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1 Introduction

I did my internship at Indiana University, in the Institute for Scientific Computing
and Applied Mathematics. The institute belongs to the department of Mathematics of
Indiana University. The institute is composed of the Director Professor Roger Temam,
postdoctoral fellows, graduate students. I was also collaborating with Sylvain Faure from
the Orsay university.

The subject of my internship was to carry on the numerical part of the thesis of K.
Adamy. The program for this thesis was only in Fortran and was focusing on testing
method of multilevel applied on all the mesh. The goal was to modified this code to apply
a benchmark of the physics. I had to solve the shallow-water equations to obtain a Rossby
soliton.

The main improvement of my program are :

• Python and Fortran, instead of only Fortran

• Adding the Coriolis force

• localized multilevel method, instead of a global one

I will first explain the multilevel method in one dimension, then I will go on about the
equations of shallow-water with the multilevel method in two dimensions. At the end I
will explain my programming and show the validations.

2 System in 1D

In this section, I present the multilevel for finite volumes in one dimension.

2.1 System

The example system we are solving in 1 dimension is, on Ω = [0, Lx] :

∂tu + ∂x

(
u2

2

)

= 0, ∀x ∈ Ω and t > 0

Then we apply a finite volume discretization : we divide Ω in Nx cells Ki =
[

xi− 1

2

, xi+ 1

2

]

of length △x, for i ∈ {1, ..., Nx} :

xi+ 1

2

= i△x

We define xi the center of each cell Ki :

xi = i△x +
△x

2
Then we define u(x, t) on each cells, that we denote ui(t) the average value of u on Ki (on
the spatial component). The new unknowns become the {ui | for i = 1...Nx}
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ui(t)

△x

xi− 1

2

i
u1(t)

x 1

2

= 0 xNx+ 1

2

= Lx

uNx(t)

x1 xi xNx

xi+ 1

2

ui(t) =
1

△x

∫ x
i+1

2

x
i−1

2

u(x, t)dx, ∀i ∈ {1, ..., Nx}

Then we approximate with the flux :

∂x

(
u2

i (t)

2

)

≃
Fi+ 1

2

(t) − Fi− 1

2

(t)

△x
, ∀i ∈ {1, .., Nx}

With Fi is the flux which will depends of the scheme we use.

Then the system to solve is :

∂t (ui(t)) = −
Fi+ 1

2

(t) − Fi− 1

2

(t)

△x
, ∀i ∈ {1, .., Nx} and t > 0 (2.1)

2.2 Times discretization

For t ∈ [0, T ], we divided [0, T ] in Nt cells [tn, tn+1] of length △t for n ∈ {0, ..., Nt}, with
tn = n△t.

We denote un
i := ui(tn),for i ∈ {1, ..., Nx} and n ∈ {0, ..., Nt} which are the new unknowns.

We approximate the derivative in times using the Heun method. First we rewrite the
system:

∂t (ui(t)) (tn) ≃ R(un
i , tn) = −

Fi+ 1

2

(tn) − Fi− 1

2

(tn)

△x
, ∀i ∈ {1, .., Nx} and n ∈ {0, ..., Nt}

Then we apply the following discretization :







k1
i = R(un

i , tn)
k2

i = R(un
i + △tk1

i , tn + △t)

un+1
i = un

i + △t
2 (k1

i + k2
i )

(2.2)

2.3 Example of fluxes

For the finite volume method we can use many different fluxes, here is an example of some
of them.
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2.3.1 Centered:

Fi+ 1

2

(t) =
1

4

(
u2

i+1(t) + u2
i (t)

)
, ∀i ∈ {1, ..., Nx − 1}

To define F 1

2

and FNx+ 1

2

, it will depends of the boundary condition.

Dirichlet with u(0, t) = u0(t) and u(Lx, t) = uNx+1(t) given :
F 1

2

= 1
4u2

0

FNx+ 1

2

= 1
4u2

Nx+1

Periodic uses u0(t) = uNx(t) and uNx+1(t) = u0(t):
F 1

2

= 1
4(u2

Nx
+ u2

1)

FNx+ 1

2

= 1
4(u2

Nx
+ u2

1)

Neumann homogeneous uses u0(t) = u1(t) and uNx+1(t) = uNx(t) :
F 1

2

= 1
4(u2

1 + u2
1)

FNx+ 1

2

= 1
4(u2

Nx
+ u2

Nx
)

Then we solve :

∂t (ui(t)) = −
1

4△x

(
(un

i+1(t))
2 − (un

i−1(t))
2
)
, ∀i ∈ {2, .., Nx − 1}

For i = 1 and i = Nx it will depend on the boundary condition.

Then we add the discretization in times :

k1
i = − 1

4△x

(
(un

i+1)
2 − (un

i−1)
2
)

k2
i = − 1

4△x

(
(un

i+1 + △tk1
i )

2 − (un
i−1 + △tk1

i )
2
)

un+1
i = un

i + △t
2 (k1

i + k2
i )

2.3.2 Lax-Friedrichs :

Fi+ 1

2

(tn) =
1

4

(
u2

i+1(t) + u2
i (t)

)
−

△x

2△t
(un

i+1 − un
i ), ∀i ∈ {1, ..., Nx − 1}

To define F 1

2

and FNx+ 1

2

, it will depends of the boundary condition.

