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1 Introduction

Solving partial differential equations has always been one of the most important facets of
scientific computing, be it in theoretical mathematics, astrophysics, chemistry, etc. Many
characteristics and properties as well as a good deal of intuition was developed around
partial differential equations and the ways to solve them. Even though on a theoretical level
knowledge has steadily advanced, the problems we face have also become larger and larger
in scope.

A new challenge in tackling these large problems is utilizing the growing computational power
available to scientists. There have been many attempts at improving well known numerical
methods and transforming them in new ways to better fit the world of High Performance
Computing, as well as designed novel techniques.

In this paper we will study a small segment of these efforts, namely the interest in adapting
the mesh used for some numerical simulations. We will be looking at the p4est library [14]
that tries to offer a complete framework for dealing with the mesh in highly parallel envi-
ronments using scalable algorithms for creating, adapting and load-balancing the resulting
mesh.

p4est provides an implementation of Adaptive Mesh Refinement (AMR), often referred
to as cell-based AMR (in contrast to block-based AMR), that makes use of groups of
quadtrees (in 2D) and octrees (in 3D) (conveniently called forests) to allow describing
complex geometries and capturing phenomena developing at different scales (e.g. in the
case of turbulence).

Internship

The research into p4est was done in the form of an internship, that doubles as a Masters
project, in the third (and final) year at the engineering school Institut Sup’ Galilée that is
part of Université Paris XIII. The institution that sponsored the internship was Maison de
la Simulation.

The main goals of this work, and internship, is to document and evaluate the p4est library.
Even though the algorithms used in the p4est library have been explained in several articles
( [14], [16] and [17]), they are highly technical and not straightforward to understand. We
have complemented these articles with extensive examples that will, hopefully, allow for a
broader understanding of the methods used by p4est.

To evaluate the p4est library we have developed a new code [31] that makes use of it, as
a mesh-handling backend, to solve hyperbolic equations using different schemes involving
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1 Introduction

the Finite Volume Method, such as directional splitting and higher order MUSCL schemes.
The code was created with a special focus on flexibility and readability to serve as further
documentation for p4est and its capabilities.

Maison de la Simulation

Maison de la Simulation is a joint research facility between CEA (the Centre d’énergie atom-
ique), CNRS (the Centre national de la recherche scientifique), INRIA (Institut national
de recherche en informatique et en automatique) with the involvement of two universities:
Université Paris-Sud and Université de Versailles. The laboratory was created in 2012
in the DigiteoLabs building in Saclay.

The main focus of the laboratory is promoting High Performance Computing in France
and worldwide as part of a bigger effort to fully understand and make use of emerging
technologies and advancing computing power.

In addition to being a research center, Maison de la Simulation is also an expertise center
open to the scientific community. As part of this goal, there is an ongoing effort to educate
both existing engineers and students to efficiently use the computing infrastructure available
to them. Given this direction, Maison de la Simulation has a small number of permanent staff
with most of the personnel consisting of temporary staff from various research institutions
and PhD students.

As a hub for HPC in France, Maison de la Simulation has worked on various projects that
involved either optimizing existing code (e.g. for Gysela5D), fully developing new applications
(e.g. Ramses-GPU ) or developing novel techniques (e.g. new Godunov-type schemes for
magnetohydrodynamics).

Structure

The paper is structured in 6 chapters, including the current one, that will try to offer a broad
view on the world of AMR and the p4est library.

Chapter 2 deals specifically with the historical context surrounding the developments of
several Adaptive Mesh Refinement Methods. We will be looking at cell-based AMR and
block-based AMR in detail and will try to integrate them into a wider research field for
multiscale numerical simulations.

Chapter 3 tries to offer some insights into the p4est library by explaining the different
methods it uses to store the mesh and the lengths to which it goes to provide novel parallel
algorithms for AMR. We will also be looking at some preliminary tests for the functionality
offered by p4est.

Chapter 4 will look at the first set of equations and numerical schemes that we have tested us-
ing the p4est library. We will be looking at the transport equation and the challenges posed by
implementing a simple Finite Volume scheme in the context of AMR.
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Chapter 5 presents a more complex two-phase model. This model will provide a more com-
prehensive test for p4est that will hopefully prove that it is well equipped to handle the
different problems that arise from complex phenomena.

Finally, in Chapter 6 we will present the conclusions of our tests and opportunities for future
work.
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2 Adaptive Mesh Refinement

In this chapter we will try to give a short history of and introduction to the world of Adaptive
Mesh Refinement.

When looking to solve ordinary or partial differential equations, we first proceed by discretizing
the domain. This involves choosing a set of points from the domain and defining the unknowns
of our systems at those points. This can be achieved by creating a mesh (or grid) or by using
mesh-free methods that only involve the points, with no structure.

Even within methods involving meshes there is great variation: the mesh can be structured
(elements have clear neighbors in each direction) or unstructured (sizes and shapes differ
between elements), conforming (two elements can only share a complete edge) or non-
conforming (an edge can be shared between more than two elements), etc. Usually, these
classic mesh-based methods involve a mesh that, once it is constructed, does not change while
the solution is being computed.

Unlike typical meshes, AMR is a technique that permits changing the mesh while the solution
to the differential equations is calculated. This can be achieved in multiple ways, two of which
we will look at in detail.

The first method is called block-based (or patch-based) AMR and it involves stacking
multiple grids on top of each other in regions where more accuracy is required. The extra
grids are always finer than the original grid they are supposed to replace. Once the extra grids
are constructed, the equations are solved normally on the finer grids and then interpolated
to the coarser ones.

A second method involves modifying the original mesh by splitting its elements into multiple
parts and is known as cell-based AMR. This method is a larger departure from the usual
static meshes as it employs the use of trees to store the mesh information and easily refine
and coarsen specific cells.

Cell-based AMR can be applied equally to structured and non-structured meshes and al-
ways produces non-conforming elements. This is due to the fact that there will always
be a cell that neighbors a refined cell (if there are no such cells, the mesh becomes uni-
form).

An alternative to AMR is the use of the previously mentioned mesh-free methods such as the
Smoothed Particle Hydrodynamics [1] method that is used to simulate fluid flows. This
type of Lagrangian method is very similar (in results) to Adaptive Mesh Refinement because it
will naturally gather more points in the regions where the flow changes faster and thus allows
for more accuracy where needed. It does have its downsides as well, some of which include the
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2 Adaptive Mesh Refinement

inherent diffusive nature of the method thanks to the use of kernel functions, the problematic
handling of contact discontinuities, high numerical viscosity, etc.

Another alternative AMR that has seen quite some attention lately is Wavelet-based
AMR. Wavelets have been used for a long time in the fields of Signal Processing and
Data Compression, in general, to impressive results. One of the main advantages of wavelet-
based AMR is its strong mathematical foundations that allow for exact error calculation
and performance optimizations. A comprehensive comparison between mesh-based AMR and
Wavelet-based AMR is given in [2].

In the subsequent sections we will talk about the two major types of AMR that are of interest
to us: block-based and cell-based AMR on structured meshes.

2.1 Block-based AMR

One of the first, if not the first, description of block-based AMR is given by M. J. Berger
and J. Oliger in [3] (1984) with an application to hyperbolic partial differential equations.
This paper was followed by another from M. J. Berger and P. Collela [4] (1989) which
extended the method to take shocks into consideration and greatly simplified the AMR-
related algorithms.

Both of these papers start with a regular uniform rectangular mesh. As the solution progresses,
we can compute local error estimators that give a criterion for creating new, coarse grids that
are contained in the initial domain. In the original article, these grids were allowed to be ro-
tated in 2D space, but in [4] they have been aligned with the coarser grid to ease interpolation,
handling of boundary conditions and construction algorithms.

Figure 2.1: Example of overlapped grids.

One example of block-based AMR can be seen in Figure 2.1. The parent-child relationship
between the grids is kept using a directed acyclic graph or using linked lists. In the scheme
proposed by [4], fine grids are allowed to overlap multiple coarser grids and, of course, a
coarse grid can contain any number of finer grids.
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2.1 Block-based AMR

Formally, for a set of levels l ∈ {1, . . . , b} and a maximum refinement level b, we define Gl,k,
the k-th grid at level l. Since the grids are uniform and rectangular, all the cells in the grid
have the same size, which is ∆xl. This gives a refining ratio of:

r =
∆xl+1

∆xl
,

which is usually chosen as a power of 2 to simplify calculations. The union of all the grids
on a level gives Gl and, by extension:

G1 =
⋃
k

G1,k = D

is the whole domain. Furthermore, the grids must be properly nested, which is defined in [4]
as:

• A fine grid starts and ends at the corner of a cell in the coarser grid.

• Two overlapping cells have to be separated by exactly one level.

Once the boundary conditions are defined from the neighboring grids, a grid at level l is
completely independent from all the others and we can solve the equations on it as if it were
the only one. This gives block-based AMR the very useful quality of being able to naturally
re-use existing codes that do not adapt the mesh. Once the solutions have been independently
calculated, additional interpolations and flux corrections are required to transmit the solution
to lower grids and ensure qualities such as conservation.

An important part of AMR, which we will only glance at now, is finding a good refin-
ing criterion. In [4], M. J. Berger and P. Colella look at the Euler equations and use a
finite difference scheme for solving them. Using the finite difference approximation, they
define:

w(x, t+ ∆t)−Qw(x, t) ≈ τ(x, t) + ∆tO(∆tq+1 + ∆xq+1),

where q is the order of the finite difference approximation and Q is an operator that gives
the desired discretization. To compute the local truncation error, they compute the solu-
tion at time t + 2∆t, first by doing two steps of ∆t, denoted by Q2, and then by doing
a single time step with a coarsened cell size 2∆x , denoted Q2∆x. The error is then given
by:

Q2w(x, t)−Q2∆xw(x, t)

2q+1 − 2
= τ(x, t) +O(∆xq+2).

This is easily achieved on the current mesh structure by advancing two steps in time with
the regular integration scheme and doing another two with every other point in the grid.
Although their use case was rather specific, such a method can be used with any other type
of equations and discretization methods. Other a posteriori error estimation methods can
also be used to the same effect.

Once the respective cells of the mesh are flagged for refinement, the framework usually
constructs bounding boxes over sets of flag cells and then creates new layers of meshes with
a refinement ratio r. This method usually leads to refined areas where the solution is smooth
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2 Adaptive Mesh Refinement

and does not require a finer mesh, thus leading to higher memory consumption than one would
get with cell-based AMR where only the required cells are adapted.

The description given in [4] of block-based AMR is still largely in use today. Some of the
frameworks that provide this sort of AMR are:

AMRClaw is part of the bigger Clawpack framework for solving linear and non-linear hy-
perbolic systems of conservation laws. Clawpack was originally written by R. LeVeque,
one of J. Oliger’s students, and the introduction of AMR techniques was done after a
collaboration with M. J. Berger [5].

BoxLib is another AMR framework that has support for hyperbolic, elliptic and parabolic
PDEs. One special advantage of BoxLib is that it has been proven to scale very well
up to 200.000 processes.

Paramesh is another general AMR framework developed by NASA. The general structure
is describe in [6].

Others. There are many other AMR codes out there, such as Chombo (that shares a
common history with BoxLib), AMROC, SAMRAI, etc.

2.2 Cell-based AMR

We have seen in the previous section a short history of block-based AMR, but the focus of
this work is, of course, on cell-based AMR. Unlike block-based AMR, where we would refine
a bigger portion of a mesh by a factor r, in cell-based AMR each cell is refined independently
by a fixed factor of 2 in each direction.

If we consider the 1D case, we will need to successively divide into two parts an interval
[0, L]. All possible subintervals (or cells) given by this sort of refinement are of the form:

Ik,l =

[
L

2l
k,
L

2l
(k + 1)

]
, k ∈ {0, 2l − 1}, (2.1)

where l ∈ {0, b} is the level of refinement that is limited to a maximum value b. For a given
level of refinement l, we have: ⋃

k

Ik,l = [0, L],

but, of course, not every cell gets refined to a fixed level l. To handle the individual refinement
of each cell, the most natural data structure to use is a tree, more specifically: a binary tree
for 1D domains, a quadtree for 2D domains, an octree for 3D.

Unlike block-based AMR, where trees were only used to handle the grid hierarchy, cell-
based AMR makes heavy use of tree structures to store the mesh and perform modifications
on it. The use of new data structures implies new difficulties in implementing numerical
methods (new integration routines, storage strategies and load balancing techniques need to
be developed) and integrating them with existing codes.
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2.2 Cell-based AMR

There has been a lot of previous research into quadtrees and octrees in the world of computer
graphics, with the works of R. A. Finkel and J. L. Bentley in [8] in describing quadtree
algorithms and D. Meagher in [7] in describing octree algorithms. Although these algorithms
are not concerned with numerical simulations, they were still very useful because they provide
efficient ways of searching, storing and modifying these data structures.

Figure 2.2: Example of a quadtree.

In Figure 2.2, we can see an example of a quadtree. A quadtree, like any other tree struc-
ture, is directed (in the sense that there is only one way from one node to another) and
does not contain any cycles. Some of the main elements of a tree (quadtree or octree)
are:

• The node on top that is called the root node.

• Each node can be tied to 0 or 4 (resp. 8 for an octree) other nodes beneath it. This
node is called the parent and the 4 (resp. 8) nodes beneath it, if they exist, are called
children. A group of children is sometimes referred to as a family and they have
sibling relationships between them.

• If there are no nodes beneath a certain node, it is called a leaf.

This is an abstract definition of a tree (quadtree or octree) that makes no reference to a
discretized grid. In the case of numerical simulations, each node is likely to represent a certain
subset of the whole domain (see (2.1)).

