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Nomenclature

Phase variables

Symbol Signification Unity
ρk density kg.m−3

αk void fraction 1
~Vk velocity vector m.s−1

ek internal energy J.kg−1

Ek = ek + |uk|2/2 total energy J.kg−1

hk = ek + P/ρk specific enthalpy J.kg−1

Hk = hk + |uk|2/2 specific total enthalpy J.kg−1

¯̄σk viscosity tensor kg.m−1.s−2

hk,sat specific enthalpy at saturation J.kg−1

τk friction force vector

Mixture variables

Symbol Signification Unity
ρ =

∑
αkρk density kg.m−3

~V =
∑
αkρk ~Vk
ρ

velocity vector m.s−1

~Vr = ~Vv − ~Vl relative velocity m.s−1

C = αvρv
ρ

vapor mass concentration 1
e =

∑
αkρkek
ρ

internal energy J.kg−1

E = CEv + (1− C)El total energy J.kg−1

h =
∑
αkρkhk
ρ

specific enthalpy J.kg−1

P pressure Pa



Other variables

Symbol Signification Unity
~g gravity vector m.s−2

φ porosity 1
Fi interface friction 1
Dh hydraulic diameter m

Dch heating diameter m

L = hv,sat − hl,sat latent heat of vaporization J.kg−1

χ vaporization flow 1
Φ thermal flow at the wall kg.m−2.s−2

hdeb enthalpie débitante ??????? J.kg−1



Introduction

A 4 equation model is used by the Laboratoire de Modélisation et simulation à l’Échelle Com-
posant (LMEC) in the computing code FLICA4 [1]. It is formulated in a three-dimensional and
homogenized context in order to avoid having to distinguish between the fluid and the solid struc-
tures that constitute the component of interest(reactor core, steam generator, ...).
This model is solved using the numerical method of Roe on a co-located mesh [3]. This "hyper-
bolic" method works very well for the high-Mach-number flows (M > 0.1). However, its analysis
in the case of a low-Mach-number flow (M << 1), proves that unless we introduce some modifi-
cations the solution doesn’t converge when the Mach-number tends to zero. For this reason we
apply a "pressure correction".
Although the use of this "pressure correction" is necessary to reach the required precision, it
produces some oscillations in space. These spatial oscillations are sometimes critical and may
lead to unstable resolutions or even divergence in some cases. The purpose of this project is to
study another numerical method to avoid the problems we have with the Roe scheme.
This internship was held in the CEA in saclay (Commissariat à l’Énergie Atomique et aux éner-
gies renouvelables) precisely in the LMEC.
In a first step an "elliptic" numerical method is studied. It is used in the computing code
CATHARE [2] to solve a two-phase 6 equation model. Then we adapt this method as an alter-
native to the Roe scheme in order to solve the 4 equation model.

In the first chapter of this report we explain how do we establish the 4 equation model starting
from the 6 equation model. In the second chapter we detail the spatial and temporal discretization
of the 4 equations. In the third chapter we describe and compare the two solving methods that
we tested. In the last chapter are presented the different numerical tests in 1D.



Chapter I
Establishment of the porous 4 equations model

I.1 Porous 6 equations model

The local Navier-stokes equations for a two-phase flow lead, under certain simplifying assumptions
[5], to a porous 6 equations system composed of :

Mass equations for the liquid and vapor phases

φ
∂αvρv
∂t

+ ~∇(φαvρv~Vv) = φΓv (I.1)

φ
∂αlρl
∂t

+ ~∇(φαlρl~Vl) = −φΓv (I.2)

Momentum equations for the liquid and vapor phases

φ
∂(αlρl~Vl)

∂t
+∇.(φαlρl~Vl⊗~Vl)+∇.(φαlρl ¯̄D~Vl)+φαl∇P = ∇.( ¯̄σl)+φP∇αl−φFi+φτl+φαlρl~g (I.3)

φ
∂(αvρv~Vv)

∂t
+∇.(φαvρv~Vv⊗~Vv)+∇.(φαvρv ¯̄D~Vv)+φαv∇P = ∇.( ¯̄σv)+φP∇αv+φFi+φτv+φαvρv~g

(I.4)

Total energy equations for the liquid and the vapor phases

φ
∂(αlρlEl)

∂t
+∇.(φαlρlHl

~Vl) + φP
∂(αl)

∂t
+∇.(φαlρlDHl) = ∇.(ql) + φαlρl~g~Vl + φQl + φΓEl (I.5)
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φ
∂(αvρvEv)

∂t
+∇.(φαvρvHv

~Vv)+φP
∂(αv)

∂t
+∇.(φαvρvDHv) = ∇.(qv)+φαvρv~g ~Vv+φQv+φΓEv (I.6)

I.2 Porous 4 equations model

The porous 4 equations model is a deduction of the 6 equations model (see section I.1) and is
composed of:

- Mixture mass conservation equation;

- Vapor mass balance equation;

- Mixture momentum conservation equation;

- Mixture internal energy balance equation.

To this system will be added two algebraic equations. One that describes the relative velocity
and the other the thermodynamic disequilibrium. The relative velocity is obtained using a table
or through a drift model. To determine the thermodynamic disequilibrium we assume that one
the phases is at at saturation state(here the vapor phase is considered to be at saturation).