Dirichlet with u(0, t) = u0(t) and u(Lx, t) = uNx+1(t) given :
F 1

2

= 1
4u2

0

FNx+ 1

2

= 1
4u2

Nx+1

Periodic uses u0(t) = uNx(t) and uNx+1(t) = u0(t):

F 1

2

(tn) = 1
4 (u2

Nx
+ u2

1) −
△x
2△t(u

n
1 − un

Nx
)

FNx+ 1

2

(tn) = 1
4(u2

Nx
+ u2

1) −
△x
2△t(u

n
1 − un

Nx
)

Neumann homogeneous uses u0(t) = u1(t) and uNx+1(t) = uNx(t) :
F 1

2

= 1
4(u2

1 + u2
1)

FNx+ 1

2

= 1
4(u2

Nx
+ u2

Nx
)

Then we solve :

∂t (ui(t)) (tn) = −
1

4△x

(
(un

i+1(t))
2 − (un

i−1(t))
2
)
−

△x

2△t
(un

i+1+un
i−1), ∀i ∈ {2, .., Nx − 1} ‘and n ∈ {0, ..., Nt}

For i = 1 and i = Nx it will depend on the boundary condition.

Then we add the discretization in times :
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k1
i = − 1

4△x

(
(un

i+1)
2 − (un

i−1)
2
)
− △x

2△t(u
n
i+1 + un

i−1)

k2
i = − 1

4△x

(
(un

i+1 + △tk1
i )

2 − (un
i−1 + △tk1

i )
2
)
− △x

2△t(u
n
i+1 + △tk1

i + un
i−1 + △tk1

i )

un+1
i = un

i + △t
2 (k1

i + k2
i )

2.3.3 Central-upwind :

This schema is supposed to be precise and to handle chocks with a little of diffusion. It
takes data from ”left” as many as from ”right”, but it also considers the sens of propaga-
tion.

Fi+ 1

2

(tn) =
1

2





a+
i+ 1

2

(u−

i+ 1

2

)2 − a−
i+ 1

2

(u+
i+ 1

2

)2

a+
i+ 1

2

− a−
i+ 1

2



−
a+

i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

(u+
i+ 1

2

−u−

i+ 1

2

), ∀i ∈ {1, ..., Nx − 1}

With :

u+
i+ 1

2

= pi+1(xi+ 1

2

)
(

polynomial of reconstruction of u on
[

xi+ 1

2

, xi+ 3

2

])

u−

i+ 1

2

= pi(xi+ 1

2

)
(

polynomial of reconstruction of u on
[

xi− 1

2

, xi+ 1

2

])

a+
i+ 1

2

= max

{

λN

(

∂f
∂u(u−

i+ 1

2

)

)

, λN

(

∂f
∂u(u+

i+ 1

2

)

)

, 0

}

= max

{

u−

i+ 1

2

, u+
i+ 1

2

, 0

}

a−
i+ 1

2

= min

{

λ1

(

∂f
∂u(u−

i+ 1

2

)

)

, λ1

(

∂f
∂u (u+

i+ 1

2

)

)

, 0

}

= min

{

u−

i+ 1

2

, u+
i+ 1

2

, 0

}

Where :

∂f
∂u (w) = w (Jacobian)

λ1

(
∂f
∂u(w)

)

< ... < λN

(
∂f
∂u(w)

)

being the N eigenvalue of the Jacobian ∂f
∂u at w

(ux)ni = minmod
(

1
△x(un

i − un
i+1);

1
△x(un

i+1 − un
i )

)

minmod(a, b) = 1
2 (sgn(a) + sgn(b)) min(| a |, | b |)

To define F 1

2

and FNx+ 1

2

, it will depends of the boundary condition. Then we use the same

method for the boundary conditions and the time resolution as the two previous fluxes.

2.4 Multilevel

We define also Y ≃ u on each cell of length 3△x, which the coarse mesh.

u ≃ Y + Z

Where Z is define on the fine mesh.
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MW E

YM

Ew Em EwWw Wm We m ew

uw um ue

Zw Ze

YW YE

We define the variables :






YM = 1
3(uw + um + ue)

Ze = ue −
1
3(2YM + YE) = O(△x2)

Zw = uw − 1
3(2YM + YW ) = O(△x2)

(2.3)

So : 





um = 3YM − Ze − Zw − 1
3(4YM + YE + YW )

ue = Ze + 1
3 (2YM + YE)

uw = Zw + 1
3(2YM + YW )

(2.4)

Proof of the O(△x2) using Taylor expansion :

YM = 1
3(uw + um + ue)

= 1
3(ue − 2△x∂xue + O(△x2)

︸ ︷︷ ︸

uw

+ ue −△x∂xue + O(△x2)
︸ ︷︷ ︸

um

+ue)

= ue −△x∂xue + O(△x2)

YE = 1
3(uEw + uEm + uEe)

= 1
3(ue + △x∂xue + O(△x2)

︸ ︷︷ ︸

uEw

+ ue + 2△x∂xue + O(△x2)
︸ ︷︷ ︸

uEm

+ ue + 3△x∂xue + O(△x2)
︸ ︷︷ ︸

uEe

)

= ue + 2△x∂xue + O(△x2)
Then :

Ze = ue −
1
3(2ue − 2△x∂xue + ue + 2△x∂xue + O(△x2))

= O(△x2)

It is the same with Zw.

