Rational global homotopy theory

Christian Wimmer

University of Bonn/MPIM

Alpine Topology Conference, Saas-Almagell August 16, 2016 Report on my ongoing PhD project.

Main Goal

Explain how geometric fixed points can be used to give an algebraic model for the rational global homotopy category.

Note:

We only deal with <u>finite</u> groups, so this is actually fin-global homotopy theory.

Let $X \in Sp^{O}$ be an orthogonal spectrum.

- G: finite group → can regard X as a G-orthogonal spectrum X(G) ∈ G-Sp^O with trivial G-action. By evaluating at orthogonal G-representations V we obtain non-trivial G-spaces X(V).
- This gives us the *equivariant homotopy groups* of X:

$$\pi_k^G X = \pi_k^G X \langle G \rangle = \operatorname{colim}_{n \in \mathbb{N}} [S^{k+n \cdot \rho_G}, X(n \cdot \rho_G)]_G,$$

where $k \in \mathbb{Z}$ and $\rho_G = \mathbb{R}[G]$ = regular representation of G.

 A map f : X → Y is called a global equivalence if it induces isomorphisms on all equivariant homotopy groups

Definition

The global homotopy category is the localization

$$\mathcal{GH} = \mathsf{Sp}^{\mathsf{O}}[(\mathsf{gl. equivalences})^{-1}].$$

- This is the homotopy category of a stable monoidal model category, in particular a tensor triangulated category.
- A set of compact generators is given by (suspension spectra of) *global classifying spaces* $B_{gl}G$ which corepresent the equivariant homotopy groups:

$$\pi_k^G X = [\Sigma^k B_{\mathsf{gl}} G_+, X]_{\mathcal{GH}}.$$

• Global classifying spaces: The underlying K-homotopy type $(B_{gl}G)\langle K \rangle \simeq B\mathcal{F}(K;G)$ is that of a classifying space for the family of graph subgroups of $K \times G$.

Global functors

Algebraic structure as G varies:

For every homomorphisms of groups α : G → K there is a restriction map (only depends on the conjugacy class)

$$\operatorname{res}_{\alpha}: \pi_*^{\mathsf{K}} X \longrightarrow \pi_*^{\mathsf{G}} X.$$

• For subgroup inclusions $H \leq G$ we also have *transfer maps*

$$\operatorname{tr}_{H}^{G}:\pi_{*}^{H}X\longrightarrow\pi_{*}^{G}X.$$

• Transfers commute with restrictions along surjections and there is a *double coset formula* for restrictions along subgroup inclusions.

Notation:

$$\mathcal{GF}$$
 = the abelian category of *global functors*

Geometric fixed points

In equivariant stable homotopy theory there are also *geometric fixed point* homotopy groups:

$$\Phi_k^G X = \operatorname{colim}_{n \in \mathbb{N}} [S^{k+n}, X(n \cdot \rho_G)^G].$$

Have a comparison map, the geometric fixed points map:

$$\phi^{\mathsf{G}}:\pi^{\mathsf{G}}_*X\longrightarrow \Phi^{\mathsf{G}}_*X$$
,

Functoriality:

• There are still restrictions, but only along surjections

$$\alpha: \mathcal{G} \twoheadrightarrow \mathcal{K} \rightsquigarrow \mathsf{res}_{\alpha}: \Phi_*^{\mathcal{K}} X \to \Phi_*^{\mathcal{G}} X$$

• Only depends on the conjugacy class of α , compatible with composition

Definition

Let Out be the category with

objects: finite groups

morphisms: conjugacy classes of epimorphisms

So the geometric fixed points are contravariant functors from the category Out:

 $\Phi^{(_)}_*X \in \operatorname{Out}^{\operatorname{op}}\operatorname{-mod}$

The geometric fixed points map commutes with restrictions and annihilates transfers from proper subgroups:

$$\phi^{G}(\mathrm{tr}_{H}^{G}(x))=0\in\Phi_{*}^{G}X,\quad H\lneq G.$$

Question

How does the global homotopy category simplify if we look at it rationally ?