I.2.1 Mixture mass conservation equation

The operators that occur in the liquid mass equation(I.2) and the vapor mass equation (I.1)
are all linear. Thus, by summing these two balance equations, we easily obtain a mixture mass
conservation equation:

φ
∂ρ

∂t
+∇.(φρ~V ) = 0 (I.7)

I.2.2 Vapor mass balance equation

Let us begin by recalling the definition of the mixture relative velocity :

~Vr = ~Vv − ~Vl (I.8)

⇒


~Vv = ~V + (1− C) ~Vr

~Vl = ~V − C ~Vr
(I.9)
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This will allow us to rewrite the vapor mass balance equation (I.1) where only the the mixture
variables should appear:

φ
∂(ρC)

∂t
+∇.(φρC~V ) +∇.(φρ(C(1− C) ~Vr) = φΓv (I.10)

I.2.3 Mixture momentum conservation equation

The mixture momentum conservation equation is obtained by summing the liquid momentum
equation (I.3) and the vapor momentum equation (I.4).

The terms that describe the inter-facial exchange in the two equations cancel each other.
Besides, we neglect without justification (as in CATHARE and FLICA4) the dispersive terms in
each phase(In [5] we propose another approach).
As a result, the mixture momentum equation is written as:

φ
∂(ρ~V )

∂t
+∇.(φρ~V ⊗ ~V ) +∇.(φρC(1− C) ~Vr ⊗ ~Vr) + φ∇P = ∇.(¯̄σ) + φτ + φρ~g (I.11)

which is equivalent(non-conservative form) to:

φρ(
∂~V

∂t
+ ~V∇.~V ) +∇.(φρC(1− C) ~Vr ⊗ ~Vr) + φ∇P = ∇.(¯̄σ) + φτ + φρ~g (I.12)

In this project we make the choice of neglecting the diffusion term. Then the momentum equation
(I.12) becomes:

φρ(
∂~V

∂t
+ ~V∇.~V ) +∇.(φρC(1− C) ~Vr ⊗ ~Vr) + φ∇P = φτ + φρ~g (I.13)

I.2.4 Mixture internal energy balance equation

The mixture internal energy equation is obtained following the same approach as for the momen-
tum equation (I.12), using the liquid internal energy equation (I.5) and the vapor internal energy
equation (I.6). This gives us:

φ
∂ρE

∂t
+∇.(φρH~V ) +∇.(φρC(1− C)(Hv −Hl) ~Vr) = φρ~g~V + φQ+∇.(q) (I.14)

In this project we choose to neglect q which represent the heat flux induced by the thermal
conductivity and the turbulent mixing. As a result equation (I.14) becomes:

φ
∂ρE

∂t
+∇.(φρH~V ) +∇.(φρC(1− C)(Hv −Hl) ~Vr) = φρ~g~V + φQ (I.15)
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Using the relation H = E + P
ρ
, the equation (I.15) is equivalent to:

φ
∂ρE

∂t
+∇.(φρE~V ) +∇.(φP ~V ) +∇.(φρC(1− C)(Hv −Hl) ~Vr) = φρ~g~V + φQ (I.16)

Next we multiply the mixture momentum equation (I.11) by ~V . We get the kinetic energy
evolution:

φ
∂(1

2
ρ~V 2)

∂t
+∇.(φρ1

2
~V 2~V ) +∇.(φρC(1− C) ~Vr ⊗ ~Vr)~V + φ~V∇P = φτ ~V + φρ~g~V (I.17)

According to the relation E = e + 1
2
~V 2, we obtain the mixture internal energy equation as a

difference between the kinetic energy evolution (I.17) and the total energy equation (I.16):

φ
∂(ρe)

∂t
+∇.(φρe~V ) + P∇.(φ~V ) +∇.(φρC(1− C)(Hv −Hl) ~Vr)−∇.(φρC(1− C) ~Vr ⊗ ~Vr)~V

= φQ− φτ ~V

We neglect without justification the terms ∇.(φρC(1− C) ~Vr ⊗ ~Vr)~V and φτ ~V .
Finally, the mixture internal energy equation is given by:

φ
∂(ρe)

∂t
+∇.(φρe~V ) + P∇.(φ~V ) +∇.(φρC(1− C)(Hv −Hl) ~Vr) = φQ (I.18)

I.2.5 Closure laws

Thermodynamic disequilibrium

The 4 equations that we have seen in the last section need to be completed by state laws. When
the vapor phase is at thermodynamic disequilibrium the vapor enthalpy is a function of vapor
density and pressure:

hv = hv(ρv, P )

Besides, In FLICA4 we assume one of the phases to be at saturation. In this case the vapor
density and the pressure are no longer independents. Then we have:

ρv = ρv,sat(P ) ⇒ hv = hv,sat(P )

Relative velocity

~Vv − ~Vl = ~Vr(~V , e, C, P )
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The computation of the relative velocity will be detailed later.

These laws replace:

• A vapor momentum equation;

• A vapor energy equation.

I.2.6 Source terms of the balance equations

In this section we introduce the source terms that occur in the balance equations and involve
specific physical modeling [1].