Then the scheme for Yi:

Yi

u3i−2 u3i−1 u3i

Y1 YNx
3

Lx0

u1 u2 u3 uNx−2uNx−1 uNx

With (2.1) and (2.3), we have for i ∈
{
1, ..., Nx

3

}
:







∂tYi = 1
3(∂tu3i + ∂tu3i−1 + ∂tu3i−2)

= 1
3 × 1

△x × (F3i+ 1

2

− F3i− 1

2

+ F3i− 1

2

− F3i− 3

2

+ F3i− 3

2

− F3i− 5

2

)

= 1
12△x(F3i+ 1

2

− F3i− 5

2

)
(2.5)
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3 Shallow Water

The equations that my program solves are the shallow-water equations. In this section I
present the equations with the multilevel method for finite volume applied to them.

3.1 The equations

−→g

(x,y)

z

h(x,y,t)

On {Ω = [x0, xf ] × [y0, yf ]} × {0 < t < T}, with Dirichlet boundary conditions.

Ω

(x0, y0)
xf

yf







∂h

∂t
+

∂uh

∂x
+

∂vh

∂y
= 0,

∂uh

∂t
+

∂hu2

∂x
+

∂huv

∂y
+

g

2

∂h2

∂x
− fvh = 0,

∂vh

∂t
+

∂huv

∂x
+

∂hv2

∂y
+

g

2

∂h2

∂y
+ fuh = 0.

(3.1)

Here :

• h is the fluid depth above the bottom which is supposed flat

• u and v are the x and y components of the velocity

• g denotes the gravity

• f is the Coriolis force, which is equals to f0 + βy
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The boundary conditions can be of two types. We use the periodic boundary conditions to
validate the program, because we know an analytic solution which is periodic. We use the
Dirichlet boundary conditions to solve the equations for the Equatorial Rossby Soliton, in
this case the conditions are :







u(x = x0, y, t) = ux=x0
(y, t),

u(x = xf , y, t) = ux=xf
(y, t),

u(x, y = yf , t) = uy=yf
(x, t),

u(x, y = f0, t) = uy=y0
(x, t),

(3.2)







v(x = x0, y, t) = vx=x0
(y, t),

v(x = xf , y, t) = vx=xf
(y, t),

v(x, y = yf , t) = vy=yf
(x, t),

v(x, y = y0, t) = vy=y0
(x, t),

(3.3)







h(x = x0, y, t) = hx=x0
(y, t),

h(x = xf , y, t) = hx=xf
(y, t),

h(x, y = yf , t) = hy=yf
(x, t),

h(x, y = y0, t) = hy=y0
(x, t).

(3.4)

We denote the initial solution as follow :






u(x, y, 0) = u0(t),
v(x, y, 0) = v0(t),
h(x, y, 0) = h0(t),

(3.5)

then we write :

U = uh and V = vh

Q =





h

U

V



 , F (Q) =





U
1
hU2 + 1

2gh2

1
hUV



 , G(Q) =





V
1
hUV

1
hV 2 + 1

2gh2



 , Φ(Q) =





0
−fV

fU



,

which permits us to write the system in the conservative form







∂h

∂t
+ ∇.(U, V ) = 0

∂U

∂t
+ ∇.(uU, uV ) +

g

2
∇x(h

2) − fV = 0

∂V

∂t
+ ∇.(vU, vV ) +

g

2
∇y(h

2) + fU = 0

(3.6)

or equivalently:
∂Q

∂t
+

∂F (Q)

∂x
+

∂G(Q)

∂y
+ Φ(Q) = 0. (3.7)

In the case of the boundary condition of Dirichlet, we have :

Qx=0 =





hx=0

Ux=0

Vx=0



 , Qx=Lx =





hx=Lx

Ux=Lx

Vx=Lx
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Qy=0 =





hy=0

Uy=0

Vy=0



 , Qy=Ly =





hy=Ly

Uy=Ly

Vy=Ly





Ω

0 Lx

Ly

Qx=0 Qx=Lx

Qy=0

Qy=Ly

Then we have to discretize the equations in space and in time. First we discretize the
equations in space, using the finite volume methods with the “central-upwind” approxi-
mation.

3.2 Discretization in space

3.2.1 Discretization of the mesh

The discretization of Ω is done using rectangular finite volumes :

Km

(x0, y0) xf

yf

Km = [xm/w, xm/e] × [ym/s, ym/n] of centers (xm, ym) and of dimensions ∆x × ∆y, with
Nx∆x = Lx = (xf − x0) and Ny∆y = Ly = (yf − y0):
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Km

(xm/w, ym/s)

△x

b

(xm/e, ym/s)

(xm, ym)

(xm/e, ym/n)(xm/w, ym/n)

△y

3.2.2 Discretization of the variables

We use a NSWE (North-South-West-East) stencil to identify the unknowns :

Km

Ks

Kn Kne

Ke

KseKsw

Kw

Knw

The unknowns will be approximations of the cell averages:

