopy type that restricts to
equivariant K -theory for every finite group.

Homotopy groups are given by the representation ring global
functor RU in even degrees.

Theorem (W.)

For any rational global functor F the higher Ext-groups

ExtnGFQ(F ,RU⊗Q) = 0, n ≥ 2

vanish.

Corollary

The global K -theory spectrum KU splits as a wedge of global
Eilenberg-MacLane spectra.
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Real global homotopy theory

One can also set up a Real (in the C2-equivariant sense)
version of global homotopy theory

If we think of global homotopy types as encoding actions of
all finite groups G , then Real global homotopy types encode
twisted actions by all augmented groups G → C2

Naturally occuring examples are Atiyah’s KR-theory and Real
Bordism MR.
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Real global homotopy theory

Rationally there is again an equivalence

GHRQ ' D(Outop
R -modQ)

OutR : Real version of Out

Objects: augmented groups G → C2

Morphism: surjections over C2 but with a additional grading
which is twisted by conjugations
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