- Vapor mass equation

In the vapor mass equation (I.10), the source term Γv represents the cumulative effects due to
vaporization through contact with the heating wall Γwv and the mass exchange at the interface
between phases Γlv:

Γv = Γwv + Γlv (I.19)

- Momentum equation

• Friction forces

The source term τ represent the friction(or charge loss) forces exerted on the mixture by
the wall(regular charge loss) τw as well as eventual obstructions(singular charge loss) τs:

τ = τw + τs (I.20)

– Regular charge loss

It is modeled by :

−(
1

2Dh

)ρ ¯̄Λw
−→
V ‖
−→
V ‖ (I.21)

Where ¯̄Λw is a diagonal tensor:

¯̄Λw =

 fxw 0 0

0 f yw 0

0 0 f zw


The coefficients on the diagonal are a priori not equal depending on each space di-
rection. They model the charge loss distribution in the flow and are obtained using
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specific correlations. To simplify the calculations we assume the three coefficients to
be constants.

– singular charge loss

It is modeled by :

−(
K

2
)ρ′
−→
V ‖
−→
V ‖1z=zs (I.22)

Where K is a given charge loss coefficient.

It is important to notice that naturally the tensor ¯̄K is anti-symmetric with extra
diagonal elements that model the rotating effects because of the mixture grids. We
chose a diagonal tensor only to simplify the calculations. And for the same reason, we
consider the singular charge loss model to be homogeneous:

ρ′ = ρ

- Internal energy equation

• Energy sources

The source term Q represent the energy source injected in the fluid. It is written as a
"power density" and/or an "implicit thermal flux" between the heating wall and the fluid.
To simplify the calculations we consider only the former type of energy(power density which
is given by the user).

I.2.7 Specific coorelations

Vapor mass sources

• Correlation on overheating

The source term of vaporization at the wall is given by:

Γwv =
χΦ

L
4

Dch

(I.23)

The vaporization flux is calculated as follow:

– when nucleate boiling is saturated Tsat − Tl < 10−4 : χ = 1

– when nucleate boiling is under-saturated Tw − Tsat > ∆Tsat : χ = Tw−Tsat−∆Tsat
Tw−Tl−∆Tsat

– when nucleate boiling is not reached Tw − Tsat < ∆Tsat : χ = 0



Chapter I. Establishment of the porous 4 equations model 7

• Correlation on mass exchange between phases

The mass exchange between phases depends on an exchange volume density Φlv at the
interface between phases and on the phase change energy:

Γlv =
Φlv

hv − hl
(I.24)

To simplify the calculations we chose a simple mass exchange model between phases:

Φlv =

{
Φ if hl,sat(P ) ≤ h < hv,sat(P ) && C < 1

0 otherwise

Where Φ is assumed constant in time and space and fixed by the user.

The phase change can appear only when the mixture enthalpy h is between the liquid
enthalpy at saturation and the vapor enthalpy at saturation(two-phase region).

Relative velocity

The relative velocity allows us to efficiently make use of the difference between liquid and vapor
velocities while only one momentum equation is used.

In this project, we tested two different correlations on the relative velocity:

• A first one, quite simple, where vapor velocity and liquid velocity are proportionals(slip
model):

−→
Vv = γ

−→
Vl , γ > 0

In this case, the relative velocity can be written as:

−→
Vr =

−→
V v −

−→
V l =

γ − 1

1 + C(γ − 1)

−→
V (I.25)

To simplify the calculations γ is assumed constant and given by the user.

• The second correlation uses the Drift model of Ishii (see ??????) .

In this case the relative velocity can be written as ::

Vr =
(C0 − 1)V + Vv,lim
1− C + C0(C − α)

C0 is a distribution parameter that adjusts the mixture velocity. Vv,lim is the vapor velocity
limit. C0 and Vv,lim depend on the topology of the flow:
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– in a bubbling flow:

(C0)bubble =

(
Cinf + (1− Cinf )

√
ρv
ρl

)(
1− e−18α

)

(Vv,lim)bubble = Cl

(
(ρv − ρl) g σ

ρ2
l

)1/4

(1− α)7/4

– in an annular-film flow:

B =

√
1 + 75(1− α)√
α + 10−3

(C0)annular =
(1 +B

√
ρv
ρl

)

(α +B
√

ρv
ρl

)

(Vv,lim)annular =
(1− α)3/2

α +B
√

ρv
ρl

√
g Dh (ρv − ρl)

0.015 ρl

– and to ensure continuity between the two flows:

C0 =
(C0)annular (C0)bubble

((C0)50
annular + (C0)50

bubble)
1/50

Vv,lim =
(Vv,lim)bubble (Vv,lim)bubble

((Vv,lim)8
annular + (Vv,lim)8

bulles)
1/8

σ denotes the surface tension (in N.M−1).
Cinf and Cl are adjustable parameters that depend on the geometry of the problem. They
are given by:

• for a tube bundle flow: Cinf = 1.32 and Cl = 4.5

• for a rectangular cross section flow Cinf = 1.35 and Cl =
√

2

• for a circular cross section flow Cinf = 1.2 and Cl =
√

2

I.2.8 Summary

In section (I.2) we have seen how to pass , from the 6 equations porous model obtained thanks
to different assumptions, to the 4 equations porous model which is used in FLICA4 [5]. Let (M)



Chapter I. Establishment of the porous 4 equations model 9

denote this model.