Qm(t) =
1

∆x∆y

∫

Km

Q(t, x, y)dxdy,

where Qm(t) = (hm(t), Um(t), Vm(t))T with:

hm(t) =
1

∆x∆y

∫

Km

h(t, x, y)dxdy,

Um(t) =
1

∆x∆y

∫

Km

U(t, x, y)dxdy,

Vm(t) =
1

∆x∆y

∫

Km

V (t, x, y)dxdy,

For the space discretization, we integrate the system (3.7) on each cell Km, divide by
its area ∆x∆y :

∂

∂t

1

∆x∆y

∫

km

Q +
1

∆x∆y

∫

km

∂F (Q)

∂x
+

1

∆x∆y

∫

km

∂G(Q)

∂y
+

1

∆x∆y

∫

km

Φ(Q) = 0. (3.8)

For Φ(Q) which is :

Φ(Q) =





0
−fV

fU
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With f = f0 + βy depends of the cell Km. The integration will give us :

fU ≃ 1
△x△y

∫

Km
fU

≃ Um
1

△x△y

∫

Km
f0 + βy

= Um
1

△x△y

(

f0△y△x + β△x(y2
m/n − y2

m/s)
)

= Umf0 + Umβ
ym/n+ym/s

2
= (f0 + βym)Um

And for V :
fV ≃ (f0 + βym)Vm

So :

1

∆x∆y

∫

km

Φ(Q) ∼= Φ(Qm) =





0
− (f0 + βym)Vm

(f0 + βym) Um





For ∂F (Q)
∂x :

b b

xw/m xm/e

Γw/m Γm/e

W M E
Hx

w/m Hx
m/e

1

∆x∆y

∫

km

∂F (Q)

∂x
=

1

∆x∆y

∫

Γm/e

F (Q(xm/e, y, t)dy −
1

∆x∆y

∫

Γw/m

F (Q(xw/m, y, t)dy

Here Hx
m/e(t) and H

y
w/m(t) are respectively the horizontal fluxes on the edges between Km

/ Ke and between Km / Kw.

Then :

Hx
m/e(t) =

1

∆y

∫

Γm/e

F (Q(xm/e, y, t))dy

Which give us :

1

∆x∆y

∫

km

∂F (Q)

∂x
=

Hx
m/e(t) − Hx

w/m(t)

∆x

We apply the same notation for ∂G(Q)
∂y . Then for the all system we obtain:

d

dt
Qm(t) ∼= −

Hx
m/e(t) − Hx

w/m(t)

∆x
−

H
y
m/n(t) − H

y
s/m(t)

∆y
− Φ(Qm) (3.9)

These fluxes depend on the method employed; we will consider central-upwind fluxes, but
the multilevel method can also be based on other fluxes.
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3.3 Scheme in space

The space discretization is done using a semi-discrete central-upwind scheme; we describe
here in detail the expression of these central-upwind fluxes. These types of schemes have
the advantage of being perfectly adapted to the discretization of hyperbolic systems of
conservation laws due to their upwind nature while being robust and simple since they
do not require to solve any Riemann problem; moreover they are non staggered schemes.
The starting point of the construction of this type of schemes is the equivalent integral
formulation of the system. They are based on integration over Riemann fans using the
one-sided local speeds of propagation.

3.3.1 Computation of the fluxes

Recall that the semi-discrete form of the scheme reads:

d

dt
Qm(t) ∼= −

Hx
m/e(t) − Hx

w/m(t)

∆x
−

H
y
m/n(t) − H

y
s/m(t)

∆y
− Φ(Qm),

We use a second order version, and the corresponding numerical fluxes are:

Hx
m/e

∼=
a+

m/eF (QE
m) − a−m/eF (QW

e )

a+
m/e − a−m/e

+
a+

m/ea
−

m/e(Q
W
e − QE

m)

a+
m/e − a−m/e

(3.10)

pm

b

pe

QE
m QW

e

and :

Hx
w/m

∼=
a+

w/mF (QE
w) − a−w/mF (QW

m )

a+
w/m − a−w/m

+
a+

w/ma−w/m(QW
m − QE

w)

a+
w/m − a−w/m

H
y
m/n

∼=
b+
m/nG(QN

m) − b−m/nG(QS
n)

b+
m/n − b−m/n

+
b+
m/nb−m/n(QS

n − QN
m)

b+
m/n − b−m/n

H
y
s/m

∼=
b+
s/mG(QN

s ) − b−s/mG(QS
m)

b+
s/m − b−s/m

+
b+
s/mb−s/m(QS

m − QN
s )

b+
s/m − b−s/m

(3.11)

Here, we use a non-oscillatory linear polynomial reconstruction to evaluate the following
point values which are present in (3.10), (3.11):

QE
m = pm(t, xm/e, ym), QW

m = pm(t, xm/w, ym),

12



QN
m = pm(t, xm, ym/n), QS

m = pm(t, xm, ym/s).