Figure 2.3: Example of a refined square domain that can be represented by a quadtree.
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2 Adaptive Mesh Refinement

The information that describes the tree needs to be accessible at all times during a sim-
ulation. Such a requirement raises several issues, especially in high performance environ-
ments:

• Storing the tree. Tree storage can be linear (in the sense that it is stored in a linear
array) or make heavy use of pointers from parent to children. When storing the tree
linearly, we have a choice of storing the whole tree or storing only the leaves.

• Distributing the tree. In parallel environments, the tree structure that represents a
physical domain has to be partitioned between different processes. This can be achieved
using space-filling curves such as the Hilbert curve or the z-curve.

• Scalable algorithms. The data structures and algorithms used have to consume as little
memory as possible to represent the tree structure and as little computations as possible
to traverse it.

• Representing complex geometries. Most of the cell-based AMR algorithms and imple-
mentations focus solely on square or rectangular domains (see Figure 2.3).

Let us now briefly review 3 examples, in chronological order, that have addressed the above is-
sues in different ways, each providing an improvement over the one before.

Example. One of the first attempts to tackle these problems in the context of numerical
simulation has been done in [9] with an application to computational fluid dynamics in
aeronautics. The work was done on octrees and proposed the following way of describing the
data structure: the complete tree is stored (parents pointed to their children) and simple
accumulation indexes were used to keep track of all the cells in the mesh (see Figure 2.4).

Child-Parent Link

Child-Parent Link

Accumulation Index

Figure 2.4: Tree Links as described in [9].

Each node in the tree contains the following information: a pointer to its parent, 8 consecutive
pointers for each of its children (these can be NULL if the child is not refined), pointers to
its neighbors and an accumulation index that stores the number of nodes in the tree up to
this point. Besides storing the tree structure, each node also has to contain other information
such as coordinates, centroids, size, level, neighborhood, etc. that are very necessary when
doing numerical simulations.

Example. Storing the whole tree including neighborhood information is very costly, memory-
wise. In fact, the memory requirements are comparable to AMR using non-structured meshes
(where all the tree and the mesh connectivity has to be stored explicitly). An improvement
to the previous example was given in [10] with the introduction of the Fully Threaded
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2.2 Cell-based AMR

Tree. This new data structure improves the memory requirements of storing an octree and
is easier to parallelize.

The main obstacle to parallelization in [9] was the fact that each node contained pointers
to its neighbors for easy access. While this had some benefits, in a parallel environment,
it is very difficult to guarantee that these pointers stay valid while refining and coarsening
different cells. The fully threaded tree stores instead pointers to parents of neighboring nodes
that do not change in a refinement or coarsening pass.

The memory improvements come from the following simple observations:

• When a cell is split, all its children are created simultaneously. Thus, they can be stored
in a single contiguous array (same as in [9]).

• Neighbor information between siblings is known automatically from the way they are
stored in the array.

• The neighbors of a cell are either its siblings, children of its parent’s siblings or one of
its parent’s siblings.

Much like in [9], the nodes of the tree actually hold information about 8 cells of the 3D domain
and they are called octants. As can be seen in Figure 2.5, an octant contains: a pointer to its
parent, its level, its coordinates, 6 pointers to parent cells of neighboring octants and its 8
children. The children usually contain the state vector of the equations we’re trying to solve
and a pointer to another node, if they are refined.

◦ Pointer
◦ Level
◦ (x, y, z)
◦ Neighbors(6)

Ptr

1

Ptr

8

. . .

Figure 2.5: An octant as described in [10].

A very strong constraint in cell-based AMR that is mentioned in [10] and [9] is that the level
difference between two neighboring octants cannot be bigger than 1 (see Figure 2.6). This is a
constraint that is often used in AMR (it also applies to block-based AMR) and it is required
mainly to simplify the algorithms. If this constraint is not imposed, finding a neighbor of a
cell would require a recursive algorithm that traverses the tree starting from a given sibling
and the number of neighbor would increase greatly with the gap between levels.
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2 Adaptive Mesh Refinement

(a) Valid (b) Invalid

Figure 2.6: Example of (a) a valid refined mesh and (b) a invalid refined meshes.

Example. Another iteration on cell-based AMR has been brought to this data structure
in [11]. The main improvement proposed here is based on the simple observation that we
could use the triplet (i, j, l), where (i, j) are indexes of each cell in a uniform Cartesian mesh
of level l, to describe the tree. This idea is derived directly from the way we subdivide a
given interval by successive refinements, as seen in 2.1.

Given the index (i, j) of a cell, we could easily find the coordinates of its children:

(ic, jc) =
{

(2i+m, 2j + n) | (m,n) ∈ {0, 1}2
}
,

its parent:

(ip, jp) =

(⌊
i

2

⌋
,

⌊
j

2

⌋)
and, using the origin (x0, y0), even the coordinates in physical space:

(x, y) =

(
x0 + i

L

2l
, y0 + j

L

2l

)
.

Notation. bxc represents the integer part of x.

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1)
(2, 2) (3, 2)

(2, 3) (3, 3)

Figure 2.7: Grid indexes as described in [11].

Using this indexing system there are simple ways to find the (i, j) coordinates of any neigh-
boring cell once we know those of the current cell. For example, to find the index of a
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2.2 Cell-based AMR

neighboring cell to the right that is twice as big, we would simply have to check if the cell
with the following coordinates exists:(⌊

i+ 1

2

⌋
,

⌊
j

2

⌋)
.

To optimize the search for the neighboring cell, [11] has proposed the introduction of a hash
table where each octant is associated with a key:

key =
level−1∑
l=0

22l + i2level + j,

where (i, j) is the index and level is the level of a given octant. This implies that the tree
is no longer stored in memory using pointers, but linearly using the above mentioned hash
table. This hash table allows O(1) access to all the neighbors of a given octant.

Some of the libraries that use cell-based AMR are:

Ramses uses the fully threaded tree data structure to implement the magnetohydrodynamics
equations and the N-body equations for use in astrophysics.

Gerris is a code that does incompressible Euler and Navier-Stokes equations. It has been
developed by Stéphane Popinet since 2001 and defines its own C-like language for
describing the problem, the boundary conditions, etc.

CLAMR is a code that uses a hash table-based approach to doing cell-based AMR on the
GPU using the OpenCL framework. The framework was developed at Los Alamos and
is better described in [12].

Others. A review of AMR frameworks and applications using AMR can be found on Donna
Calhoun’s website [29].

Let us underline that both RAMSES and Gerris are not AMR frameworks, they are ap-
plications that make use of AMR to solve equations that appear in astrophysics and fluid
dynamics, respectively. As a consequence, the AMR functionality is more entangled with the
application code and thus harder to separate and understand on its own. Contrary to these
approaches, p4est [14] offers a pure AMR framework, making no suppositions on the type
of equations and methods that the user wants to implement.
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3 The p4est Library

p4est [14] is a library that specializes in parallel, cell-based Adaptive Mesh Refinement. It uses
octrees and quadtrees as its main data structures and groups them together into conveniently
called forests of octrees or forests of quadtrees to construct more complicated geometries.
The main goal of the library is to scale the previous attempts at cell-based AMR to hundreds
of thousands of processors and provide a simple interface for other projects to make use of.
The library is open-source and is available at [30].

It does not try to impose any equations or numerical schemes on the user, focusing solely
on handling the mesh. This has allowed successful implementations of different methods,
such as Finite Volumes, Finite Elements, Discontinuous Galerkin, etc. Some of the mesh-
specific functions it offers are: refining and coarsening, partitioning the octants between
processors (load balancing), constructing ghost layers, iterating over the elements of the
mesh, etc.

We have seen in the previous chapter the evolution of cell-based AMR methods that has
culminated with the works in [11]. p4est takes some of the ideas present there, notably in the
way it reasons about storing and working with the tree structure. For example, quadrants are
represented by their indexes on a uniform mesh and the tree is stored linearly (in a simple list,
in the case of p4est). A major difference between the two is that p4est only stores the leaves
of the tree and does not group them into octants of 4 (or 8) cells.

p4est also uses a different naming scheme than [10] or [11]. It refers to octants (and quadrants)
as single cells in the domain (not groups) that also represent nodes in the tree. Unless explicitly
specified, we will use quadrant and octant (resp. quadtree and octree) interchangeably to
mean the same thing.

To construct complicated geometries, p4est decomposes the space into K octrees (a macro
level) that are then further partitioned into octants (a micro level). This implies that any
domain Ω can be represented as a union of K octrees, where each octree is mapped from a
reference cube by a smooth function

φk : [0, 2b]d → R3, ∀k ∈ J0, KK,

which gives:

Ω =
⋃
k

φk([0, 2
b]d),

where b is the maximum allowed refinement level of an octree.

The only restriction to this scheme is that the macro-decomposition of the domain Ω has to
be conforming, meaning two trees can only share a face or edge in its entirety or not at all.
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3 The p4est Library

This allows p4est to represent a very wide array of geometries: from simple cubes to spheres
to the Möbius strip.

3.1 Encoding the Forest

We have seen that p4est uses transformation of reference cubes to define complex geometries.
Each [0, 2b]d cube represents a tree with a maximum level of refinement b. This implies that,
since we can only divide by a factor of 2, we will always get integer coordinates for all points
in the mesh. These integer coordinates are then used to describe the cells in the mesh: each
octant is uniquely described inside a tree by the coordinates (x, y, z) ∈ {0, . . . , 2b − 1} of its
lower-left corner and its level of refinement l ∈ N.
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Figure 3.1: Numbering of the corners, edges and faces for an octant.

Definition 3.1. As seen in Figure 3.1, we denote:

• Each corner of a quadrant or octant by ci, for i ∈ {0, 2d}. Each corner of the quadrant
corresponds to a point in physical space that we will call vi ∈ Rd.

• Each edge of an octant by ei, for i ∈ {0, 12}.

• Each face of a quadrant or octant by fi, for i ∈ {0, 2d}.

x

y

c0 c1

c3c2

f0 f1

f2

f3

Figure 3.2: The corners and faces of a quadrant.
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3.1 Encoding the Forest

p4est uses a specific ordering for the corners, edges and faces of each octant (see Figure 3.2
for 2D and Figure 3.1 for 3D). They are using the so-called z-order numbering that says we
first walk in the x direction, then y, then z. Taking as an example the faces, we first take the
two faces f0 and f1 that are left and right in the x direction, then proceed to f2 and f3 that
are front and back in the y direction and finally we have face f4 and face f5 that are bottom
and top in the z direction.

Trees are numbered by their index k and have their own coordinate system and orientation.
This means that two trees can be arbitrarily rotated around each other, as can be seen in
Figure 3.3.

k0 k1

x0

y0

x1

y1

Figure 3.3: Two trees with different orientations.

3.1.1 Morton Index

In p4est, octants are stored in per-tree linear arrays. For linear storage, we would require a
function that moves from describing each octant by (x, y, z, l) to just (m, l) where m is the
linear index and l is the level of the quadrant. The mapping (x, y, z, l)→ (m, l) has to be a
1-to-1 relation, thus a bijection.

A method that is commonly used when working with trees and storing them linearly is a
space filling curve. Multiple such curves exist, for example: the Hilbert curve, the Peano
Curve or the Morton curve. p4est uses the z-curve (or Morton curve) to construct a linear
array from the tree. The name of the curve comes from the z shape that it exhibits (see
Figure 3.4, quadrants 0-3).

Space-filling curves allow for good load balancing properties (see [11] or [13]), but they are
rarely used to also store the tree and provide cache locality, as in p4est.

To better understand how a z-curve is constructed, we can look at Figure 3.4. One intuitive
way of finding the order of the leaves in the z-curve is to look at the tree structure on the
left: we can see here that the z-curve simply does a pre-order traversal of all the leaves in
the tree.

Another way of looking at the z-index is by thinking of it as the result of applying a function
that maps (x, y, z, l)→ m, where m is the z-index. In p4est, this function takes the binary

23



3 The p4est Library
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Figure 3.4: z-order traversal of the quadrants in a tree.

representation of the coordinates (x, y, z) and interleaves them to construct the Morton index
m whose binary representation is given by:

mdi+2 = zi, mdi+1 = yi, mdi+0 = xi, ∀i ∈ J0, b− 1K,

where xi, yi and zi are the i-th bits of each coordinate.

For a concrete example of how to compute the z-index of a quadrant we will take quadrant 6
in Figure 3.4. Since we are in the reference cube [0, 2b]d, the coordinates of lower left corner
of quadrant 6 are exactly the center of the domain (x, y) = (2b−1, 2b−1) and the level of the
quadrant 6 is 2. For a maximum level of refinement b = 5, the binary representation of the
coordinates is:

x = 10000 and y = 10000.

To compute the Morton index, we will simply interleave the individual bits of the binary
representation of x and y, as follows:

_1 _0 _0 _0 _0 = 16 = x

1_ 0_ 0_ 0_ 0_ = 16 = y

11 00 00 00 00 = 768 = z-index.

The Morton index gives a unique ordering of the octants in a single tree. To get a total
ordering of all the octants in the forest, we must also introduce the tree index k. As we will
see in the next section, the pair (m, l) of an octant can be used to traverse all its ancestors,
its children, find its neighbors and so on.

Even though the quadrants are ordered in the array by their z-index, it is very important
to remark that the z-index 786 that we have obtained has little to do with the position
in the array of the quadrant number 6. The only property that they share is that they
both offer an ordering of the quadrants in the tree. This means that the mapping i 7→ m,
which given the index in the linear array finds the corresponding Morton index, is strictly
increasing.
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3.1 Encoding the Forest

For example, let’s compare quadrant 5 and quadrant 6 with respect to their Morton index.
The Morton index of quadrant 5 of coordinates (0, 2b−1) and level 1 is:

_0 _0 _0 _0 _0 = 0 = x

1_ 0_ 0_ 0_ 0_ = 16 = y

10 00 00 00 00 = 512 = z-index,

which is smaller than the Morton index 768 of quadrant 6. However, if the grid is uniform
at level b, the Morton index and the array index are the same. For a uniform grid of level
l, we would have to bit shift the Morton index by d× (b− l) to get the index in the linear
array.