(M)



φ
∂ρ

∂t
+∇ · (φρ

−→
V ) = 0

φ
∂(ρC)

∂t
+∇ · (φρC

−→
V ) +∇ · (φρC(1− C)

−→
V r) = φΓv

φρ

(
∂
−→
V

∂t
+
−→
V ∇
−→
V

)
+∇ ·

(
φρC(1− C)

−→
Vr ⊗

−→
Vr

)
+ φ∇P = φτ + φρ−→g

φ
∂(ρe)

∂t
+∇ ·

(
φρe
−→
V
)

+ P∇ ·
(
φ
−→
V
)

+∇ ·
(
φρC(1− C) (Hv −Hl)

−→
Vr

)
= φQ

(I.26)

This system has seven unknowns: density ρ, pressure P , concentration C, internal energy e (or
enthalpy h) and the velocity vector

−→
V in each space direction. These mixture physical quantities

are linked by seven coupled equations:

• an equation of state:
E(P, ρ, h ou e) = 0 ; (I.27)

• a mixture mass conservation equation;

• a vapor mass balance equation;

• a mixture internal energy conservation equation;

• a mixture momentum conservation equation in each space direction.

In the next section (see chapitre II) we give details of the spatial and temporal discretization
of each equation of the model (M).



Chapter II
Spatio-temporal discretization of the 4 equations
model

II.1 Staggered grid

The discretization of the velocity field and the other variables (pressure,density,...) is made on
staggered cells.

Unlike the co-located discretization type where all the variables are defined at the same ge-
ometric positions, each variable is defined on its own grid and a different control volume is
associated to each variable.
We call "pressure grid" the grid where are defined all the scalar variables (pressure, density, en-
thalpy, ...).
The pressure cell and the velocity cells are shifted by half a cell on each space direction as in
figure (see figure II.1) where the scalar variables are given on the center of the pressure cell while
the velocity components on the center of its surface.

Fig. II.1 : Left side: co-located cells // Right side: staggered cells
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Actually the staggered cells(very common in the Navier-stokes equations studies) are very
useful despite that they are more difficult to use than the co-located cells.
Indeed, since the pressure cell and the velocity cell are shifted it makes it easier to compute the
divergence of the velocity field on the pressure nodes and to avoid the oscillations that we(almost
always) get with co-located cells for the low Mach number flows.

The following notations allow a better comprehension of the equations discretization detailed
in the next sections. Let us denote by:

• Mc : the pressure cell (cell corresponding to scalar variables);

• Mu : the velocity first component cell (Mc and Mu are shifted by half a cell in the direction
of ~ex);

• Mv : the velocity second component cell (Mc and Mv are shifted by half a cell in the
direction of ~ey);

• Mw : the velocity third component cell (Mc andMw are shifted by half a cell in the direction
of ~ez);

• σ : the common interface between two neighboring cells MK and ML;

∀ K, ∀MK
c , we denote by:

• MLx
c its neighboring cell in the direction of ~ex;

• MLy
c its neighboring cell in the direction of ~ey;

• MLz
c its neighboring cell in the direction of ~ez;

• MLxy
c the neighboring cell of MLx

c in the direction of ~ey;

• MLxz
c the neighboring cell of MLx

c in the direction of ~ez;

• M+Lx
c the neighboring cell of MK

c in the direction of ( ~+ex);

• M−Lx
c the neighboring cell of MK

c in the direction of ( ~−ex);

• M+Ly
c the neighboring cell of MK

c in the direction of ( ~+ey);

• M−Ly
c the neighboring cell of MK

c in the direction of ( ~−ey);

• M+Lz
c the neighboring cell of MK

c in the direction of ( ~+ez);

• M−Lz
c the neighboring cell of MK

c in the direction of ( ~−ez);

• M++Lxy
c the neighboring cell of M+Lx

c in the direction of ( ~+ey);
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• M−+Lxy
c the neighboring cell of M−Lx

c in the direction of ( ~+ey);

• M−−Lxy
c the neighboring cell of M−Lx

c in the direction of ( ~−ey);

• εK the set of faces of MK
c ;

• ~nσ the outward normal vector to the surface σ;

• Sσ crossing surface of σ (product of its surface by porosity).
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II.2 Discretization of the mixture mass equation

The temporal discretization of the mixture mass equation that we try to solve is based on
a "semi-implicit" scheme. More precisely, the mass and density fluxes are approximated on the
interface using an upwind semi-implicit scheme where the velocity is being implicit while the
scalar variables are explicit.

This approach seems necessary when we use a solving method like "solveur de pression" ?????
(see chapter III) where variables are implicit only on their own cell. In this way the size of the
matrix to inverse will be smaller and the resolution easier.

The spatial discretization of the convection term in the mixture mass equation is done by
approximating the density on the cell faces by using an upwind semi-implicit scheme, similarly in
the three directions.

The finite volumes discretization of the mixture mass equation involves its integration in time
between tn and tn+1 and in space on an elementary control volume MK

c (or VMK
c
)∫

MK
c

∫ tn+1

tn

(φ
∂ρ

∂t
+∇.(φρ~V )) dΩdt = 0 (II.1)

By using the divergence theorem the equation (II.1) becomes:∫
MK
c

∫ tn+1

tn

φ
∂ρ

∂t
dΩdt+

∫
dMK

c

∫ tn+1

tn

φρ~V dS.~n dt = 0 (II.2)

or in discrete form:

VMK
c

(ρn+1
MK
c
− ρnMK

c
) + ∆t

∑
σ∈εK

Sσ(ρD)nσ~V
n+1
σ .~nσ = 0 (II.3)

⇒
ρn+1
MK
c
− ρnMK

c

∆t
+

1

VMK
c

∑
σ∈εK

F n+1
σ = 0 (II.4)

F n+1
σ represents the flux approximation on the interface σ at time tn+1.