QE
m

bb

b

b

QW
m

QS
m

QN
m

where pm(t, x, y) = Qm(t) + sx
m(t)(x − xm) + s

y
m(t)(y − ym). is a piecewise polynomial of

reconstruction on Km

We use a piecewise linear reconstruction in order to obtain a second order scheme. The
order of the scheme also relates to the order of the quadrature formula used to approximate
the flux integrals coming from the integral formulation.
The slopes of this linear approximation are calculated using a minmod limiter:

sx
m(t) = minmod

(

(θ
Qm(t) − Qw(t)

∆x
;
Qe(t) − Qw(t)

2∆x
; θ

Qe(t) − Qm(t)

∆x
)

)

,

sy
m(t) = minmod

(

(θ
Qm(t) − Qs(t)

∆y
;
Qn(t) − Qs(t)

2∆y
; θ

Qn(t) − Qm(t)

∆y

)

),

with

minmod(x1, x2, ..) :=







min(xi), if xi > 0 ∀i

max(xi), if xi < 0 ∀i

0, otherwise.

where θ ∈ [1, 2].

Then the one-sided local speeds of propagation are given by:

a+
m/e = max[λmax(

∂F

∂Q
(QW

e )), λmax(
∂F

∂Q
(QE

m)), 0]

a−m/e = min[λmin(
∂F

∂Q
(QW

e )), λmin(
∂F

∂Q
(QE

m)), 0]

a+
w/m = max[λmax(

∂F

∂Q
(QW

m )), λmax(
∂F

∂Q
(QE

w)), 0]

a−w/m = min[λmin(
∂F

∂Q
(QW

m )), λmin(
∂F

∂Q
(QE

w)), 0]

b+
m/n = max[λmax(

∂G

∂Q
(QS

n)), λmax(
∂G

∂Q
(QN

m)), 0]

b−m/n = min[λmin(
∂G

∂Q
(QS

n)), λmin(
∂G

∂Q
(QN

m)), 0]

b+
s/m = max[λmax(

∂G

∂Q
(QS

m)), λmax(
∂G

∂Q
(QN

s )), 0]

b−s/m = min[λmin(
∂G

∂Q
(QS

m)), λmin(
∂G

∂Q
(QN

s )), 0]
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where λmax(
∂F

∂Q
(Q̃)) and λmin(

∂F

∂Q
(Q̃)) ( resp. λmax(

∂G

∂Q
(Q̃)) and

λmin(
∂G

∂Q
(W̃ ))) are respectively the largest and the smallest eigenvalue of the Jacobian

matrix of F ,
∂F

∂Q
(resp. of G,

∂G

∂Q
) at the point Q̃.

This gives a central-upwind scheme of second order.

3.3.2 Issue on the boundary

We will talk about the Dirichlet conditions, because with the periodic conditions we just
have to apply the fluxes as usual. The issue is near the boundary, because when we
compute one flux we need the value of Q on 9 squares :

M E

For the horizontal fluxes between the cells M and E

So if E is on the boundary we have to fide a value for the fictive cell on the east :

14



M E Ee

In this case we have to compute the value of QEe knowing QE and Qx=xf
.

QE = QEe + △xQ′

Ee + O(△x2)

Qx=xf
= QEe + △x

2 Q′

Ee + O(△x2

2 )

=⇒ QEe ≃ 2Qx=xf
− QE

We can apply this method to all the fictive cells for the reconstruction.

3.3.3 Boundary conditions

When we consider periodic boundary conditions, then the quantities on the boundaries
are evaluated using periodicity.

For the Dirichlet boundary conditions, every times the cell ”m” touches the border we
use a fictitious exterior cell; see Figure below showing the fictitious cells when “m” is at
the upright corner .
For example if ”n” and ”e” do not exist we create two fictitious cells :

15



xf

yf

Qx=xf
(ym, t)

Qy=yf
(xm, t)

m

So for each case we do :

• If ”n” does not exist :
H

y
m/n = G(Qy=yf

)

• If ”s” does not exist :
H

y
s/m = G(Qy=y0

)

• If ”e” does not exist :
Hx

m/e = F (Qx=xf
)

• If ”w” does not exist :
Hx

w/m = F (Qx=x0
)

3.4 Scheme in time

First we discretize in time [0, T ], with Nt cells [tn, tn+1] of length △t. With :

tn = n△t, ∀i ∈ {0, ..., Nt}

If we rewrite (3.9) as
d

dt
Qm = R(Qm(t), t),

For Runge-Kutta order 2 (Heun), we apply the following time discretization:







kn
1,m = R(Qn

m, tn),

kn
2,m = R(Qn

m + ∆tkn
1,m, tn + ∆t),

Qn+1
m = Qn

m + ∆t
2 (kn

1,m + kn
2,m).

(3.12)

For Runge-Kutta order 4, we apply the following time discretization:







kn
1,m = R(Qn

m, tn),

kn
2,m = R(Qn

m + ∆t
kn
1,m

, tn + ∆t
2 ),

kn
3,m = R(Qn

m + ∆t
kn
2,m

, tn + ∆t
2 ),

kn
4,m = R(Qn

m + ∆tkn
3,m, tn + ∆t),

Qn+1
m = Qn

m + ∆t
6 (kn

1,m + 2kn
2,m + 2kn

3,m + kn
4,m).

(3.13)
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3.5 Multilevel

The domain is discretized by two levels of rectangular finite volume meshes: the fine mesh
M1 counts Nx×Ny control volumes of dimensions ∆x×∆y, with Nx∆x = Lx, Ny∆y = Ly;

and the coarse mesh M2 has
NxNy

9
control volumes of dimensions 3∆x × 3∆y.