3.1.2 Inter-tree Connectivity

Remark. In what follows, we shall identify a tree with its root quadrant.

We will now try to explain the macro-connectivity between the different trees in a forest rep-
resented by p4est. To completely describe this macro-connectivity, we need to:

1. Match each corner of each tree with a vertex of the physical space.

2. Describe the neighborhood of each tree across its faces.

3. Describe the orientation of each tree that is a face neighbor for a given tree k.

4. Describe the neighborhood of each tree across its corners. Only for corners where such
a neighborhood exists.

5. In 3D, also describe the adjacency with respect to edges.

We will take the simple 2D example from Figure 3.5 and describe all the different elements.
The domain described by the two trees k0 and k1 is periodic in y and has open boundaries
in x. Furthermore, we can see that the two trees do not have the same system of coor-
dinates, making for a sufficiently complicated forest to describe all the above mentioned
items.

Physical Coordinates

The first thing that needs to be defined are the vertices in physical space. We can see that
the corners referred to by c3 and c′1 (resp. c2 and c′3) represent the same physical vertices, so
we only need to define 6 vertices vi, for i ∈ {0, . . . , 5}, to completely define the position of
the two trees in physical space. Once we have defined these points we can assign them to
each tree using an array called NV , such that, for a given tree k and a given corner c, we
can get the corresponding vertex vi = NV(k, c).
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Figure 3.5: Coordinate system, corner and face numbering of two adjacent trees.

Face Neighbors

Next, we define the array NO which, for each tree k and face f , will give the corresponding
tree on the other side. In our case, this is described by:{

NO(k0, ·) = {0, 0, 0, 1},
NO(k1, ·) = {1, 0, 1, 1}

Indeed, we can see here, as in Figure 3.5, that the tree k0 touches on the tree k1 across the
face f3. If there is no other tree across a face boundary, the index of the originating tree is
used.

Tree Orientation

The relative orientation between trees and the faces that they share are describe by the array
NF . Considering a tree k and a face f , NF(k, f) = 4r + f ′ where:

• f ′ is the index of the connecting face from the perspective of the tree k′ = NO(k, f).
The faces f and f ′ represent the same line (resp. surface) in the physical space.

• r is the orientation of the two trees relative to each other across the face f . If we denote
{a, b} as the indexes of the two corners that belong to the face f and {a′, b′} the corners
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of the face f ′, the orientation r is given by:

r =

{
0, if (a− b)(a′ − b′) > 0,

1, if (a− b)(a′ − b′) < 0.

In our case, the array NF is defined as:{
NF(k0, ·) = {1, 0, 2, 5},
NF(k1, ·) = {0, 7, 3, 2}

First we will handle the periodic nature of the domain. We see that NF(k0, f0) = f1 and
NF(k0, f1) = f0 (same for the faces in the y directions of the tree k1) which defines the peri-
odic link from the upper boundary of the domain to the lower boundary.

For the domain boundaries in the x direction, as in the case of the NO array, the face of the
originating tree is used. Thus, we haveNF(k0, f2) = f2 andNF(k0, f

′
0) = f ′0.

The orientation on the previously mentioned faces is always 0 because, as seen in the array
NO, the neighboring tree is always the tree of origin which cannot be rotated around itself.
The only faces that are an exception to this are face f3 of the tree k0 and face f ′1 of the tree
k1, where we have: {

NF(k0, f3) = 4r + f ′1 = 5,

NF(k0, f
′
1) = 4r + f3 = 7,

with an orientation r = 1.

Corner Neighbors

Next we will look at the connectivity across corners. It is stored in an array CT which, for
a tree k and a corner c, stores the pair (k′, c′) of the corresponding neighboring tree and its
own corner c that represents the same vertex as c.

It is important to note that connectivity across corners is only needed if two trees are
connected only by a corner, and not a face or edge, like in Figure 3.6. This is the case for us
because of the periodicity we introduced in the physical y direction. In Figure 3.5 we can see
that, in fact, the corner c2 of k0 links the tree k0 and the tree k1 across a single point on the
diagonal.

So we can define our array as:{
CT (k0, ·) = {(∗, ∗), (∗, ∗), (1, 1), (1, 3)},
CT (k1, ·) = {(∗, ∗), (0, 2), (∗, ∗), (0, 3)}

The extension of this encoding in 3D is explained in [14] as well as the additional definition
of the various transformations that are needed to pass from one tree to another, i.e. from
one coordinate system to another. These transformations are done using matrices since all
the possible combinations are computable in advance.
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k0

k1

Figure 3.6: Two trees connected solely through a corner.

3.2 Traversing the Tree

In this section we will look over a few algorithms that permit finding the parent of an
octant and its children. Other algorithms, for finding face, edge and corner neighbors, find-
ing other descendants and ancestors, dealing with inter-tree boundaries, etc., are described
in [14].

Since most of the calculations we will be doing are performed on the binary representation
of the coordinates (x, y, z), we introduce the following notation:

• & denotes a binary AND that gives 1 only if the two bits are also 1.

• | denotes a binary OR that gives 1 if any of the two bits is 1.

• ¬ denotes a binary NOT that gives 1 if the bit was 0, and 0 otherwise.

• (condition ? a : b) is the ternary operator commonly used in C-type languages.
It executes a if condition is true and b otherwise.

• For an octant o, we will denote by o.l its level and by (o.x, o.y, o.z) its coordinates.

Finding the parent of an octant. We will first look at Algorithm 1 that allows us to find
the parent of a given octant o by finding its coordinates and level.

Algorithm 1: Get the parent of an octant.

Data: Octant o
1 h← 2b−o.l;
2 q.l← o.l − 1;
3 q.x← o.x & ¬h;
4 q.y ← o.y & ¬h;
5 q.z ← o.z & ¬h;
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3.2 Traversing the Tree

To understand Algorithm 1 we will take the simple example from Figure 3.7. In this figure
we see the parent q on the left getting refined into its 4 children on the right; we will look at
the second of these children, namely o (both of them are hatched).

Parent q Child o

Figure 3.7: Parent-child relationship in a mesh.

Since we already know from computing the Morton index how the coordinates are computed
and stored in p4est, we can do it ourselves and then see if the results given by Algorithm 1
match.

For a maximum level of refinement b = 5, the coordinates in their binary representation
are:

• for the parent q of level q.l = 2, we have (q.x, q.y) = (10000, 10000).

• for the child o of level o.l = 3, we have: (o.x, o.y) = (10100, 10000).

The coordinates can be obtained by correctly subdividing the interval [0, 2b].

The last variable we need in order to perform the calculation is h. In our case, for the child
quadrant o, h = 2b−o.l, which in binary notation is 00100. So, according to Algorithm 1, the
coordinates of the parent are given by:{

q.x = o.x & ¬h = 10100 & 11011 = 10000,

q.y = o.y & ¬h = 10000 & 11011 = 10000

which is indeed the case.

Remark. If we consider the coordinates of the parent and child quadrant on the uniform mesh
of their respective level, we have:

(q.x, q.y) = (2, 2) and (o.x, o.y) = (5, 4).

This representation allows another way of finding the coordinates of the parent q from the
coordinates of child o through a simple division by 2:{

q.x = bo.x/2c = b5/2c = 2,

q.y = bo.y/2c = b4/2c = 2,

which is the representation given in [11].
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Finding the child of an octant. To find the i-th child of a quadrant, we will have to
do the inverse operation to that suggested in Algorithm 1. This method is described by
Algorithm 2.

Algorithm 2: Get the child of an octant.

Data: Octant q, Child index i
1 h← 2b−(o.l+1);
2 o.l = q.l + 1;
3 o.x← q.x | (i & 1 ? h : 0);
4 o.y ← q.y | (i & 2 ? h : 0);
5 o.z ← q.z | (i & 4 ? h : 0);

We will revisit the example from Figure 3.7 with the two quadrants and their coordinates in
binary:

(q.x, q.y) = (10000, 10000) and (o.x, o.y) = (10100, 10000).

The variable h in this case will again be 00100 and, since we are looking at the second child
of q, i = 1 (00001 in binary). Starting from the coordinates of q, we will use the operations
described in Algorithm 2 to find (o.x, o.y). First, we will look at the ternary operator in each
binary OR (lines 3-4 of Algorithm 2):

• for the x coordinate, we have 00001 & 00001 = 1, which is true, giving h as a result.

• for the y coordinate, we have 00001 & 00010 = 0, which is false, giving 0 as a result.

The coordinates of the child then are:{
o.x = q.x | 00100 = 10000 | 00100 = 10100,

o.y = q.y | 00000 = 10000 | 00000 = 10000,

which are indeed the coordinates we have calculated before.

3.3 Parallel Algorithms

. . .. . . . . .

tree 0 tree K

gi

Figure 3.8: The entire forest is stored in a global linear array indexed by gi, the global index
of each octant.

We have seen until now how to store a tree in linear arrays using the z-index and how
to traverse the tree knowing only its leaves. The set of all trees in a forest gives rise
to a global linear array where each octant is identified by its global index gi (see Fig-
ure 3.8).
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In a parallel environment, the global array of octants has to be distributed between all the
processes. In p4est, continuous chunks of this array are assigned to each process in increasing
order of the process ID (see Figure 3.9).

. . .. . . . . . . . .

Np0 octants

Np1 octants

NpP−1
octants

NpP octants

Figure 3.9: Partition between processes of the global linear array.

To ease the access to each individual octant, they are stored in per-tree arrays inside each
process. This allows the distribution between processes of the global quadrant array to be
completely defined by the triplet (Np, kp, op), where:

• Np is the number of octants owned by process p.

• kp is the first tree that has octants owned by process p.

• op is a descendant of level b of the first octant from the tree kp owned by process p.

Remark. The octant op does not need to exist in the tree kp. It is used as a marker to delimit
the octants in the process p and those in process p − 1, that belong to the tree kp. This is
possible because all the octants from the tree kp in p− 1 will have a smaller Morton index
than op and all the octants in p will have a larger Morton index than op.

This information is necessary because a process may own any number of trees (including 0)
and any number of octants from these trees. Since each process has this information, they
can all compute the global octant count:

G =

p−1∑
p′=0

Np′ .

If a uniform partition is desired, each process q can also easily calculate the number of octants
it has to have, given a total number of octants G:

Nuniform
p =

G(p+ 1)

P
− Gp

P
(3.1)

where P is the total number of processes.

In the next pages, we will look at some of the basic algorithms for building an efficient
cell-based AMR library. These are: finding an element that does not belong to the current
process, creating a new forest, refining and coarsening the new forest and doing uniform load
balancing.
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We have left out the more advanced algorithms that create the ghost layer, balance the
forest and iterate over its elements. More information on these algorithms can be found
in [17] (for ghost layer construction and advanced iteration) and [16] (for efficient 2:1 balanc-
ing).

Finding the Owners of an Octant

The first algorithm that we are going to look at is a basic building block of parallel AMR
algorithms: finding the owner processes of a given octant. In [14], we have algorithms that
allow easy ways to find the neighbors of an octant in the same tree and more advanced
methods of accounting for inter-tree boundaries, but we also need to find to which process
these neighboring octants belong.

Algorithm 3: Find the processes that own an octant.

Data: octant o, tree k
1 P ← ∅;
2 if o is outside the tree k across a corner c then
3 CC ← corner connections(k, c);
4 for C ∈ CC do
5 o′ ← transform corner(C, o, 1);
6 Binary search in (kp, op) for owner process p′ of (C.k, o′);
7 P ← P ∪ {p′};
8 end

9 else if o is outside the tree k across an edge e then
10 EC ← edge connections(k, e);
11 for E ∈ EC do
12 o′ ← transform edge(e, E, o, 1);
13 Binary search in (kp, op) for owner process p′ of (E.k, o′);
14 P ← P ∪ {p′};
15 end

16 else if o is outside the tree k across a face f connected to k′ then
17 o′ ← transform face(k, f, o);
18 Binary search in (kp, op) for owner process p′ of (k′, o′);
19 P ← P ∪ {p′};
20 else
21 Binary search in (kp, op) for owner process p′ of (k, o);
22 P ← P ∪ {p′};

There are two cases that we will look at:

• The first one involves knowing the global index gi of an octant o in the linear storage
array and is the simple case. Given the triplets (Np, kp, op) for each process, the process
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p that contains the octant o with the global index gi satisfies:

p−1∑
p′=0

Np′ ≤ gi ≤
p∑

p′=0

Np′

• The second case is when we are only given the tree k and the octant o (and thus its
coordinates and level). This case is described in Algorithm 3.

Finding an octant o given a tree k can be useful in many situations. One example is building
a ghost layer. When building a ghost layer, we can construct the (x, y, z) coordinates of an
octant that neighbors a local octant (see Algorithm 6 and 7 in [14]), but we do not know if
it exists in the forest, what tree and what process it belongs to. All this information can be
found using Algorithm 3.

The new family of functions transform * have been defined in [14] and are functions that
supersede the simple functions to find neighboring octants by taking into account the con-
nectivity of the forest and give back the correct octant in the coordinates of the originating
tree.

Similarly, the * connections functions get all the octants that share a corner or edge with
the given octant. These functions, however, only give non-redundant connections, meaning
that for a corner connection it will not return octants that are also connected though a face
or an edge.

Creating a new uniform forest

Algorithm 4: Creating a new forest.