To establish the discrete mass equation, all we need now is to approximate the flux F n+1
σ on

the 6 faces of a given cell MK
c . To ensure the stability of the numerical scheme, we use an upwind

approximation of the convection term:

F n+1
σ = Sσ(ρD)nσ~V

n+1
σ .~nσ (II.5)

Here (ρD)nσ represents the mixture density on the interface σ between a given cell MK
c and a

neighboring cell ML
c .
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(ρD)nσ =

{
ρnMK

c
if ~V n+1

σ .~nσ > 0

ρnML
c
otherwise

As a result, the discrete form of the mixture mass equation (II.4) can be written as:

F 1(ρn+1
MK
c
, V n+1

σ∈εK ) = 0 (II.6)

Taking into account the state equation ( I.27), the equation (II.6) becomes:

F 1(P n+1
MK
c
, hn+1

MK
c
, V n+1

σεK
) = 0 (II.7)

Finally we compute the derivatives of F 1 (II.7) with respect to each of its variables:

∂F 1

∂Pn+1

MK
c

= 1
∆t

∂ρn+1

MK
c

∂Pn+1

MK
c

F 1

∂hn+1

MK
c

= 1
∆t

∂ρn+1

MK
c

∂hn+1

MK
c

F 1

∂V n+1
σ∈εK

= sign(~nσ.~e)
Sσ(ρD)nσ
V
MK
c

Where:
~e ∈ {~ex, ~ey, ~ez}

~Vσ ∈
{
~VMK

u
, ~VM−Lxu

, ~VMK
v
, ~VM−Lyv

, ~VMK
w
, ~VM−Lzw

}
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II.3 Discretization of the vapor mass equation

The spatial and temporal discretization of the vapor mass balance equation is done exactly
the same way as for the mixture mass equation.

We integrate the vapor mass equation between the time instants tn and tn+1 on the cell MK
c :∫

MK
c

∫ tn+1

tn

(φ
∂ρC

∂t
+∇.(φρC~V ) +∇.(φρC(1− C)~Vr)− φΓv) dΩdt = 0 (II.8)

⇒
(ρC)n+1

MK
c
− (ρC)nMK

c

∆t
+

1

VMK
c

∑
σ∈εK

[
F n+1
σ + G n+1

σ

]
− (Γv)

n
MK
c

= 0 (II.9)

Where:

F n+1
σ = Sσ[(ρC)D]nσ~V

n+1
σ .~nσ

G n+1
σ = Sσ[(ρrCr(1− Cr))D]nσ(~Vr)

n+1
σ .~nσ

• F n+1
σ and G n+1

σ are the approximations of the fluxes on the interface σ at time tn+1;

• (~Vr)
n+1
σ is the relative velocity which is given (see I.25) by:

– Using the slip model: (~Vr)
n+1
σ = γ−1

1+Cnσ (γ−1)
~V n+1
σ

– Using the Ishii model: (~Vr)
n+1
σ =

(C0−1)~V n+1
σ +~Vv,lim

1−Cnσ+C0(Cnσ−αnσ)

• Cn
σ , (ρC)nσ and (ρrCr(1 − Cr))nσ are defined only at the cells center. On the faces they are

approximated using the following upwind scheme:

Cn
σ =

{
Cn

MK
c

if ~V n+1
σ .~nσ > 0

Cn
ML
c
otherwise

(II.10)

(ρC)nσ =

{
(ρC)nMK

c
if ~V n+1

σ .~nσ > 0

(ρC)nML
c
otherwise

(II.11)

[(ρrCr(1− Cr))D]nσ =

{
(ρC(1− C))nMK

c
if (~Vr)

n+1
σ .~nσ > 0

(ρC(1− C))nML
c
otherwise

(II.12)

As a result, the discrete form of the vapor mass equation (II.9) can be written as:

F 2(ρn+1
MK
c
, Cn+1

MK
c
, V n+1

σ∈εK , (Vr)
n+1
σ∈εK ) = 0 (II.13)
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Taking into account the state equation ( I.27), the equation (II.13) becomes:

F 2(P n+1
MK
c
, hn+1

MK
c
, Cn+1

MK
c
, V n+1

σ∈εK ) = 0 (II.14)

Finally we compute the derivatives of F 2 (II.14) with respect to each of its variables:

∂F 2

∂Pn+1

MK
c

=
Cn+1

MK
c

∆t

∂ρn+1

MK
c

∂Pn+1

MK
c

F 2

∂hn+1

MK
c

=
Cn+1

MK
c

∆t

∂ρn+1

MK
c

∂hn+1

MK
c

∂F 2

∂Cn+1

MK
c

=
ρn+1

MK
c

∆t

F 2

∂V n+1
σ∈εK

= sign(~nσ.~e)
Sσ

V
MK
c

[ρC − (ρrCr(1− Cr))nσ
∂(Vr)

n+1
σ

∂V n+1
σ∈εK

]

where :

• Using the slip model: ∂(Vr)
n+1
σ

∂V n+1
σ

= γ−1
1+Cnσ (γ−1)

• Using the Ishii model: ∂(Vr)
n+1
σ

∂V n+1
σ

= (C0−1)
1−Cnσ+C0 (Cnσ−αnσ)

~e ∈ {~ex, ~ey, ~ez}

Vσ ∈
{
VMK

u
, VM−Lxu

, VMK
v
, VM−Lyv

, VMK
w
, VM−Lzw

}
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II.4 Discretization of the mixture internal energy balance
equation

The spatial and temporal discretization of the mixture internal energy balance equation is
done exactly the same way as for the mixture mass equation.