Here we use small letters for the fine mesh and capital letters for the coarse mesh: we
denote by Km a control volume of the fine mesh and by KM a control volume of the coarse
mesh.

KMKm

Ks

Kn Kne

Ke

KseKsw

Kw

Knw

On a larger scale :

Mm
s se

ew

sw

nw n ne

E

NENNW

W

SSW SE

We define the incremental unknowns for the conservative variables of the Shallow
Water system, that is the three components of Q. We split each of the unknowns in a
large-scale component Y and a small-scale component Z, which is meant to be frozen
during a certain number of time steps. By large-scale and small scale, we mean that Y

contains the major information on the solution and that Z represents a correcting term
which is comparatively small, as explained in Lemma 2.1.

Definition 3.1. Suppose that Q = (h,U, V )T is known on the fine mesh M1.
Then on the control volume KM , the large-scale component YM = (yh, yU , yV )T and the
small-scale components Ze, Zw, Zn, Zs, Zne, Zse, Znw, Zsw are defined as follows:

YMQm

Qs

Qn Qne

Qe

QseQsw

Qw

Qnw ZneZnZnw

Zw Ze

Zs ZseZsw

+

17



YM =
1

9
(Qm + Qe + Qw + Qn + Qs + Qne + Qnw + Qse + Qsw),

Ze = Qe −
1

3
(YE + 2YM ), Zw = Qw −

1

3
(YW + 2YM ),

Zn = Qn −
1

3
(YN + 2YM ), Zs = Qs −

1

3
(YS + 2YM ),

Zne = Qne −
1

3
(YE + YM + YN ), Zse = Qse −

1

3
(YS + YM + YE),

Znw = Qnw −
1

3
(YW + YM + YN ), Zsw = Qsw −

1

3
(YS + YM + YW ),

Remark 3.1. The correspondence between the solution on the fine mesh Q and its large-
scale and small-scale components is 1-to-1; that is knowing the component Y on the coarse
mesh and the components Z on the fine mesh, we can compute Q on the fine mesh; here
are the recomposition formulas:

Qm = 5YM − YE − YW − YN − YS

− (Ze + Zw + Zn + Zs + Zne + Zse + Znw + Zsw),

Qe = Ze +
1

3
(YE + 2YM ), Qw = Zw +

1

3
(YW + 2YM ),

Qn = Zn +
1

3
(YN + 2YM ), Qs = Zs +

1

3
(YS + 2YM ),

Qne = Zne +
1

3
(YE + YM + YN ), Qse = Zse +

1

3
(YS + YM + YE),

Qnw = Znw +
1

3
(YW + YM + YN ), Qsw = Zsw +

1

3
(YS + YM + YW ).

Lemma 3.1. The small-scale components Ze, Zw, Zs, Zn, Zne, Zse, Znw, Zsw are of
order ∆x2 + ∆y2.

Proof. Using Taylor’s formula, we have for example for Zs:

Zs = Qs −
1

3
(YS + 2YM )

= Qs −
1

27

[

QSm + QSe + QSw + QSn + QSs + QSne + QSnw + QSse

+ QSsw + 2(Qm + Qe + Qw + Qn + Qs + Qne + Qnw + Qse + Qsw)
]

=
1

27

[

25Qs − (Qs − 2∆y∂yQs) − (Qs − ∆x∂xQs − 2∆y∂yQs)

− (Qs + ∆x∂xQs − 2∆y∂yQs) − (Qs − ∆y∂yQs) − (Qs − 3∆y∂yQs)

− (Qs − ∆x∂xQs − ∆y∂yQs) − (Qs + ∆x∂xQs − ∆y∂yQs)

− (Qs − ∆x∂xQs − 3∆y∂yQs) − (Qs + ∆x∂xQs − 3∆y∂yQs)

− 2(Qs + ∆y∂yQs) − 2(Qs + 2∆y∂yQs) − 2(Qs + ∆x∂xQs + ∆y∂yQs)

− 2(Qs − ∆x∂xQs + ∆y∂yQs) − 2(Qs + ∆x∂xQs) − 2(Qs + 2∆x∂xQs)

− 2(Qs − ∆x∂xQs + 2∆y∂yQs) − 2(Qs + ∆x∂xQs + 2∆y∂yQs)
]

+ O(∆x2 + ∆y2)

= O(∆x2 + ∆y2)

It works similarly for Ze, Zw, Zn, Zne, Zse, Zsw, Znw.
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We split each component of Q = (h,U, V )T into its large-scale component Y =
(Y h, Y U , Y V )T and its small-scale component (Zh, ZU , ZV )T . To obtain the scheme on
the coarse grid, we write (3.9) on each fine cell Km,Ke,Kw,Kn,Ks,Kne,Kse,Knw,Ksw

of the coarse cell KM , and we take the mean value by summing all these equations and
dividing by 9. This results in:

d

dt
YM (t) =

1

9∆x

[

Hx
m/w − Hx

m/e + Hx
n/nw) − Hx

n/ne + Hx
s/sw − Hx

s/se

+ Hx
We/w − Hx

m/w + Hx
nw/Wne − Hx

nw/n + Hx
sw/Wse − Hx

sw/s

+ Hx
n/ne − Hx

Enw/ne + Hx
m/e − Hx

e/Ew − Hx
se/Esw + Hx

s/se

]