Data: Minimum octants per process nq, number of trees K
1 l← dlog2 dmax (Pnq/K, 1)/dee; /* mimimum level */

2 n← 2dl; /* octants per tree */

3 N ← nK; /* global number of octants */

4 gfirst ← bNp/P c; /* first octant in process */

5 glast ← bN(p+ 1)/P c; /* last octant in process */

6 kfirst ← bgfirst/nc; /* first tree in process */

7 klast ← bglast/nc; /* last tree in process */

8 for k ∈ {kfirst, . . . , klast} do
9 mfirst ← (k = kfirst ? (gfirst − nk) : 0);

10 mlast ← (k = klast ? (glast − nk) : n− 1);
11 Ok ← ∅;
12 for m ∈ {mfirst, . . . ,mlast} do

/* Octant computes (x, y, z) from the linear index */

13 Ok ← Ok ∪Octant(l,m);

14 end

15 end
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In Algorithm 4, we present a simple way of creating a new uniform forest. This algorithm is
fairly straightforward. It first computes the number of octants to be created on the current
process as well as the global index of the first octants in the process. Then it creates an array
with the required number of octants and associates each one with its correct coordinates. The
coordinates are computed from the global z-index (there is a bijection between the z-index
and (x, y, z)). The coordinates of each octant can be computed directly from their position
in the global linear array since all the trees are uniform.

p4est also provides a way to construct forests that are not uniform. The algorithms used for
this are based on the work from [15] with additional improvements to reduce the algorithm
to O(N) time complexity, where N is the global number of octants.

Adapting a forest

Once the forest is created, the next step is usually to refine and coarsen it in such a way that
the initial condition is correctly represented. We will look here at the sketch of the refining
and coarsening algorithms presented in [14].

A very important feature of the adapting algorithms is that they strive to maintain the
z-order while modifying the linear arrays. This permits to only do one pass over all the
octants and decide to refine or coarsen, without having to revisit them all and put them in
the right order. This gives the algorithms a running time of O(Np), but requires additional
space, as we will see.

The first algorithm we will look at is the coarsening algorithm (see Algorithm 5). When
coarsening, a family of 4 (resp. 8) quadrants (resp. octants) is replaced by their single
parent.

o

s s+ l

w w + l + 2d

Figure 3.10: Coarsening the octant family starting with o.

To better understand the algorithm described in 5 we will look at Figure 3.10. As in the
algorithm, we see our sliding window starting at w and then an empty range of size l
starting at the index s. The first thing we will do is look at the octant o and see if it and
the other 2d − 1 octants at the end of the sliding window form a family that wants to be
coarsened.

Once we have a family that desires to be coarsened, the octant o at position w is replaced by its
parent (this is done at line 10) and we grow the size of the empty space by 2d−1 (corresponding
to the other children) and advance the starting position w.
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Algorithm 5: Coarsening the octants in a single process.

Data: Boolean recursive, function coarsen

1 for k ∈ Tlocal do
2 n← #Ok; /* octants in tree k */

/* Start and size of the sliding window */

3 w ← 0;
4 C ← 2d;

/* Start and size of the empty range */

5 s← 1;
6 l← 0;
7 while w + C + l ≤ n do
8 c← n;
9 if is family (w, s, l) and coarsen(k, w, s, l) then

10 Ok(w)← Parent (Ok(w));
11 c← child id (Ok(w));
12 s← w + 1;
13 l← l + C − 1;

14 end
15 if c ≤ w and recursive then
16 w ← w − c; /* move window backward */

17 else
18 w ← w + 1; /* advance window */

19 if w = s and s+ l < n then
20 Ok(s)← Ok(s+ l);
21 s← w + l;

22 end

23 end

24 end
25 Ok(s, . . . , n− l − 1)← Ok(s+ l, . . . , n− 1);

26 end

If instead, the octant o and the others do not form a family, we simply advance the starting
position w and copy into the new empty space an octant from the end of the empty range,
from position s + l (line 20). Additional care is given to recursive coarsening when we can
go back and decide if there is a family that is formed by the parent of o and if it desires to
be coarsened as well.

Recursive coarsening is not usually desired because, during the procedure, we cannot correctly
apply interpolation algorithms and cannot rely on the ever-changing mesh and linear array
to get neighborhood information. It is however desired while trying to define the initial
conditions from physical data known in advance.

The refinement algorithm is described by Figure 3.11. When refining, we will look at an
octant o and see if it desires to be refined. Once that is established, 2d children are created
to take its place.
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To achieve refining in a single pass, an additional linked list is used to store the octants that
have to be inserted. Briefly, the algorithm goes as follows:

• If an octant o wants to be refined, it is popped from the linear array and its 2d children
are prepended to the linked list.

• If instead it does not want to be refined, it is popped from the linear array and appended
to the linked list.

• The first item in the linked list is then added in the place of the popped octant.

If we consider the number of octants that want to be refined Nr, then the size of the linked
list will be at most 2dNr at a time.

o

c

Figure 3.11: Refining the octant q and adding its 4 children.

Partitioning a forest

The last algorithm we will look at is the load balancing or partitioning algorithm. This
algorithm will allow the forest to have an almost equal number of octants in each process
and thus distribute the work that needs to be done in a fair fashion between them. In [14],
there is a more general algorithm that allows assigning weights to each octant and doing
a partition based on equal weights. We will instead look here at a simple algorithm that
assumes each octant has the same weight.

Algorithm 6: Partition forest for equal weights.

Data: N global number of octants
Data: P number of processes

1 for p← 0 to P do

2 Np ←
⌊
N(p+1)

P

⌋
−
⌊
Np
P

⌋
;

3 end
4 partition given (Np) ; /* exchange octants */

The algorithm that describes the uniform partitioning is Algorithm 6. It makes use of an extra
function called partition given that, given the desired number of octants in each process,
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3.4 Implementation and Data Structures

will exchange octants at the beginning and end of the per-process arrays with neighboring
processes so as to achieve the desired partition.

The benefit of this algorithm is that it does not require any sort of inter-process communica-
tion to compute the partitions on all existing processes. The calculations are simply based
on (3.1).

3.4 Implementation and Data Structures

We will now try to give a high level view of how we have used p4est in our tests. p4est
has quite extensive documentation in its source code (through Doxygen), as well as a few
overviews on how the library is supposed to be used. These are all available with the source
code on the projects’s webpage [30].

The scheme we have used is a very simple one (can be seen in Figure 3.12). Advancing
the solution in time happens in the Advance stage, while all the interpolations between
refined and coarsened elements happen during the Adapt and Balance phases using p4est

functions that require simple, per-octant callbacks.

We store the state vector in the octants themselves so that we can get easy access during
the various stages of the simulation. This is contrary to the recommended way in the p4est

documentation, that supposes the user of the library will have their own separate data storage
schemes and will only use p4est to place them on the mesh and perform interpolations when
necessary.

Create Advance Adapt

Balance

Partition

Figure 3.12: Overview of the application workflow.

3.4.1 Creating a Forest

We will now look in more detail at each of those steps and see what functions and data
structure are necessary. In the first step, Create, we will create the connectivity, the forest
and set up an initial condition for our equations.
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3 The p4est Library

The base element of p4est is the quadrant or octant. These two data structures are defined in
p4est.h and p8est.h and are called p4est quadrant t and p8est quadrant t, respectively.
The 4 and the 8, of course, refer to the quadtree and octree configurations and all p4est *

functions have a p8est * variant.

The quadrant described in Code 3.1 contains all the fields we would expect from the descrip-
tions we have seen before: the coordinates (x, y, z) and the level. It also contains a special
user data field that can be used by the client of the library to store its own per-quadrant
information, which we have used to store our state vectors.

A few new types are introduced as well, these are: p4est qcoord t, p4est topidx t and
p4est locidx t and are used for coordinates, tree indexes and local quadrant indexes, re-
spectively. They are all integer types.

Code 3.1: The data structure describing a quadrant.

typedef struct p4est_quadrant

{

p4est_qcoord_t x, y, z;

int8_t level, pad8;

int16_t pad16;

union p4est_quadrant_data

{

void *user_data;

/* ... */

struct

{

p4est_topidx_t which_tree;

p4est_locidx_t local_num;

}

piggy3;

}

p;

}

p4est_quadrant_t;

A tree structure is described in Code 3.2. Each local tree contains a list of local quadrants in
the quadrants array. This list does not contain all the quadrants in the tree, just the local
ones starting at quadrants offset.

Next we have the connectivity in Code 3.3. As seen before, it contains:

• vertices: a list of physical points.

• tree to vertex: an array NV tying each point to a corner of each tree.

• tree to tree: an array NO specifying, for each face f , the tree on the other side.
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Code 3.2: The data structure describing a tree.

typedef struct p4est_tree

{

sc_array_t quadrants;

p4est_quadrant_t first_desc, last_desc;

p4est_locidx_t quadrants_offset;

p4est_locidx_t quadrants_per_level[P4EST_MAXLEVEL + 1];

int8_t maxlevel;

}

p4est_tree_t;

• tree to face: an array NF specifying, for each face f , the face in the neighboring
tree and its orientation.

The corner connectivity is split between multiple arrays. First we have the tree to corner

array that specifies, for each tree and each corner, the type of the corner if it connects two
(or more) trees, or −1 if it does not.

Code 3.3: The data structure describing the connectivity.

typedef struct p4est_connectivity

{

p4est_topidx_t num_vertices;

p4est_topidx_t num_trees;

p4est_topidx_t num_corners;

double *vertices;

p4est_topidx_t *tree_to_vertex;

p4est_topidx_t *tree_to_tree;

int8_t *tree_to_face;

p4est_topidx_t *tree_to_corner;

p4est_topidx_t *ctt_offset;

p4est_topidx_t *corner_to_tree;

int8_t *corner_to_corner;

}

p4est_connectivity_t;

One important fact about how p4est stores the corner connectivity is that it is based on
types of corners. In our example, we had the two middle corners in both trees in Figure 3.5
that connected multiple trees, but in fact they both represented just a single type since they
connected the same trees in the same order.

The rest of the arrays describe, for each type of corner, the trees that it connects and the
corners in each of those trees that meet there.
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3 The p4est Library

The connectivity is initialized using the p4est connectivity new function that returns the
structure with all the arrays allocated to specified sizes which the user then has to fill
in. A few widely used connectivities have already been implemented, like the unit cube
with simple and periodic boundaries, a disk and even exotic structures such as the Möbius
strip.

Code 3.4: The data structure describing the complete forest.

typedef struct p4est

{

/* ... */

void *user_pointer;

p4est_topidx_t first_local_tree;

p4est_topidx_t last_local_tree;

p4est_locidx_t local_num_quadrants;

p4est_gloidx_t global_num_quadrants;

p4est_gloidx_t *global_first_quadrant;

/* ... */

p4est_connectivity_t *connectivity;

sc_array_t *trees;

/* ... */

}

p4est_t;

The final data structure we will consider at at this stage is the main p4est t structure that
contains all the other data structures and defines the forest completely.

Code 3.5: The function prototypes for initializing a forest and a quadrant.

p4est_t *p4est_new (sc_MPI_Comm mpicomm,

p4est_connectivity_t * connectivity,

size_t data_size,

p4est_init_t init_fn, void *user_pointer);

void quadrant_init (p4est_t * p4est,

p4est_topidx_t which_tree,

p4est_quadrant_t * quadrant);

We can see in Code 3.4, that all the information we have mentioned before while detailing the
algorithms and describing the connectivity is contained in this structure. A significant field
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is the user pointer that gives the user the possibility of adding their own data structures
that will then be available whereever the p4est t object is available.

The p4est t data structure is initialized with the functions from Code 3.5. The constructor
takes as arguments the data size of the per-quadrant user data (which can be 0), that is then
completely handled by p4est, as well as an initializer function that will be called for each
quadrant to initialize its user data (by default it is initialized to NaN).

3.4.2 The Ghost Layer

Another very important part of a numerical simulation, especially in parallel, involves the
ghost layer. Using the ghost layer, we can set boundary conditions for our domain and
also communicate with the neighboring processors to get the necessary data to make our
calculations.

p4est handles creating the ghost layer and exchanging data between processes in an al-
most invisible manner to the user if the data is stored inside the user data pointer of the
quadrants.

Code 3.6: The ghost layer data structure and the functions that perform the data exchange.

typedef struct

{

/* ... */

sc_array_t ghosts;

sc_array_t mirrors;

/* ... */

}

p4est_ghost_t;

void p4est_ghost_exchange_data (p4est_t * p4est, p4est_ghost_t * ghost,

void *ghost_data);

void p4est_ghost_exchange_custom (p4est_t * p4est, p4est_ghost_t * ghost,

size_t data_size, void **mirror_data,

void *ghost_data);

The ghost layer contains a lot of information about what quadrants are ghosts, to which
tree and process they belong, etc., but we are mostly interested in the ghosts and mirrors

(see Code 3.6). The ghosts array is a list of all the quadrants that are ghosts for the
current processor. Unlike local quadrants, they do not contain the user data from the foreign
process, but they do contain information about their tree of origin and index in that tree
(see Code 3.1). The user data has to be retrieved using the p4est ghost exchange data

function.
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The mirrors array contains local quadrants that are ghosts for at least one other process.
This array is very useful when trying to send per-quadrant custom data to other processes
as it permits each process to know what the quadrants that it needs to send are and what
quadrants it has to receive from other processes.

3.4.3 Iterating Over the Octants

Once the forest and the ghost layer are created, we can continue to the next stage of our
simulation: Advance. In this stage, we will iterate over all the local quadrants in the forest
and their neighbors to reconstruct whatever information we may need (node-based matrices
for Finite Elements, fluxes for Finite Volumes, etc).

Code 3.7: General iterator function.

void p4est_iterate (p4est_t * p4est,

p4est_ghost_t * ghost_layer,

void *user_data,

p4est_iter_volume_t iter_volume,

p4est_iter_face_t iter_face,

/* p8est_iter_edge_t iter_edge, */

p4est_iter_corner_t iter_corner);

Iteration in p4est is done using the p4est iterate function (see Code 3.7). This one
function allows the user to iterate over octants, unique faces, edge and corners using a
system of callbacks. For more information about how it achieves all this, see [17]. We will
focus here on presenting how to use this function and what all the structures involved
do.