∫
MK
c

∫ tn+1

tn

(φ
∂ρe

∂t
+∇.(φρe~V ) +P∇.(φ~V ) +∇.(φρC(1−C)(Hv −Hl)~Vr)− φQ dΩdt = 0 (II.15)

⇒
(ρe)n+1

MK
c
− (ρe)nMK

c

∆t
+

1

VMK
c

∑
σ∈εK

[F n+1
σ + P n+1

MK
c

G n+1
σ + H n+1

σ ]− (Q)nMK
c

= 0 (II.16)

where:
F n+1
σ = Sσ[(ρe)D]nσ~V

n+1
σ .~nσ

G n+1
σ = Sσ~V n+1

σ .~nσ

H n+1
σ = Sσ[(ρrCr(1− Cr)(Hv −Hl))

D]nσ(~Vr)
n+1
σ .~nσ

• F n+1
σ , G n+1

σ and H n+1
σ are the approximations of the fluxes on the interface σ at time tn+1;

• [(ρe)D]nσ et [(ρrCr(1 − Cr)(Hv − Hl))
D]nσ are defined only at the cells center. On the faces

they are approximated using the following upwind scheme:

[(ρe)D]nσ =

{
(ρe)nMK

c
if ~V n+1

σ .~nσ > 0

(ρe)nML
c
otherwise

[(ρrCr(1− Cr)(Hv −Hl))
D]nσ =

{
(ρC(1− C)(Hv −Hl))

n
MK
c

if (~Vr)
n+1
σ .~nσ > 0

(ρC(1− C)(Hv −Hl))
n
ML
c
otherwise

Hence, the discrete form of the mixture internal energy equation (II.16) can be written as:

F 3(ρn+1
MK
c
, en+1

MK
c
, V n+1

σ∈εK , (Vr)
n+1
σ∈εK ) = 0 (II.17)

Taking into account the state equation ( I.27), the equation (II.17) becomes:

F 3(P n+1
MK
c
, hn+1

MK
c
, V n+1

σ∈εK ) = 0 (II.18)

Finally we compute the derivatives of F 3 (II.18) with respect to each of its variables:
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∂F 3

∂P n+1
MK
c

=
1

∆t

∂(ρe)n+1
MK
c

∂P n+1
MK
c

+ sign(~nσ.~e)
Sσ

VMK
c

~V n+1
σ .~nσ

∂F 3

∂hn+1
MK
c

=
1

∆t

∂(ρe)n+1
MK
c

∂hn+1
MK
c

+ sign(~nσ.~e)
Sσ

VMK
c

∂P n+1
MK
c

∂hn+1
MK
c

~V n+1
σ .~nσ

∂F 3

∂V n+1
σ∈εK

= sign(~nσ.~e)
Sσ

VMK
c

[(ρe)nσ + P n+1
MK
c

+ (ρrCr(1− Cr)(Hv −Hl))
n
σ

∂(Vr)
n+1
σ

∂V n+1
σ∈εK

]

where :

• Using the slip model: ∂(Vr)
n+1
σ

∂V n+1
σ

= γ−1
1+Cnσ (γ−1)

• Using the Ishii model: ∂(Vr)
n+1
σ

∂V n+1
σ

= (C0−1)
1−Cnσ+C0 (Cnσ−αnσ)

~e ∈ {~ex, ~ey, ~ez}

Vσ ∈
{
~VMK

u
, ~VM−Lxu

, ~VMK
v
, ~VM−Lyv

, ~VMK
w
, ~VM−Lzw

}
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II.5 Discretization of the mixture momentum conservation
equation

The temporal discretization of the momentum equation written under its non-conservative
form uses, as for the mixture mass equation, a "semi-implicit" scheme: for a given velocity cell,
only velocity field at the cell’s center and the pressure field at its faces are implicit. The other
variables should be explicit.

The spatial discretization is done as follows:

• Unless otherwise indicated, to evaluate the scalar variables on the faces we use the average
of its values at the centers.

• To ensure stability, an upwind scheme is used to compute the gradient of the velocity squared
in the convection term.

Because we have φρ
−→
V · ∇

−→
V = ∇ ·

(
φρ
−→
V ⊗

−→
V
)
−
−→
V ∇ ·

(
φρ
−→
V
)
, the mixture momentum

equation (I.13) can be written as:

ρ
∂~V

∂t
+∇.(φρ~V ⊗ ~V )− ~V∇.(φρ~V ) +∇.(φρC(1− C)~Vr ⊗ ~Vr) + φ∇P = φτ + φρ~g (II.19)

Later in this section we will give more details about the spatial and temporal discretization
of the equation (II.19) projected in the direction ~ex. The discretization in the directions ~ey and
~ez, is obtained by analogy.