+
1

9∆y

[

H
y
m/n − H

y
n/Ns + H

y
s/m − H

y
n/m + H

y
s/Sn − H

y
s/m

+ H
y
ne/e − H

y
ne/Nse + H

y
e/se − H

y
ne/e + H

y
se/Snw − H

y
se/e

+ H
y
nw/w

− H
y
nw/Nsw

+ H
y
sw/w

− H
y
w/nw

+ H
y
sw/Sne

− H
y
sw/w

]

− Φ(YM ),

(3.14)

which gives after simplifications the following semi-discrete scheme to be applied on the
coarse grid.

d

dt
YM (t) =

1

9∆x

[

(Hx
nw/Wne + Hx

We/w + Hx
sw/Wse) − (Hx

Enw/ne + Hx
e/Ew

+ Hx
se/Esw)

]

+
1

9∆y

[

(Hy
sw/Sne + H

y
s/Sn + H

y
se/Snw) − (Hy

nw/Nsw

+ H
y
n/Ns + H

y
ne/Nse)

]

− Φ(YM ).

(3.15)

We can thus use different schemes depending on the definition of the fluxes and the reso-
lution on the coarse level can thus be done locally in certain parts of the domain.
During the iterations on the coarse grid, while the large-scale components Y are computed
through this scheme, the Z components are frozen.

Remark 3.2. Formula (3.15) being equivalent to (3.9), this process is completely recur-
sive and can be repeated for simulations on three or more levels of grids.

Remark 3.3. For example for a simulation on two levels, as considered here we chose to
repeat cycles of the form: 111122221111, where 1 corresponds to the fine grid and 2 to the
coarse one. Of course alternate choices of the sequence of levels are possible and, in future
work, we intend to develop adaptative procedures for changing the levels. Therefore at
the nth iteration, we compute :

• At level 1 we work on the fine mesh F1 and compute Qn+1 with the classical scheme
(described in our case in (3.10) and (3.11) below).

• At level 2

– we calculate explicitly the fluxes needed by the scheme (3.15),

– we split Qn into its large-scale Y n and small-scale Zn components,

– we compute Y n+1 with (3.15),

– we recompose Qn+1 from Y n+1 and Zn.

We freeze the small-scale components Z during each iteration at level 2. This induces an
error on Z of the order ∆t × magnitude of Z = ∆t(∆x2 + ∆y2).
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4 Numerics

4.1 The program

The program is made in Python and Fortran. It uses matplotlib and gnuplot to plot the
figures, and it also uses numpy for some scientific operations. I have made a Fortran
library to do the computation of the fluxes and the iteration of Runge Kutta which are
the longest of the computation, that is why I need a fast programming language for this.
Then I called these functions in Python using F2PY. This way I use Python to declare
all the initials variable, creating the mesh and plotting the solution, which is easier than
doing it in Fortran.

Fortran library with

Runge Kutta
Fluxes

Matplotlib

Gnuplot numpy

F2PY

Python, scripts with

init. conditions, variables, mesh

4.2 Validations

4.2.1 Source term

To validate the computation we add a source term S :

∂Q

∂t
+

∂F (Q)

∂x
+

∂G(Q)

∂y
+ Φ(Q) = S(t). (4.1)

We approximate the source by its average value as we did for Q, this give us :

d

dt
Qm(t) = −

Hx
m/e(t) − Hx

w/m(t)

∆x
−

H
y
m/n

(t) − H
y
s/m

(t)

∆y
+ Sm(t) (4.2)

Then we solve these new equations for analytic functions such as sinus and co-sinus.
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4.2.2 Convergence

To verify the convergence we solve the previous equations for these functions :

h(t, x, y) = h0(1 + ǫ sin(
2πt

T
) cos(

4πx

L
) sin(

4πy

L
)),

u(t, x, y) = u0(1 + ǫ sin(
2πt

T
) cos(

4πx

L
) cos(

4πy

L
)),

v(t, x, y) = u0(1 + ǫ sin(
2πt

T
) sin(

4πx

L
) cos(

4πy

L
)),

The Coriolis force is set to zeros. And the source terms are computed to correspond to
these exact solutions. And for the boundary conditions we use the periodic ones, because
the Dirichlet conditions which are not constant do not work well with the Runge Kutta
methods.

We compute for initial time 0 to final time 0.01 with a step in time of 10−4, then we
solve for : 60x60, 120x120, 240x240, 480x480 squares in the mesh. This give us the
following errors in norm L2:

Error in space

We can see that the error in space L2 is around the order 1.6. For the last two errors,
240x240 squares and 480x480 squares, in L2 at t=0.01, we have the following slopes :

error h = 1.80950773091

error u = 1.66281430689

error v = 1.64344686762

error h*u = 1.66283100601

error h*v = 1.64346622874
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4.2.3 Multilevel

We will validate the global multilevel method, i.e. we use alternatively a fine square mesh
and a coarse square mesh. We use the same exact functions introduced in the conver-
gence. We compute for initial time 0 to final time 3.2 with a step in time of 10−4. For
the fine mesh we have 300x300 squares in the mesh, for the coarse we have 100x100. For
the multilevel we alternate between 300x300 and 100x100, the multilevel method use a
cycle of [1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1] where 1 is a computation of the fine mesh and 2 is
a computation on the coarse mesh.