Code 3.8: Type definitions for the corner, edge, face and octant callbacks.

typedef void (*p4est_iter_*_t) (p4est_iter_*_info_t * info,

void *user_data);

First, we have the 4 types of callbacks that are defined in Code 3.8. Each of the callbacks
takes a different data structure as an argument that describes the neighborhood of that type
of element. For a volume, we get the information specified in Code 3.9. This data is probably
sufficient in most cases; it provides the quadrant with its coordinates as well as the index in
the local linear array and the tree of origin. With this we can construct the neighborhood of
the octant and traverse the whole tree.

A face callback takes a different type of structure, defined in Code 3.10. A face is usually
defined by the octants on each side, but because of the non-conforming structure of the
mesh, any of these two sides can contain a refined octant. p4est has made the choice, that
while iterating over faces and finding an octant that shares a face with two other octants
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Code 3.9: Data structure for an octant iterator.

typedef struct p4est_iter_volume_info

{

p4est_t *p4est;

p4est_ghost_t *ghost_layer;

p4est_quadrant_t *quad;

p4est_locidx_t quadid;

p4est_topidx_t treeid;

}

p4est_iter_volume_info_t;

Figure 3.13: A face (marked in red) between quadrants of different levels.

(refined), it will take into account the whole face of the bigger octant instead of taking only
half into account with each half-neighbor. We can see this in Figure 3.13: the face is marked
in red.

The data structure defined in 3.10 allows us to look at the neighborhood of a face that can
be either hanging (with two quadrants on one side) or full (with only a single quadrant on
each side). Additional information is offered about the quadrants, such as their local index,
their coordinates and whether they are part of the ghost layer or not.

The corresponding corner and edge data structures are very similar. They both contain the
surrounding neighborhood of quadrants that can be used to compute different values on those
elements.

3.4.4 Adapting and Load Balancing

Last but not least, we will look at how refining, balancing and partitioning is done in p4est.
These operations are hidden from the user inside the functions listed in Code 3.11. The
only variables that have to be defined by the user are the callback functions that tell p4est
whether it should refine or not and, in the case of balancing as well, a function that will
handle the interpolation between parent and children.

The refining function and the coarsening function have very similar arguments. They both
have the option to perform their actions recursively and can initialize newly created quadrants
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Code 3.10: Data structure for a face iterator.

typedef struct p4est_iter_face_side

{

p4est_topidx_t treeid;

int8_t face;

int8_t is_hanging

union p4est_iter_face_side_data

{

struct

{

int8_t is_ghost;

p4est_quadrant_t *quad;

p4est_locidx_t quadid;

}

full;

struct

{

int8_t is_ghost[2];

p4est_quadrant_t *quad[2];

p4est_locidx_t quadid[2];

}

hanging;

}

is;

}

p4est_iter_face_side_t;

with the init fn function.

The balancing function has one special option that is the type of balance it should perform.
In 2D, it can balance the forest according to corners or faces and in 3D it can also do it
according to edges. The balancing operation is related to the level of neighboring quadrants
and constrains the neighbors to not differ by more than one level.

A very important function for both adapting the forest and balancing it is the replacement
function, the prototype of which is defined in Code 3.12. This function receives as argu-
ments:

• when refining, the parent quadrant that has been popped out of the array and the 4
(resp. 8) quadrants (resp. octants) that are its children. It is then the job of the user
to specify how the information is interpolated from one to the others.

• when coarsening, the inverse is true: we receive the 4 (resp. 8) children that form a
family that desires to be coarsened and the new quadrant (resp. octant) that is their
parent.
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Code 3.11: Functions for adapting and partitioning the forest.

void p4est_refine_ext (p4est_t * p4est,

int refine_recursive, int maxlevel,

p4est_refine_t refine_fn,

p4est_init_t init_fn,

p4est_replace_t replace_fn);

void p4est_coarsen_ext (p4est_t * p4est, int coarsen_recursive,

int callback_orphans,

p4est_coarsen_t coarsen_fn,

p4est_init_t init_fn,

p4est_replace_t replace_fn);

void p4est_balance_ext (p4est_t * p4est,

p4est_connect_type_t btype,

p4est_init_t init_fn,

p4est_replace_t replace_fn);

p4est_gloidx_t p4est_partition_ext (p4est_t * p4est,

int partition_for_coarsening,

p4est_weight_t weight_fn);

As we can see, this function does not give any information about the neighborhood of the
quadrants that are going to be refined or coarsened, thus greatly limiting the type of interpola-
tions we can do. This is one of the reasons why the p4est documentation recommends storing
the data ourselves and keeping two versions of the forest: before and after the adaptation, so
that we can have complete liberty in how we do the interpolations.

Code 3.12: Prototype for the user defined interpolation function.

typedef void (*p4est_replace_t) (p4est_t * p4est,

p4est_topidx_t which_tree,

int num_outgoing,

p4est_quadrant_t * outgoing[],

int num_incoming,

p4est_quadrant_t * incoming[]);

3.5 Numerical Results

In this section we will look at some of the numerical results that we have obtained using the
p4est library.
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All the examples that we are about to see have been made using a newly developed code that
is available at [31]. Since the present work has started, the p4est developers have released
a new version of the library that contains small examples of equations solved using the
Finite Element or Finite Volume methods that can also prove invaluable to someone starting
out.

Our current code has been developed for numerical simulations that apply the Finite Volume
method to different sets of equations. The Finite Volume example in the p4est source code
deals with the transport equation, an equation we will also be looking at, in a very basic way.
The code we have developed has many extra features:

• Easy way to define initial conditions and choose them at runtime.

• A similar mechanism for boundary conditions. p4est only has periodic and homoge-
neous Neuman boundary conditions, we have also implemented Dirichlet boundary
conditions, walls, etc.

• More advanced error indicators that look at the gradients of different variables.

• Parallel output using the HDF5 library and the XDMF standard.

• etc.

Although there are many tests that could be executed, especially for the more complex two-
phase model, that put pressure on the p4est library and the refinement criteria, we have
chosen a few that accentuate the quality of the adapted mesh and the way that p4est works
in different stages of a simulation.

We will also try to present some very preliminary scalability and performance results for our
code and especially for the p4est library. More extensive performance tests of the p4est

library can be found in [14], [16] or [17].

3.5.1 Forest Creation, Adaptation and Partitioning

This first suite of tests is going to be targeted specifically at the p4est library and the various
functionality that it offers us, such as mesh creation, load balancing, etc.

To test this functionality we have chosen to use a Finite Volume scheme implemented for
the transport equation. We will not, at this point, focus on the numerical results, which are
available in the upcoming chapters. For the sake of completeness, we will give the parameters
used to the simulations. The initial condition for the test is an indicator function in the shape
of a disk:

c0(x) =

{
1,

√
(x− xc)2 + (y − yc)2 + (z − zc)2 ≤ r,

0, otherwise,

where (xc, yc, zc) is the center of a sphere of radius r. In our case, we have chosen center
(0.2, 0.5, 0.5) and the radius 0.1. The advection velocity is simply u = (1, 0, 0). We have
chosen a final time T = 1 and the Courant number θ = 1.0. The boundary conditions on this
test are periodic in all directions.
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On the AMR side, we have limited the maximum and minimum possible level of a quad-
rant to the interval J4, 7K and ran the program on 8 different processes. p4est supports a
minimum level of 0 and a maximum level of 32. This is mostly a shortcoming of the program-
ming language it is written in, namely C, which does not natively support arbitrary sized
integers.

The refining criterion that we have used here is a simple normalized gradient estimator on
the transported value c. We define the following estimator for the gradient between two
neighboring cells:

ξgij =
|cni − cnj |

max(cni , c
n
j )
.

The quadrant is then refined if ξgi is bigger than a certain threshold ε, giving the final
indicator:

ξi =

{
1, ξgi > ε,

0, ξgi < ε,

where the value of ε is user defined. In our tests we have taken various values for ε: in the
case of the transport equation, the value of epsilon was set to ε = 0.1. These thresholds are
very specific to the test case at hand.

Creating the Mesh

The first algorithm we will look at is the creation of the forest. We can see an unrefined initial
condition in Figure 3.14a that we will then adapt to obtain the new, more exact solution
from Figure 3.14b.

(a) (b)

Figure 3.14: (a) Initial solution on the uniform mesh of level 4. (b) Initial solution on a
refined mesh.

We can see in Figure 3.14 that the initial solution is correctly refined and the disk gets
properly represented. In Figure 3.15, we can see that the 3D case is handled just as easily
and the solution gets correctly refined.

47



3 The p4est Library

Figure 3.15: Initial solution on a refined 3D mesh.

Adapting the Mesh

Next we will look at how the mesh gets adapted as the solution advances. In the test case
that we have chosen, we know that, on a uniform mesh, the solution is exact, so we expect
the same results on the adapted mesh.

(a) (b)

Figure 3.16: (a) Mesh and solution at t = 0.5. (b) Mesh and solution at t = 1.0.

We can see in Figure 3.16a and Figure 3.16b that the refinement follows the solution exactly,
to such a degree that no cell is different. We can also see that, even though the mesh is refined
and the number of cells is much smaller, we still get the exact solution to this transport
equation.

Again, in Figure 3.17, we can see that the solution gets correctly transported and refined
during the 3D simulation, just like in the 2D case.

Partitioning the Mesh

In Figure 3.18, we can also see the results of doing load balancing on the mesh. The load
balancing in p4est evolves in time with the mesh and always tries to distribute the number
of quadrants equally between the processes.
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Figure 3.17: Refined solution on a refined 3D mesh at an intermediary time step.

(a) (b)

Figure 3.18: (a) Partition at t = 0.0 (b) Partition at t = 0.3.

In Figure 3.18 we can see the distribution between the 8 processes that we have ran this
simulation on. In the first figure, we have the initial load balancing of the mesh and then, in the
second one, we have the partitioning in the middle of the simulation.

Figure 3.19: Load-balanced partition of the quadrants on 8 processes using a refined 3D
mesh.

Since the z-index works equally well in 3D, the partitioning can also take place in this case
with the same algorithms. We can see in Figure 3.19 the partitions of processes 0 to 5 out of
the total 8 at an intermediary step of the simulation.
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4 Discretization of the Transport
Equation using p4est

In this chapter we present a discretization strategy for the transport equation within the
p4est AMR framework using a classic Finite Volume approach.

We consider a domain Ω of dimension d ∈ {2, 3} and the following Initial Value Boundary
Problem: {

∂tc+ u · ∇c = 0,

c(0,x) = c0(x),
(4.1)

where c is the transported value, u is a given smooth velocity field and c0(x) is the initial
condition. These functions can be described as follows:

c : [0, T ]× Ω −→ R
(t,x) 7−→ c(t,x),

u = (u, v, w) : [0, T ]× Ω −→ Rd

(t,x) 7−→ u(t,x),

c0 : Ω −→ R
x 7−→ c0(x).

The domain Ω is discretized and covered by octants that do not overlap, but are allowed to be
non-conforming due to the constraints of the adapted mesh (see Figure 4.1).

Ki

Figure 4.1: A quadrant with its refined and coarsened face neighbors.

Given the heterogeneous form of the neighborhood of an octant, we have chosen to use
notations adapted to non-structured meshes. Let:
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• Ki be a cell in the mesh, the index i can be considered as the global z-index of the
octant.

• li ∈ J0, bK be the level of the cell Ki.

• lmax be the level of the most refined octant in the mesh and lmin be the level of the
most coarsened octant in the mesh at a time tn.

• ∆xi = ∆yi = ∆zi be the size of a cell Ki.

• |Ki| = ∆xdi be the area (resp. volume) in 2D (resp. 3D) of the cell Ki.

• Kj be a neighbor of Ki of level lj ∈ {l − 1, l, l + 1}.

• |Γij| be the length (resp. area) of the face between Ki and Kj.

• nij be the orientation of the normal on the face Γij with respect to direction of the axis
that is orthogonal to Γij:

nij =

{
−1, Kj is to the left of Ki,

1, Kj is to the right of Ki.

• Nx(i) = { j | Kj is a neighbor in the x direction }. This set can contain neighbors of
any level, so we do not know its cardinality, but we know that 2 ≤ |Nx(i)| ≤ 4 in 2D
(resp. 2 ≤ |Nx(i)| ≤ 8 in 3D). Ny(i) and Nz(i) are defined similarly for the y and z
directions.

y

x

Ki

Kj

Kj

Kj

Figure 4.2: Left and right, potentially refined, neighbors of a quadrant.

Remark. In the context of AMR, where neighbors can have different sizes (see Figure 4.2),
what we call the face between two octants Ki and Kj can be only a portion of a face of Ki.
For this reason, the length (resp. area) |Γij| of the face Γij is given by:

|Γij| = βij∆x
d−1
i ,

where

βij =

{
21−d, lj > li,

1, lj ≤ li.
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Remark. ∆xi = ∆yi = ∆zi is a hypothesis we have made for the sake of simplicity. p4est
has support for more complex geometries that would require the computation of each length.
In this simple case, we know that each tree is represented by a domain that is the [0, 1]d cube
and each length can be computed using only the level of the octant Ki:

∆xi = 2−li .

4.1 Dimensional Splitting

We choose to adopt a dimensional splitting strategy for discretizing (4.1).

For the case of (4.1) using dimensional splitting consists in successively approximating (4.2), (4.3)
and (4.4) that ultimately gives an update formula for the values in each octant.