The projection of equation (II.19) in the direction −→ex gives:

φρ
∂V x

∂t
+∇.(φρV x~V )− V x∇.(φρ~V ) +∇.(φρC(1− C)V x

r
~Vr) + φ

∂P

∂x
= φτx + φρgx (II.20)

The finite volumes discretization involves the integration of the equation (II.19) in time be-
tween tn and tn+1 and in space on an elementary control volume MK

u (or VMK
u
)

∫
MK
u

∫ tn+1

tn

(φρ
∂V x

∂t
+∇.(φρV x~V )− V x∇.(φρ~V ) +∇.(φρC(1− C)V x

r
~Vr) + φ

∂P

∂x
− φτx − φρgx) dΩdt = 0
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⇒ ρnMK
u

(V x)n+1
MK
u
− (V x)nMK

u

∆t
+

1

VMK
u

∑
σ∈εK

[F n+1
σ − (V x)n+1

MK
u

G n+1
σ + H n+1

σ ]

+ (SM+Lx
c

P n+1

M+Lx
c
− SMK

c
P n+1
MK
c

)− (τx)n+1
MK
u
− (ρgx)nMK

u
= 0 (II.21)

where :

F n+1
σ = Sσρnσ(V x)n+1

σ
~V n+1
σ .~nσ (II.22)

G n+1
σ = Sσρnσ~V n+1

σ .~nσ (II.23)

H n+1
σ = Sσ(ρrCr(1− Cr))nσ(V x

r )n+1
σ (~Vr)

n+1
σ .~nσ (II.24)

• F n+1
σ , G n+1

σ and H n+1
σ are the approximations of the fluxes at the interface σ at time tn+1.

Approximation of velocity field at the interfaces of MK
u :

Interface σx:

~Vσ+x .~nσ+x = V x
σ+x

=
~VMK
u

+ ~VM+Lx
u

2
.~nσ+x =

V x
MK
u

+ V x
M+Lx
u

2
(II.25)

~Vσ−x .~nσ−x = V x
σ−x =

~VMK
u

+ ~VM−Lxu

2
.~nσ−x =

V x
MK
u

+ V x
M+Lx
u

2
(II.26)

[(V x)n+1
σ+x

]D =

{
(V x)n+1

MK
u

if ~V n+1
σ+x

.~nσ+x > 0

(V x)n
M+Lx
u

otherwise
(II.27)

[(V x)n+1
σ−x ]D =

{
(V x)n+1

MK
u

if ~V n+1
σ−x .~nσ−x > 0

(V x)n
M−Lxu

otherwise
(II.28)

Fig. II.2 : velocity at the interface σx of MK
u
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Interface σy:

~Vσ+y .~nσ+y = V y
σ+y

=
~VMK
v

+ ~VM+Lx
v

2
.~nσ+y =

V y
MK
v

+ V y

M+Lx
v

2
(II.29)

[(V x)n+1
σ+y

]D =

{
(V x)n+1

MK
u

if ~V n+1
σ+y

.~nσ+y > 0

(V x)n
M+Ly
u

otherwise
(II.30)

Fig. II.3 : velocity at the interface σ+y de MK
u

~Vσ−y .~nσ−y = V y
σ−y =

~VM−Lyv
+ ~VM+−Lxy

v

2
.~nσ−y =

V y

M−Lyv
+ V y

M+−Lxy
v

2
(II.31)

[(V x)n+1
σ−y ]D =

{
(V x)n+1

MK
u

if ~V n+1
σ−y .~nσ−y > 0

(V x)n
M−Lyu

otherwise
(II.32)

Fig. II.4 : velocity at the interface σ−y de MK
u

Relative velocity at the interfaces of MK
u :

• Using the slip model:

(~Vr)
n+1
σ =

γ − 1

1 + Cn
σ (γ − 1)

~V n+1
σ (II.33)
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• Using the Ishii model:

(~Vr)
n+1
σ =

(C0 − 1)~V n+1
σ + ~Vv,lim

1− Cn
σ + C0(Cn

σ − αnσ)
(II.34)

[(V x
r )n+1

σ+x
]D =

{
(V x

r )n+1
MK
u

if (~Vr)
n+1
σ+x

.~nσ+x > 0

(V x
r )n

M+Lx
u

otherwise
[(V x

r )n+1
σ−x ]D =

{
(V x

r )n+1
MK
u

if (~Vr)
n+1
σ−x .~nσ−x > 0

(V x
r )n

M−Lxu
otherwise

(II.35)

[(V x
r )n+1

σ+y
]D =

{
(V x

r )n+1
MK
u

if (~Vr)
n+1
σ+y

.~nσ+y > 0

(V x
r )n

M+Ly
u

otherwise
[(V x

r )n+1
σ−y ]D =

{
(V x

r )n+1
MK
u

if (~Vr)
n+1
σ−y .~nσ−y > 0

(V x
r )n

M−Lyu
otherwise

(II.36)

Approximation of the scalar variables at the interfaces of MK
u :

Fig. II.5 : Scalar variables at the interfaces of MK
u

ρnMK
u

=
ρnMK

c
+ ρn

M+Lx
c

2

ρnσ−x = ρnMK
c

ρnσ+x = ρn
M+Lx
c

ρnσ+y =


ρn
MK
c

+ρn
M+Lx
c

2
if ~V n+1

σ+y
.~nσ+y > 0

ρn
M

+Ly
c

+ρn
M

++Lxy
c

2
otherwise

ρnσ−y =


ρn
MK
c

+ρn
M+Lx
c

2
if ~V n+1

σ−y .~nσ−y > 0
ρn
M
−Ly
c

+ρn
M

+−Lxy
c

2
otherwise
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We use the same method to determine (ρrCr(1− Cr))nσ:

(ρrCr(1− Cr))nσ−x = (ρrCr(1− Cr))nMK
c

(ρrCr(1− Cr))nσ+x = (ρrCr(1− Cr))nM+Lx
c

(ρrCr(1− Cr))nσ+y =


(ρrCr(1−Cr))n

MK
c

+(ρrCr(1−Cr))n
M+Lx
c

2
if ( ~Vr)

n+1
σ+y

.~nσ+y > 0

(ρrCr(1−Cr))n
M

+Ly
c

+(ρrCr(1−Cr))n
M

++Lxy
c

2
otherwise

(ρrCr(1− Cr))nσ−y =


(ρrCr(1−Cr))n

MK
c

+(ρrCr(1−Cr))n
M+Lx
c

2
if ( ~Vr)

n+1
σ−y .~nσ−y > 0

(ρrCr(1−Cr))n
M
−Ly
c

+(ρrCr(1−Cr))n
M

+−Lxy
c

2
otherwise

NB: At the interfaces σ+z and σ−z, we easily get the same result as at the interfaces σ+y and
σ−y if we replace y by z.