Remark 4.1. The more time we spend on the coarse grid, the faster the computation
will be. However if during one cycle we spend too many iterations on the coarse grid, the
method loses its accuracy and it can become less accurate than the one-level computation
on the coarse grid.

Following are the figures representing the error in L2 (discrete) along the time :

‖ h − hexact ‖L2

‖ U − Uexact ‖L2
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‖ V − Vexact ‖L2

• FG : Fine Grid, error on the fine mesh

• CG : Coarse Grid, error on the coarse mesh

• MN : Multilevel, error on the multilevel method

We can compare the time elapsed to do the computation for 16 iterations in times :

• On 1-level : 322.07732296

• On 2-levels : 306.576307058 seconds

4.3 Resolution for the Rossby Soliton

For the Rossby Soliton we use the Dirichlet boundary conditions, and we use Runge Kutta
of order 4 because the conditions on the boundary are constants. We use the model from
http://marine.rutgers.edu/po/tests/rossby/index.html. The equations and all quantities
being non-dimensional we take {Ω = (−24, 24) × (−8, 8)} × {0 < t < T}, and :

• g = 1

• f0 = 0 and β = 1

Boundary conditions are Dirichlet :







h∂Ω = 1
u∂Ω = 0
u∂Ω = 0

(4.3)

Initial solution : 





u(x, y, 0) = φ(x)
(−9 + 6y2)

4
e−

y2

2

v(x, y, 0) =
∂φ(x)

∂x
(2y)e−

y2

2

h(x, y, 0) = φ(x)
(3 + 6y2)

4
e−

y2

2 + 1

(4.4)
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with :
B = 0.395
A = 0.7771B2

φ(x) = Asech2Bx
∂φ(x)

∂x = −2Btanh(Bx)φ

.

The solution that we obtained by our computation is the following (Equatorial Rossby
Soliton) :
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We are going to compare using the method of Runge Kutta 4, a time step of 10−3,
a fine mesh of 900x300 squares, and a coarse mesh of 300x100 squares. The multilevel
method will use a cycle of [1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1], where 1 is the computation on
the fine mesh and 2 on the coarse mesh.

First the conservation of the mass :
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Computation of
∫

∂Ω hdxdy

We can see that for both, the computation on the fine mesh and the one on 2-levels (fine
mesh /coarse mesh) the mass in constant. Which is validated by :

m ∗
∂

∂t

∫

∂Ω
hdxdy = 0

Proof, the fist line of the system give us :

∂

∂t

∫

∂Ω
hdxdy +

∂

∂t

∫

∂Ω
uhdxdy +

∂

∂t

∫

∂Ω
vhdxdy = 0,

because u and v = 0 on the boundaries.

Then we compare the difference maximal between the h,u and v of the two computa-
tions (one on the coarse and one using multilevel method).
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We can see that h,u,v are the same at 10−3 until the wave touch the boundary on x=0,
where there is a condition of Dirichlet.

For the time saving, we compare the 1-level method on the fine mesh and the one using
2-levels for 16 iterations in time which are the length of a cycle for the multilevel one. It
takes 55 seconds for the 1-level method and 40 seconds for the 2-levels method. We save
15 seconds for only 16 iterations in time. This means we gain 16.6% of CPU time.

28



References

[1] K.Adamy, S. Faure, J. Lamini, R. Temam,
A multilevel method for finite volume discretization of the two dimensional nonlinear

Shallow-Water equations, 2008.

[2] R. J. leveque,
Finite Volume Methods for Hyperbolic Problems, Cambridge.

[3] B. Cusman-Roisin,
Introduction to Geophysical Fluid Dynamics, Prentice Hall.

[4] A. Kurganov, E. Tadmor,
New high-resolution central schemes for nonlinear conservation laws and convection-

diffusion equations, J. Comput. Phys. 160, 2000.

[5] A. Kurganov, G. Petrova,
A third-order semi-discrete genuinely multidimensionnal central scheme for hyperbolic

conservation laws and related problems Numer. Math. 88, 2001.

[6] A. Kurganov, S. Noelle, G. Petrova,
Semidiscrete central upwind schemes for hyperbolic conservation laws and Hamilton-

Jacobi equations, SIAM J. Sci. Comput. 23, no3, 2001.

[7] A. Kurganov, D. Levy,
Central-upwind schemes for the Saint-Venant system,M2AN, Vol.36, no3, 2002.

29


	Introduction
	System in 1D
	System
	Times discretization
	Example of fluxes
	Centered:
	Lax-Friedrichs :
	Central-upwind :

	Multilevel

	Shallow Water
	The equations
	Discretization in space
	Discretization of the mesh
	Discretization of the variables

	Scheme in space
	Computation of the fluxes
	Issue on the boundary
	Boundary conditions

	Scheme in time
	Multilevel

	Numerics
	The program
	Validations
	Source term
	Convergence
	Multilevel

	Resolution for the Rossby Soliton