∂tc+ u∂xc = 0, (4.2)

∂tc+ v∂yc = 0, (4.3)

∂tc+ w∂zc = 0. (4.4)

We refer the reader to [27, p. 543] for more details about dimensional splitting. We are left
with providing a discretization for a one-dimensional problem that will be successively applied
to (4.2), (4.3) and (4.4).

Let us briefly recall a possible guideline for obtaining a Finite Volume approximation
of (4.2). Suppose for the sake of simplicity that c is smooth and verifies (4.2), then we
have:

∂tc+ u∂xc = ∂tc+ ∂x(uc)− c ∂xu = 0.

By integrating over [tn, tn+1]×Ki we obtain:∫ tn+1

tn

∫
Ki

∂tc dx dt+

∫ tn+1

tn

∫
Ki

∂x(uc) dx dt−
∫ tn+1

tn

∫
Ki

c ∂xu dx dt = 0,

namely:

0 =

∫
Ki

(c(tn+1,x)− c(tn,x)) dx +

∑
j∈Nx(i)

nij

∫ tn+1

tn

∫
Γij

(uc)(t,x) dσ dt −

∫ tn+1

tn

∫
Ki

c(t,x), ∂xu(t,x) dx dt.

(4.5)

We note:

cni an approximation of
1

|Ki|

∫
Ki

c(tn,x) dx,

unij an approximation of
1

∆t|Γij|

∫ tn+1

tn

∫
Γij

u(t,x) dσ dt,

unijc
n
ij an approximation of

1

∆t|Γij|

∫ tn+1

tn

∫
Γij

(uc)(t,x) dσ dt,
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4 Discretization of the Transport Equation using p4est

where cnij is the numerical flux of the discretization. The Finite Volume approximation we
consider consists in setting a recursive update formula for cni that is a discrete equivalent
of (4.5). Therefore we require that:

cn+1
i = cni +

∆t

|Ki|
∑

j∈Nx(i)

|Γij| unij nij(cni − cnij). (4.6)

Remark. In the context of dimensional splitting, cni is not the solution at time tn because
intermediate values are computed for each dimension. This is an abuse of notation that we
have also used in the case of cn+1

i .

Remark. The update formula can be simplified, using the exact formulas of |Ki| and |Γij|, to:

cn+1
i = cni +

∆t

∆xi

∑
j∈Nx(i)

βij u
n
ij nij(c

n
i − cnij). (4.7)

The update formula (4.6) for the one-dimensional equation (4.2) can be obtained for deriving
update relations that provides an approximation of (4.3) and (4.4). Finally the approximation
of the solution of (4.8) from tn to tn+1, is obtained by performing the three following update
steps: 

c∗i = cni +
∆t

|Ki|
∑

j∈Nx(i)

|Γij| unij nij(cni − cnij),

c∗∗i = c∗i +
∆t

|Ki|
∑

j∈Ny(i)

|Γij| unij nij(c∗i − cnij),

cn+1
i = c∗∗i +

∆t

|Ki|
∑

j∈Nz(i)

|Γij| unij nij(c∗∗i − cnij).

(4.8)

The scheme (4.8) is a first order dimensional splitting scheme. Other splitting strategies like
the Strang splitting technique [18] can allow to obtain second order accuracy.

4.2 Flux Choice: The Upwind Scheme

In order to complete the definition of the numerical scheme (4.8), we only need to propose a
definition for the numerical flux cnij. We choose here to adopt the simple upwind scheme, as
follows:

cnij =

{
cni if unij nij ≥ 0,

cnj if unij nij < 0.
(4.9)

The upwind flux, defined above, and the update formula (4.6) define a complete scheme that
we can use to solve the transport equation.
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4.2 Flux Choice: The Upwind Scheme

Property 4.1. The scheme defined by (4.8) and (4.9) is stable under the Courant-Friedrichs-
Lewy (CFL) condition:

∆t max
s∈{x,y,z}

max
i

− 1

|Ki|
∑

j∈Ns(i)
unij nij<0

|Γij|unij nij

 ≤ 1. (4.10)

Proof. For the purpose of this proof, we will look at how to obtain a sufficient condition for
stability in the x direction and then, by using similar techniques in the other directions, we
will derive (4.10).

A sufficient condition for L∞ stability can be obtained by imposing a maximum principle
on the update from cni to cn+1

i . Such a maximum principle can be obtained by requiring
that cn+1

i is a convex combination of cni and its downwind neighbors: cnj when j is such that
unij nij < 0).

We recall the simplified update formula from (4.7):

cn+1
i = cni +

∆t

∆xi

∑
j∈Nx(i)

anij(c
n
i − cnij),

where:

anij = βiju
n
ijnij.

By using (4.9), we see that the terms with anij > 0 cancel out. We are left with:

cn+1
i =

1 +
∆t

∆xi

∑
j∈Nx(i)
anij<0

anij

 cni −
∆t

∆xi

∑
j∈Nx(i)
anij<0

anijc
n
j .

For a convex combination to be possible, we need to satisfy:

0 ≤ 1 +
∆t

∆xi

∑
j∈Nx(i)
anij<0

anij ≤ 1 (4.11)

and, for all j ∈ Nx(i) such that anij < 0,

0 ≤ − ∆t

∆xi
anij ≤ 1. (4.12)

Since (4.11) implies (4.12), we would only need to satisfy:

0 ≤ − ∆t

∆xi

∑
j∈Nx(i)
anij<0

anij ≤ 1.
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4 Discretization of the Transport Equation using p4est

As anij < 0, a sufficient condition for stability in a cell Ki is:

− ∆t

∆xi

∑
j∈Nx(i)
anij<0

anij ≤ 1.

The condition for all cells in the mesh is then:

∆tmax
i

− 1

∆xi

∑
j∈Nx(i)
anij<0

anij

 ≤ 1. (4.13)

From (4.13), we can deduce a sufficient condition for stability in all directions:

∆t max
s∈{x,y,z}

max
i

− 1

∆xi

∑
j∈Ns(i)
anij<0

anij

 ≤ 1. (4.14)

As a result, we see that c∗i is a convex combination of cni and the value of its downwind
neighbors, c∗∗i is a convex combination of c∗i and the value of its downwind neighbors and
cn+1
i is a convex combination of c∗∗i and the value of its downwind neighbors. This implies

that cn+1
i is a convex combination of cni and the value of its downwind neighbors at time tn.

The convex combination that is imposed by (4.14) implies that a local maximum principle
has been satisfied. By respecting the maximum principle, we can be sure that our scheme is
stable, thus proving that (4.14), that is equivalent to (4.10), is sufficient for the stability of
the scheme. q.e.d.

The CFL condition (4.10) allows us to derive a strategy for choosing a time step. We set:

∆t = θ
∆x

max
s∈{x,y,z}

max
i

(
−
∑

j∈Ns(i)
anij<0

anij

) (4.15)

for a Courant number θ ∈ [0, 1] and a ∆x that represents the size of the finest octant in the
mesh, given by:

∆x = 2−lmax .

4.3 Time Subcycling

We can imagine two different way of advancing the solution of our equation in time:

• By using the time step provided by (4.15) to advance all the cells at all the different
levels at the same time. This algorithm is described by 7.
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4.3 Time Subcycling

Algorithm 7: Advancing all levels in the x direction by ∆t.

Data: Time step ∆t
1 Initialize all c∗i to cni ;
2 for All octants Ki do
3 for All j ∈ Nx(i) do

4 c∗i ← c∗i +
∆t|Γij |
|Ki| u

n
ijnij(c

n
j − cnij);

5 end

6 end

• By advancing each level of the mesh with a different time step. This strategy is described
by Algorithm 8 and 9.

To advance each level at its own pace, we have to define a per-level time step, which we
choose to estimate by:

∆tl = 2lmax−l∆t, (4.16)

by using the ∆t estimation of the time step from (4.10) as a starting point. Since (4.10) gives
us a time step that is equivalent to one computed on an uniform mesh of level lmax, we use
it to estimate the time steps at coarser levels where the size of an octant grows with a factor
of 2 in each dimension.

Remark. More advanced methods of computing the per-level time step can be used, but it is
always necessary to synchronize them with the levels above. So, if we have a set of nj time
steps ∆til at level l, the following condition has to be respected for a sub-time step at a higher
level:

∆tjl−1 =

nj∑
i=1

∆til.

In Algorithm 8 and Algorithm 9 we explain how to do subcycling using a per-level time step
as given by (4.16).

Algorithm 8 describes how to advance a single level in a specific direction (we have chosen x,
but other directions are handled in a similar fashion). The general algorithm that advances
all the octants of the mesh by ∆tmin = 2lmax−lmin∆t in the x direction is 9. The final step is to
repeat 9 for the y and z directions. Note that this is a valid method of advancing in time, but
it is not equivalent to advancing all the quadrants using the same ∆t.

Remark. The key difference between both methods is that after Algorithm 7, we have advanced
by a very small ∆t, more precisely ∆t is 2lmax−lmin times smaller then the one by which the
solution is advanced by subcycling. This difference comes from the difference between the
finest and the coarsest levels in the mesh and it is what makes the subcycling algorithm
faster in some cases.

The recursive Algorithm 9 is called with the coarsest level in the mesh lmin and the time step
corresponding for this level:

∆tlmin
= 2lmax−lmin∆t.
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4 Discretization of the Transport Equation using p4est

Algorithm 8: Advancing level l in the x direction.

Data: Level l
Data: Time step at current level ∆tl

1 Initialize all c∗i to cni ;
2 for All octants Ki of level l do
3 for All j ∈ Nx(i) do
4 if lj ≤ li and (Kj to the right of Ki or a boundary) then

5 c∗i ← c∗i +
∆t|Γij|
|Ki|

unij(c
n
j − cnij);

6 c∗j ← c∗j −
∆t|Γji|
|Kj|

unij(c
n
i − cnji);

7 end
8 if lj = li − 1 and (Kj to the left of Ki or a boundary) then

9 c∗i ← c∗i −
∆t|Γij|
|Ki|

unij(c
n
j − cnij);

10 c∗j ← c∗j +
∆t|Γji|
|Kj|

unji(c
n
i − cnji);

11 end

12 end

13 end
14 for All ghost octants Ki of level l from other processes do
15 Let Kj be the local neighbor of Ki;
16 if lj ≤ li and Kj to the right of Ki then

17 c∗j ← c∗j −
∆t|Γji|
|Kj|

unji(c
n
i − cnji);

18 end
19 if lj = li − 1 and Kj to the left of Ki then

20 c∗j ← c∗j +
∆t|Γji|
|Kj|

unji(c
n
i − cnji);

21 end

22 end

Algorithm 8 is based on previous work from [10] and is very similar to the subcycling algorithm
presented there. Two differences set it apart:

• Our proposed algorithm does not compute a mean of the values in a family of octants
to pass it down to its parents. This is done because, in contrast to [10], where all the
tree structure is stored, p4est only stores the leaves of the tree so it is not necessary
to propagate the information upwards.

• We extend the algorithm to work in a distributed memory environment like the one
offered by p4est. In p4est we have two types of ghost cells: classical ghost cells that
are used for boundary conditions and ghost cells that are part of the mesh, but are not
in the partition of the current process.
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4.3 Time Subcycling

Algorithm 9: Advancing by ∆t in the x direction.

Data: Level l, time step at level l
1 ∆tl+1 ← ∆tl

2
;

2 subcycle (l + 1, ∆tl+1);
3 subcycle (l + 1, ∆tl+1);
4 Exchange ghost layer with neighboring processes;
5 Advance level l in time by ∆tl using 8;

p1 p2

o1

o2

Figure 4.3: Two octants in different processes.

To deal with ghost cells from other processes we have added a second loop to Algorithm 8
to guarantee that all the fluxes at a certain level are correctly calculated. We can take
the example from Figure 4.3 where we have two octants of level l and l − 1 for o1 and
o2, respectively, in two different processes where each is a face ghost cell of the other. The
problem arises when we loop over all cells of levels l in process p2 and do not, in fact, add
the contribution from the ghost cell o1. To fix this, we have chosen to also loop over all ghost
cells and compute the correct interface flux with the local octants. Other solutions are also
feasible, such as looping over local cells of level l and l − 1 during one subcycle, exchanging
the fluxes between processes, etc.

An important aspect of Algorithm 8, as of the one proposed in [10], is that it computes the
left and right fluxes in such a way that the same flux is not computed twice when recursing
between levels. We can see this in Figure 4.4.

Such a subcycling algorithm offers significant speedups because fewer time steps are re-
quired when compared to the straightforward time advancing scheme described in Algo-
rithm 7 (coarse cells make big time steps). One drawback of such a scheme is the need to
adapt the mesh at each sub-time step. We will see in the numerical results section that
the solution will advance too quickly and go into coarser cells if we only adapt once be-
fore starting the subcycling procedure, thus leading to unnecessary diffusion and loss of
precision.
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4 Discretization of the Transport Equation using p4est

l

l − 1

Figure 4.4: Flux computations at level l (in red) and level l − 1 (in blue).

4.4 Numerical Results

In this section we will look at several numerical results we have obtained for the transport
equation using the p4est framework and the presented AMR algorithms. In the tests we also
use a second order space discretization for comparison reasons.

4.4.1 Advection on the Diagonal

As a first test for the transport equation we will propose the advection of a star-shaped
indicator function on the diagonal of our domain Ω = [0, 1]2.

The initial condition for the star is:

c0(x, y) =

{
1, (x, y) ∈ A,
0, otherwise,

where A will define our star:

A =

{
(x, y) | 1

3
−
∣∣∣∣x− 1

2

∣∣∣∣ < y <
2

3
− 4

∣∣∣∣x− 1

2

∣∣∣∣ } ∪{ (x, y) | 1

3
+

∣∣∣∣x− 1

2

∣∣∣∣ < y <
1

2

}
.