Definition

The rational global homotopy category is the localization

$$\mathcal{GH}_{\mathbb{Q}} = \mathsf{Sp}^{\mathsf{O}}[(\mathsf{rational gl. equivalences})^{-1}].$$

Rational global equivalence: A map inducing isomorphisms on all $\pi^{G}_{*}(_{-}) \otimes \mathbb{Q}$.

Rational global homotopy theory

Here is some evidence that it's reasonable to look at geometric fixed points:

Proposition

There is an equivalence of abelian categories

$$au: \mathcal{GF}_{\mathbb{Q}} \xrightarrow{\simeq} \mathsf{mod}_{\mathbb{Q}}\text{-}\mathsf{Out}.$$

The functor τ is defined by dividing out proper transfers:

$$au(F)(G) = F(G) / \sum_{H \lneq G} \operatorname{im}(\operatorname{tr}_H^G), F \in \mathcal{GF}$$

Proposition

The geometric fixed points map factors over a rational isomorphism

$$\phi: \tau(\pi_*X) \xrightarrow{\cong_{\mathbb{Q}}} \Phi_*X$$

Strategy: Use geometric fixed point spectra to produce a functor

$$\mathsf{Sp}^\mathsf{O} \longrightarrow \mathsf{Out}^\mathsf{op} \operatorname{\mathsf{-}} \mathsf{Sp}^\mathsf{O}$$

which induces an equivalence

$$\mathcal{GH}_{\mathbb{Q}} \stackrel{\simeq}{\longrightarrow} \textbf{Ho}(\mathsf{Out}^{\mathsf{op}} \operatorname{\mathsf{-Sp}}^{\mathsf{O}})_{\mathbb{Q}} \simeq \mathcal{D}(\mathsf{Out}^{\mathsf{op}} \operatorname{\mathsf{-mod}}_{\mathbb{Q}}).$$

(Doesn't quite work that way)

Geometric fixed points spectra

There is a nice model $\Phi^G X \in Sp^O$ for the geometric fixed points spectrum of X:

At an inner product space V it is given by

$$(\Phi^G X)(V) = X(V \otimes \rho_G)^G.$$

Functoriality in G:

 Given a surjection α : G → K summation over the fibers defines a G-equivariant isometry

$$lpha^*
ho_K \hookrightarrow
ho_G, \quad g \mapsto rac{1}{\sqrt{|\ker lpha|}} \sum_{g \in lpha^{-1}(k)} g$$

• This induces a map

$$X(V \otimes \rho_K)^K = X(V \otimes \alpha^* \rho_K)^G \to X(V \otimes \rho_G)^G$$

Geometric fixed points spectra

Putting these together we obtain a map of spectra

$$\alpha^*: \Phi^K X \to \Phi^G X$$

and we end up with

$$\Phi^{(_)}X \in \operatorname{Epi}^{\operatorname{op}} - \operatorname{Sp}^{\operatorname{O}}$$
.

Here Epi is the category of finite groups and surjective homomorphisms.

Example

$$\Phi^{\mathsf{K}}B_{\mathsf{gl}}G_{+} \cong \bigvee_{\psi \in \mathsf{Rep}(\mathsf{K}, \mathsf{G})} BC(\psi)_{+}$$

is a wedge of classifying spaces of centralizers indexed by conjugacy classes of homomorphisms.

Identifying the rational global homotopy category

We form the following composite:

$$\kappa: \mathsf{Sp}^{\mathsf{O}} \xrightarrow{\Phi} \mathsf{Epi}^{\mathsf{op}} \operatorname{\mathsf{-Sp}}^{\mathsf{O}} \xrightarrow{c} \mathsf{Epi}^{\mathsf{op}} \operatorname{\mathsf{-Ch}}_{\mathbb{Q}} \xrightarrow{Lan} \mathsf{Out}^{\mathsf{op}} \operatorname{\mathsf{-Ch}}_{\mathbb{Q}}$$