We also define the velocity vector u = (1, 1, 0), the final time T = 1.0 and the Courant
number θ = 1.0 for the first order scheme and θ = 0.5 for the second order scheme. In the
case of the second order scheme we will use the minmod limiter.

Using these parameters, we know that the discrete first order approximation of the transport
equation is exact and we can indeed see this in Figure 4.5. Note that the solution is exact
when transporting on the diagonal because of the dimensional splitting technique we have
used. Without directional splitting, the result would be exact only if the velocity was one of
the standard basis vectors ei.

Unfortunately, given the refining criterion we have used, there are several cells that have
been diffused in the first step of the simulation (on the right side of the star). A cure to this
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4.4 Numerical Results

(a) c at t = 0.0. (b) c at t = 0.375.

(c) c at t = 0.75. (d) c at t = 1.0.

Figure 4.5: First order approximation of the advection of a star shape at different times.

issue could consists in adopting a different refinement criterion that refines more cells around
the star.

We can see that by using a second order approximation we loose the match with the exact
solution. Nonetheless, the second order scheme is more accurate than a the first order scheme
(easily tested with θ 6= 1 for the first order scheme). We can see the results for the second
order approximation in Figure 4.6.

In Figure 4.7 we can also see the way in which the refinement was performed. Since both
the first order and the second order approximations have barely any diffusion, the number of
quadrants necessary to represent the two solutions are comparable.

Remark. The refinement criterion for the star was changed to refine any cell where the value
is greater than 0.001. This is done to limit the dissipation problem that has appeared in
the second order approximation due to passing into coarser levels while doing dimensional
splitting.
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4 Discretization of the Transport Equation using p4est

(a) c at t = 0.5. (b) c at t = 1.0.

Figure 4.6: Second order approximation of the advection of a star shape at different times.

(a) First order. (b) Second order.

Figure 4.7: Refinement at the end of the simulation for the first order and second order
approximations.

Advection with subcycling

We have seen that the solution is correctly transported when using a normal scheme with a
single time step. This is no longer the case when doing time subcycling.

In the case of subcycling, the time step at which we advanced the whole mesh is given by
the coarsest level. Considering the fact that the velocity is u = (1, 1, 0), we know the time
step given by the CFL conditions is

∆t = θ∆x,

where ∆x is the size of a cell at a certain level. Given the minimum level lmin and maximum
level of refinement lmax at a certain time step, we know that the ∆t when doing subcycling
is 2lmax−lmin times larger than the time step we would obtain with the normal time stepping
scheme.
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4.4 Numerical Results

(a) c at t = 0. (b) c at t = 0.015625.

Figure 4.8: Solution after a single time step using subcycling.

However, the fact that we are advancing several steps at finer levels has its downsides. As we
can see in Figure 4.8, the solution advances quicker than the refinement leading to a lot of
diffusion. This is obviously incorrect because the upwind scheme for the transport equation
is exact for the chosen velocity and Courant number.

A few ways to circumvent the problem come to mind, such as:

• refining the mesh at each sub-time step during subcycling. While this would solve our
problem, it would greatly slow down the computation since adapting the mesh is the
most costly operation.

• adding extra layers or refined cells to the existing mesh to be sure that the fine levels
don’t overflow into the coarser levels. This has the downside of potentially adding many
more cells to the mesh.

Even though advancing in time with larger steps potentially speeds up the computations
a great deal, the downsides of subcycling and the proposed solutions even out the gains.
Further study is needed into the method of subcycling.

4.4.2 Rotation of Zalesak’s Disk

The second example we will look at is a disk in solid body rotation. In this example we
can expect a lot of numerical diffusion from the upwind scheme. We will try to compare
the solutions using a first order approximation and a second order approximation with the
minmod limiter.

The initial solution we have chosen is a famous test called the Zalesak Disk that was first
presented by S. T. Zalesak in [19]. It is given by:

c0(x) =

{
1,

√
(x− 0.5)2 + (y − 0.75)2 + (z − 0.5)2 ≤ 0.1,

0, otherwise

63



4 Discretization of the Transport Equation using p4est

and the velocity vector is:
u = (−(y − 0.5), x− 0.5, 0).

We will use a final time T = 6.283 (to get a complete rotation) and a Courant number
θ = 1.0 for the first order approximation and θ = 0.5 for the second order approxima-
tion. Note that for the second order approximation, θ = 0.5 is the maximum allowed
value.

(a) c at t = 0. (b) c at t = 6.283.

Figure 4.9: First order approximation of the advection of the Zalesak Disk.

We can see in Figure 4.9 that the disk is correctly transported and the refinement correctly
follows and grows with the dissipation. The dissipation is, however, very pronounced and we
can hardly distinguish the solution at the final time (Figure 4.9b). The second order approx-
imation (see Figure 4.10) gives a significantly improved result with hardly any dissipation.
We can see however that the solution gets deformed in other ways.

Figure 4.10: Second order approximation of the advection of the Zalesak Disk at time t =
6.283.

In Figure 4.11, we have taken a slice at y = 0.25 of the first and second order approximations
at time t = 0.5T . We can indeed see the difference between the exact solution and the two
approximations. The first order approximation is the worse of the two, as expected and seen
in Figure 4.9.

As for the mesh refinement, we can see in Figure 4.12 that the area containing most of
the dissipation from the first order scheme has been correctly captured by our refining
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4.4 Numerical Results

(a) First order. (b) Exact Solution. (c) Second order.

Figure 4.11: Comparison of the first and second order approximation at time t = 3.1415.

criteria.

Figure 4.12: Refinement of the first order approximation at time t = 3.1415.

4.4.3 Deformation in 2D

The last test case that we will study for the transport equation is a test proposed by R. J. LeV-
eque in [24]. The test consists of stretching and un-stretching a disk in a vortex from which we
will look only at the stretching of the disk and the resulting refinement.

Figure 4.13: Initial condition for the vortex, as given by c0(x).
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4 Discretization of the Transport Equation using p4est

The initial condition is a disk centered in (0, 0.75) with a radius of 0.15:

c0(x) =

{
1,

√
x2 + (y − 0.75)2 ≤ 0.15

0, otherwise

with a rotating velocity such as:

u = (2 sin2(πx) sin(2πy),− sin(2πx) sin2(πy)).

The final time for the simulation is T = 3.0 and the Courant number is θ = 0.5. The test has
been carried out with a second order scheme and the minmod limiter.

The results of a second order approximation can be seen in Figure 4.14. The results are not very
diffusive and the vortex forms as one would expect (given previous results from [24]).

(a) c at t = 1.5. (b) c at t = 3.

Figure 4.14: Second order approximation of the vortex at intermediate time steps.

(a) First order. (b) Second order.

Figure 4.15: Refinement of the solution at time t = 1.5 for the first and second order approx-
imations.

We can see in Figure 4.15 that the refinement correctly follows the disk as it deforms. In
this case, the diffusion of the first order approximation is so great that the fine quadrants
eventually cover most of the domain, making AMR a lot less useful.
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5 Simulation of a Two-Phase Model
using p4est

In this chapter we will consider a hyperbolic system of equations that describes a simple
two-phase model. The model has been studied in [20].

5.1 Model Description

We suppose given two compressible materials k = {0, 1} that are equipped with an equation
of state (EOS) in the form of a barotropic pressure law:

ρk → pk(ρk),

where ρk is the and pk are respectively the density and the pressure of component k. We
make the assumption that:

dpk
dρk

> 0

and denote by ck the sound velocity of the fluid k that verifies:

c2
k =

dpk
dρk

.

The global density of the medium is defined by:

ρ = α1ρ1 + α2ρ2,

where αk is the volume fraction of fluid k. We supposed both fluids to be immiscible, which
implies that:

α1 + α2 = 1.

Notation. We will denote α = α1 and, by definition, 1− α = α2.

The pressure p of the medium as well as the volume fraction α are defined thanks to
the hypothesis that for a given value of αρ1 and (1 − α)ρ2 the following closure relation
stands:

p1(ρ1) = p2(ρ2).

Consequently, p can be expressed as a function of ρ1, ρ2 and α. The sound velocity c of the
two-phase medium is defined by:

c2 =
αρ1

ρ

(
∂p

∂(αρ1)

)
(1−α)ρ2

+
(1− α)ρ2

ρ

(
∂p

∂((1− α)ρ2)

)
αρ1

.
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The pressure equilibrium hypothesis yields then that:

c2 =
1

ρ

(
α

ρ1c2
1

+
1− α
ρ2c2

2

)
,

which is usually referred to as the Wallis formula.

From here on we will suppose that each component of our system is a stiffened gas material.
This implies that the pressure laws are:

pk(ρk) = pk,0 + c2
k(ρk − ρk,0), (5.1)

where pk,0, ρk,0 and ck are positive constants that are characteristic of the fluid k. For such
materials, we can see that α is given as the root of a second order polynomial. Indeed, if we
denote m1 = αρ1 and m2 = (1− α)ρ2, we have:

p1(ρ1) = p2(ρ2)⇐⇒ p1

(m1

α

)
= p2

(
m2

1− α

)
which can be expanded using (5.1), to:

p1,0 + c2
1

(m1

α
− ρ1,0

)
= p2,0 + c2

2

(
m2

1− α
− ρ2,0

)
,

giving the following order 2 polynomial in α:

q1α
2 − (q1 + q2)α + c2

1m1 = 0.

Out of the two roots of the polynomial, the one that respects the constraint α ∈ [0, 1] is:

α =
(q1 + q2)−

√
(q1 + q2)2 − 4q1c2

1m1

2q1

, (5.2)

where: {
q1 = p20 − p10 − (c2

2ρ20 − c2
1ρ10),

q2 = c2
1m1 + c2

2m2.

The kinematics of the medium is determined by a velocity field u that is shared by both
materials.

The evolution of the two-phase system is governed by the following equations:
∂t(αρ1) +∇ · (αρ1u) = 0,

∂t((1− α)ρ2) +∇ · ((1− α)ρ2u) = 0,

∂t(ρu) +∇ · (u⊗ (ρu)) +∇p = 0.

(5.3)

The system (5.3) can also be written in vector form:

∂tW + ∂xF(W) + ∂yG(W) + ∂zH(W) = 0, (5.4)
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where W is the state vector containing the conservative variables (αρ1, (1− α)ρ2, ρu, ρv, ρw)
and the fluxes in each direction are defined by:

F(W) =


αρ1u

(1− α)ρ2u
ρu2 + p
ρuv
ρuw

 ,G(W) =


αρ1v

(1− α)ρ2v
ρvu

ρv2 + p
ρvw

 and H(W) =


αρ1w

(1− α)ρ2w
ρwu
ρwv

ρw2 + p

 .

5.2 Numerical Scheme

In order to approximate the solutions of (5.4), we present a Finite Volume scheme based on
a dimensional splitting strategy.

Following the outline presented in Chapter 4, the splitting strategy consists in advancing (5.4)
in time, with a time step of ∆t, by successively approximating the solutions of (5.5), (5.6)
and (5.7). 

∂tW + ∂xF(W) = 0, (5.5)

∂tW + ∂yG(W) = S(W), (5.6)

∂tW + ∂zH(W) = 0. (5.7)

In (5.6), we have added an additional source term that, in our case will correspond to the
gravity in the y direction:

S(W) =


0
0
0
−ρ g

0

 .

Let us consider a one-dimensional problem set along the x axis and we integrate (5.5) over
[tn, tn+1]×Ki. This yields the integral balance relation:∫ tn+1

tn

∫
Ki

∂tW dx dt+

∫ tn+1

tn

∫
Ki

∂xF(W) dx dt = 0.

Once again, the Finite Volume approximation is obtained by proposing a discrete approximate
formula of this integral balance law. We set:

Wn+1
i = Wn

i −
∆t

|Ki|
∑

j∈Nx(i)

|Γij|nijFnij, (5.8)

where Wn
i is a approximation of W within the cellKi at instant tn andFnij is an approximation

of the flux F along the face Γij at instant tn.
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The full scheme for advancing (5.4) with a source term is:

W∗
i = Wn

i −
∆t

|Ki|
∑

j∈Nx(i)

|Γij|nijFnij, (5.9)

W∗∗
i = W∗

i −
∆t

|Ki|
∑

j∈Ny(i)

|Γij|nijGnij, (5.10)

W∗∗∗
i = W∗∗

i + ∆tSni , (5.11)

Wn+1
i = W∗∗∗

i −
∆t

|Ki|
∑

j∈Nz(i)

|Γij|nijHn
ij. (5.12)

We note that each equation uses the solution from the previous one as an initial condition.
As in the case of the transport equation, this leads to a first order scheme since both the
directional splitting method and the operator splitting methods we have used are of first
order.

The flux Fnij between two cells Ki and Kj is given a function Φ(WL,WR), where WL and
WR are the values on the left and right, respectively, of the interface between Ki and Kj.
In our case, the definition of Φ is given by an approximate Riemann solver obtained by a
Suliciu-type relaxation scheme (see [20] and [21]).

Let a be a positive constant whose choice will be specified later, the Suliciu relaxation approxi-
mate Riemann solver we have used gives 3 waves, as seen in Figure 5.1.

WL

W∗
L W∗

R

WR

u+ a
ρ

u∗u− a
ρ

t

x

Figure 5.1: The three waves of the approximate Riemann solver.

The states delimited by the contact discontinuities in Figure 5.1 are given by:

WRP (
x

t
;WL,WR)=



WL=((α1ρ1), (α2ρ2), (ρu), (ρv), (ρw))L , if
x

t
≤ u− a

ρL
,

W∗
L=((α1ρ1), (α2ρ2), (ρu), (ρv), (ρw))∗L , if u− a

ρL
<
x

t
≤ u∗,

W∗
R=((α1ρ1), (α2ρ2), (ρu), (ρv), (ρw))∗R , if u∗ <

x

t
≤ u+

a

ρR
,

WR=((α1ρ1), (α2ρ2), (ρu), (ρv), (ρw))R , if
x

t
≥ u+

a

ρR
,

(5.13)
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where the densities of each of the two materials in the intermediate states W∗
L and W∗

R are
defined as:

(αρ1)∗L =

(
1

(αρ1)L
+
u∗ − uL

a

)−1

,

((1− α)ρ2)∗L =

(
1

((1− α)ρ2)L
+
u∗ − uL

a

)−1

,

(αρ1)∗R =

(
1

(αρ1)R
+
uR − u∗

a

)−1

,

((1− α)ρ2)∗R =

(
1

((1− α)ρ2)R
+
uR − u∗

a

)−1

with the velocity in the two intermediate states:

u∗L = u∗R = u∗ =
1

2

(
uR + uL −

pR − pL
a

)
.

The total mass density in the medium in the intermediate states is:{
ρ∗L = (αρ1)∗L + ((1− α)ρ2)∗L,

ρ∗R = (αρ1)∗R + ((1− α)ρ2)∗R,

which permits to compute the momentum in the normal direction:{
(ρu)∗L = ρ∗Lu

∗,

(ρu)∗R = ρ∗Ru
∗,

The momentum in the two tangential directions is simply:{
(ρv)∗L = ρ∗LvL,

(ρv)∗R = ρ∗RvR,
and

{
(ρw)∗L = ρ∗LwL,

(ρw)∗R = ρ∗RwR,

because we are considering only the sweep in the x direction which simply transports the
velocities in the tangential y and z directions.

Using the approximate solution to the Riemann problem given by (5.13), we can define our
flux as:

Fnij = Φ(WL,WR) = F(WRP (x/t = 0; WL,WR)). (5.14)

Finally, we recall that in order to avoid numerical instabilities, the parameter a should be
chosen in agreement with the Whithman’s subcharacteristic condition:

ρ c(αρ1, (1− α)ρ2) < a.

In practice we define a by setting:

a = K max
i

(ρici),

where K > 1 is a constant.
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5 Simulation of a Two-Phase Model using p4est

Stability and Time Step Choice

The stability of the scheme is assured by the following CFL condition:

∆t ≤ 1

2
min
i

[
∆xi

(
‖uni ‖+

a

ρni

)−1
]
. (5.15)

A simple way to understand the CFL condition is by looking at Figure 5.2 and Figure 5.1.
The main argument for stability is that the waves at the left and right of the cell Ki

(considering a one dimensional problem) do not intersect during the time step from tn to
tn+1.

KiKj

tn+1

tn

tn+1

tn

Figure 5.2: Waves at the left and right interface of a cell Ki.

This sufficient stability condition provides a strategy for choosing the time step:

∆t = θ
∆x

max
i

(‖uni ‖+
a

ρni
)
, θ ∈ [0, 0.5]

where ∆x is the size of the octant at the finest level lmax, given by:

∆x = 2−lmax .

Body Forces Term

In the numerical tests we shall consider we will need to account for gravity terms S. We shall
achieve thanks to a simple two-step operator splitting as follows:{

∂tW + ∂xG(W) = 0,

∂tW = S(W).

The second step does not involve any partial differential and thus is a simple ODE that will
be solved by a cell-centered explicit approximation.
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Algorithm

We have seen in the previous paragraphs how to advance (5.4) in time and we will now
present a method for advancing the whole system, which includes computing the volume
fraction α (using (5.2)) and the pressure p (using (5.1)).

Riemann
Solver

α Equa-
tion

Pressure
Law

Wn Wn+1 αn+1 pn+1

Figure 5.3: Steps for advancing the solution in time.

The algorithm advances as follows (also see Figure 5.3):

1.1. Advance Wn
i in time by successively applying (5.10), (5.11) and (5.12) under the

stability condition (5.15) to solve:
∂tW + ∂xF(W) = 0,

∂tW + ∂yG(W) = 0,

∂tW + ∂zH(W) = 0.

1.2. Use (5.12) if necessary to introduce the source term.

2.1. Compute the volume fraction αn+1
i according to (5.2) using the updated values (αρ1)n+1

i

and ((1− α)ρ2)n+1
i .

2.2. Compute the new pressure pn+1
i according to (5.1) and the updated values αn+1

i ,
(αρ1)n+1

i and ((1− α)ρ2)n+1
i .

5.3 Numerical Results

In this section we will try to present several results for the two-phase model using the
approximate Riemann solver resulted from a Suliciu-type relaxation scheme. As in the
previous chapter, all the tests have been done in parallel using the p4est library and our
own code that is available at [31].

For the two-phase model we require several parameters to be set. These are available in
Table 5.1. We will note in each particular example when the source term using gravity is
used and when it is not.
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Parameter Value
ρ1,0 1 kg m−3

ρ2,0 1000 kg m−3

p1,0 105 Pa
p2,0 105 Pa
c1,0 340 m s−1

c2,0 1500 m s−1

g 9.81 m s−2

Table 5.1: Table of parameters for the two-phase model.

Refinement Criteria

For the two-phase model we have chosen a more advanced refining criterion to take into
account more of the variables in the system. In particular, we looked at two different
choices:

• Computing the gradient of the pressure and the total mass density of the medium.

• Or computing the gradient of the velocity in each direction and the total mass density
of the medium.

The gradient estimator for the pressure is:

ξpi = max
j∈Nx(i)

|pni − pnj |
max(| pni | ,

∣∣ pnj ∣∣)
and the gradient estimator for the total mass density is:

ξri = max
j∈Nx(i)

|ρni − ρnj |
max(| ρni | ,

∣∣ ρnj ∣∣)
where:

ρni = (αρ1)ni + ((1− α)ρ2)ni .

For the velocity vector, we have used the following indicator for a single component:

ξui = max
j∈Nx(i)

|uni − unj |
max(|uni | ,

∣∣unj ∣∣)
and then approximated an indicator by taking the maximum of all the components of the
velocity vector ξui = max(ξui , ξ

v
i , ξ

w
i ).

An octant is then refined if max (ξpi , ξ
r
i ) > ε, where ε is a user defined threshold. In our case,

we have noticed that the best results were obtained using ε = 0.005. Similarly, an octant gets
coarsened if max (ξpi , ξ

r
i ) < ε.
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5.3.1 SOD: Shock and Rarefaction Wave

The first test we will be looking at is the classical SOD shock tube. The test was first introduced
by G. A. Sod in [25] as a test for the accuracy of several finite difference methods and has
since been used for testing many fluid dynamics schemes.

The modified test that we have used is defined on a domain Ω = [0, 2]× [0, 1]. We have then
defined two states, on the left and right of x = 1, as follows:

ρ1(0,x) =

{
100, x < 1,

1, x > 1,
and α(0,x) =

{
1− λ, x < 1,

λ, x < 1,

where λ = 10−7. The velocity on the domain is uniformly null u(0,x) = (0, 0, 0). The other
variables are computed starting from ρ1 and α.

• p is computed from the barotropic pressure law (5.1).

• ρ2 is then computed from the constraint of pressure equilibrium and the barotropic
pressure law (5.1).

• The conservative variables that form the vector W can now be computed using these
values.

We do not explicitly set the mass densities in both materials, because we cannot be sure that
the given values will automatically satisfy the pressure equilibrium.

A first test has been done with the first order scheme with a final time T = 0.001 and a
Courant number θ = 0.5. We can see in Figure 5.4 the initial state and an intermediary
state for the pressure and the velocity in the x direction. Since this is a 1D problem, we
only need to look in one direction, namely x, because the solution is constant in all the
others.

We can see in Figure 5.4d that the profile of the velocity matches that in [20] and, furthermore,
the shock on top and the rarefaction wave at the bottom have developed as one would
expect.

The second test we have performed is using a second order space discretization and the minmod
limiter to limit oscillations. The simulation has a final time T = 0.001 and a Courant number
θ = 0.25. Again, we will only look at the result in the x direction.

We can see in Figure 5.5 that the profile is the same, but the solution has improved. The
shock on the right side is better represented with a steeper slope than in the more diffusive
first order simulation. As for the refinement, we can see in Figure 5.6a that the mesh was
only refined near x = 0 where there is a discontinuity in the mass density. Later, we can see
that the refinement follows the shock and the rarefaction wave produced by the velocity in
the x direction very closely (see Figure 5.6b).
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5 Simulation of a Two-Phase Model using p4est

(a) p at t = 0. (b) u at t = 0.

(c) p at t = 0.0006. (d) u at t = 0.0006.

Figure 5.4: Simulation results from the first order scheme.

(a) p at t = 0.0006.
(b) u at t = 0.0006.

Figure 5.5: Simulation results from the second order scheme.
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(a) Refinement at t = 0. (b) Refinement at t = 0.0006.

Figure 5.6: Mesh refinement during the simulation of the second order scheme.

5.3.2 Two Rarefaction Waves

The second test we will be looking at is also a classical test in fluid dynamics. It involves
creating two rarefaction waves in the middle of our domain that can be compared to exact
solutions.

The initial condition for this test is described by ρ1(0,x) = 1.0 and α(0,x) = 0.1, for all x ∈ Ω.
The velocity field has opposite sides on each half of the domain:

u(0,x) =

{
−2, x < 1,

2, x > 1.

As in the previous case, these variables will allow us to compute the mass density in the
second fluid, as well as the pressure of the medium and all the conservative variables at time
t = 0.

The solution was simulated on the same domain Ω = [0, 2]× [0, 1] with a final time T = 0.05
and a Courant number θ = 0.5 for the first order simulation and θ = 0.25 for the second order
simulation. The second order scheme used the minmod limiter as before.

We can see in Figure 5.7a and Figure 5.7b the results for the simulation at final time
T = 0.05 for the pressure and the total mass density. The two rarefaction waves are symmetric
around x = 1 and they have evolved correctly for both the first order and the second order
simulations.

In the case of the second order simulations, we can see at the top of each rarefaction wave
(e.g. Figure 5.7d) there is a change in slope. We suspect that this is happening because the
scheme is second order in space and not in time. The simple second order space discretization
and the use of limiters seems to have a stiffening effect on the result.

In Figure 5.8, we can also see that, in the case of the simulation done with the second order
scheme, the mesh is correctly refined in the areas where the rarefaction waves are developing,
thus correctly capturing the phenomenon.
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5 Simulation of a Two-Phase Model using p4est

(a) p at t = 0.05. (b) ρ at t = 0.05.

(c) p at t = 0.05. (d) ρ at t = 0.05.

Figure 5.7: Simulations with a (a)(b) First order scheme (c)(d) Second order scheme.

Figure 5.8: Refinement at the end of the simulation, at t = 0.05.

5.3.3 Dam Break

The third test we will be looking at is a sightly more complicated fluid dynamics example,
namely a dam break. A dam break simulation has gravity as a driving force because the
initial condition is at rest.

The dam break test case is defined by the following mass density for the gas:

ρ1(0,x) = ρ1,0

(
1 + g

0.5− y
c2

1

)
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and the volume fraction given by:

α(0,x) =

{
1, (x, y, z) ∈ [0, 0.3]× [0, 0.5]× [0, 0.3],

0, otherwise.

The initial velocity is u = (0, 0, 0). This test has only been performed using the first order
scheme with a final time T = 2 and a Courant number θ = 1.0. The result of the simulation
can be seen in Figure 5.9.

This simulation was performed in parallel on 256 CPUs with a minimum allowed refinement
level of 7 and a maximum level of 11. It is the most massive of the tests we have performed
in this paper, taking slightly over 3 hours.

(a) ρ at t = 0.0. (b) ρ at t = 0.9.

(c) ρ at t = 1.5. (d) ρ at t = 2.0.

Figure 5.9: First order simulation of the dam break at different times. Plotting the total mass
density of the medium.

We can see in the images from Figure 5.9 that the simulation is very diffusive due to the
first order approximation. This dissipation also leads to a numerical viscosity that makes the
fluids act in non-physical ways. Nonetheless, the simulation has evolved in predictable ways
and can be easily improved by using the second order scheme.
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Figure 5.10 contains examples of the mesh refinement during the simulation. We can see
that it correctly follows the interfaces between the two fluids even as the liquid collapses on
itself.

(a) Refinement at t = 1.5. (b) Refinement at t = 2.0.

Figure 5.10: The refinement in two stages of the simulation.
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6 Conclusions

In this document we have presented a short overview of the existing Adaptive Mesh Re-
finement technologies, with a specific focus on cell-based AMR. The present document was
concerned with adding further documentation and information to the existing body of knowl-
edge surrounding the p4est library.

The p4est library has proved to be a very promising new project in the complex world of
cell-based AMR implementation. The qualities that we feel set it apart are the novel parallel
algorithms and data structures that have been developed and detailed as part of the p4est

implementation and the focus on code quality. The p4est code is open source and tries to
allow easy and fast access to new contributors by having a documented code base, strict
coding guidelines and version control.

During this internship, we have been in contact with the authors of p4est and have even
contributed a small new feature to the library. This alone gave us a very positive view on the li-
brary and possible future collaborations or projects that could involve p4est.

As many open source products, the p4est library is still a work in progress. There are
several cases where the implementation has not caught up to the advanced corner and edge-
based cases presented in the algorithms from [14], the input / output routines are lacking,
etc. However, this has not stopped other projects from successfully using p4est. Notable
examples are the deal.II Finite Element library and the newly developed, and yet to be
released, ForestClaw [26] Finite Volume code.

The main element that we have left out of our analysis of p4est has been performance and
scalability studies. Even though the library has been proven to scale up to over 220,000 CPUs,
replicating such results (even at a smaller scale) would be invaluable. To make this possible,
a new code with a more strict view on performance and optimization would likely have to
be developed, but we are optimistic that, after the results we have obtained in this work, it
is a worthwhile endeavor.
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