- c is defined by applying a rational chain functor $c : \operatorname{Sp}^{O} \to \operatorname{Ch}_{\mathbb{Q}}, \ H_{*}cX \cong (\pi_{*}X)_{\mathbb{Q}}$ at each group G
- The left Kan extension just divides out by the conjugation actions:

$$Lan(C(_{-}))(G) = C(G)/Inn(G), \quad C \in \mathsf{Epi}^{\mathsf{op}}\operatorname{-Ch}_{\mathbb{Q}}$$

- Rationally this is exact and commutes with taking homology
- So if C arises as the geometric fixed points of a spectrum X this has no effect on homology

Identifying the rational global homotopy category

Upshot:

- We obtain a functor κ together with a natural isomorphism *H*_{*}κ*X* ≅ (Φ_{*}*X*)_Q. In particular it is homotopical and descends to a functor on homotopy categories.
- $\kappa(B_{\mathrm{gl}}G_+) \simeq \mathbb{Q}[\operatorname{Rep}(_{-}, G)]$ (concentrated in degree 0) and these form a set of compact generators of $\mathcal{D}(\operatorname{Out}^{\operatorname{op}}-\operatorname{Ch}_{\mathbb{Q}})$
- Calculational fact: Fully faithful on global classifying spaces

Theorem (W.)

Geometric fixed points induce a monoidal equivalence

$$\mathcal{GH}_{\mathbb{Q}} \stackrel{\simeq}{\longrightarrow} \mathcal{D}(\mathsf{mod}_{\mathbb{Q}}\text{-}\mathsf{Out})$$

between the rational global homotopy category and the derived category of rational Out^{op}-modules with the groupwise tensor product of chain complexes.

Decompositions into Eilenberg-MacLane objects

- Classical case: Rational G-Mackey functors are projective
 rational G-spectra split as a wedges of
 Eilenberg-MacLane spectra.
- Globally this is no longer true. The abelian category $\mathcal{GF}_{\mathbb{Q}} \simeq \mathsf{mod}_{\mathbb{Q}}$ Out does not split.

Example (Non-projective)

Let $\underline{\mathbb{Q}} = \mathbb{Q}[\mathsf{Out}(_, e)]$ be the constant $\mathsf{Out}^{\mathsf{op}}$ -module (projective) and $\overline{\mathbb{Q}}_e = \mathbb{Q}$ concentrated at the trivial group. Then the surjection

$$\underline{\mathbb{Q}} \twoheadrightarrow \mathbb{Q}_e$$

does not split.

The symmetric powers Spⁿ of the sphere spectrum are naturally ocuring global homotopy types that are not Eilenberg-MacLane spectra (Markus Hausmann).

Ex: Global K-theory

- Global *K*-theory: Global homotopy type that restricts to equivariant *K*-theory for every finite group.
- Homotopy groups are given by the *representation ring* global functor **RU** in even degrees.

Theorem (W.)

For any rational global functor F the higher Ext-groups

$$\operatorname{Ext}^n_{\mathcal{GF}_{\mathbb{O}}}(F, \operatorname{\textbf{RU}}\otimes \mathbb{Q}) = 0, \quad n \geq 2$$

vanish.

Corollary

The global K-theory spectrum KU splits as a wedge of global Eilenberg-MacLane spectra.

- One can also set up a *Real* (in the *C*₂-equivariant sense) version of global homotopy theory
- If we think of global homotopy types as encoding actions of all finite groups G, then Real global homotopy types encode twisted actions by all augmented groups G → C₂
- Naturally occuring examples are Atiyah's *KR*-theory and Real Bordism *MR*.

Rationally there is again an equivalence

$$\mathcal{GHR}_{\mathbb{Q}} \simeq \mathcal{D}(\mathsf{Out}_R^{\mathsf{op}}\operatorname{\mathsf{-mod}}_{\mathbb{Q}})$$

Out_R: Real version of Out

- \bullet Objects: augmented groups $G \to C_2$
- Morphism: surjections over C₂ but with a additional grading which is twisted by conjugations