Friction forces

We recall (see I.20) that:
(τx)n+1

MK
u

= (τxw)n+1
MK
u

+ (τxs )n+1
MK
u

Then according to (I.21) and (I.22) we have:

(τxw)n+1
MK
u

=
−1

2(Dx
h)MK

u

ρnMK
u

(fxw)(V x)n+1
MK
u
|(V x)n+1

MK
u
|

(τxs )n+1
MK
u

=
−Kx

2
ρnMK

u
(V x)n+1

MK
u
|(V x)n+1

MK
u
|

The discretization of the mixture momentum equation in the direction ~ex (II.21) can be written
as:

F 4(P n+1
MK
c
, P n+1

M+Lx
c

, (V x)n+1
MK
u

) = 0 (II.37)

By analogy, on obtain the discretization in the directions ~ey and ~ez:

F 5(P n+1
MK
c
, P n+1

M+Ly
c

, (V y)n+1
MK
v

) = 0 (II.38)

F 6(P n+1
MK
c
, P n+1

M+Lz
c

, (V z)n+1
MK
w

) = 0 (II.39)

The derivative of F 4 (II.37) are given by:

∂F 4

∂P n+1
MK
c

= −SMK
c
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∂F 4

∂P n+1

M+Lx
c

= SM+Lx
c

∂F 4

∂V n+1
MK
u

=
ρnMK

u

∆t
+ Sσρnσ((V x)nσ + 1) sign(~nσ.~e)

∂~V n+1
σ

∂V n+1
MK
u

+

Sσ((ρrCr(1− Cr))nσ)(V x)nσ sign(~nσ.~e)
∂(Vr)

n+1
σ

∂V n+1
σ

∂~V n+1
σ

∂V n+1
MK
u

(II.40)

According to (II.31), the equation (II.40) becomes:

∂F 4

∂V n+1
MK
u

=
ρnMK

u

∆t
+

1

2
Sσρnσ((V x)nσ + 1) sign(~nσ.~e)

+
1

2
Sσ((ρrCr(1− Cr))nσ)(V x)nσ

∂(Vr)
n+1
σ

∂V n+1
σ

sign(~nσ.~e) (II.41)

where:

• Using the slip model: ∂(Vr)
n+1
σ

∂V n+1
σ

= γ−1
1+Cnσ (γ−1)

• Using the Ishii model: ∂(Vr)
n+1
σ

∂V n+1
σ

= (C0−1)
1−Cnσ+C0 (Cnσ−αnσ)

By analogy, we determine the derivatives of F 5 and F 6.



Chapter III
Resolution of the 4 equations model

III.1 Construction of the system to solve

Let (S) denote the non linear system we ought to solve at each physical time step:

(S)



F 1(P, h, ~V ) = 0

F 2(P, h, C, ~V ) = 0

F 3(P, h, ~V ) = 0

F 4(P, ~V ) = 0

F 5(P, ~V ) = 0

F 6(P, ~V ) = 0

(III.1)

To solve this system, we use the Newton-Raphson method:

∑
j=1

[
∂Fi
∂xj

]k.∆xk+1
j = −F k

i (III.2)

where :

• F k
i : residual of the discrete equation i at the iteration k;

• ∆xk+1
j = xk+1

j − xkj : increment of the variable xj at the iteration k;

• [∂Fi
∂xj

]k: derivative of the equation i with respect to the variable j at the iteration k.

Let U denote the unknown vector defined by:

U = (P, h, C, V x, V y, V z)t = (P1, ..., PNc , h1, ..., hNc , C1, ..., CNc

, V x
1 , ..., V

x
Nx , V

y
1 , ..., V

y
Ny
, V z

1 , ..., V
z
Nz)

t
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At each iteration of Newton-Raphson, we determine U at the instant tn+1 by solving the linear
equation A(Uk)∆Uk+1 = S(Un, Uk):

⇔



∂F 1

∂P
∂F 1

∂h
∂F 1

∂C
∂F 1

∂V x
∂F 1

∂V y
∂F 1

∂V z

∂F 2

∂P
∂F 2

∂h
∂F 2

∂C
∂F 2

∂V x
∂F 2

∂V y
∂F 3

∂V z

∂F 3

∂P
∂F 3

∂h
∂F 3

∂C
∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z

∂F 4

∂P
∂F 4

∂h
∂F 4

∂C
∂F 4

∂V x
∂F 4

∂V y
∂F 4

∂V z

∂F 5

∂P
∂F 5

∂h
∂F 5

∂C
∂F 5

∂V x
∂F 5

∂V y
∂F 5

∂V z

∂F 6

∂P
∂F 6

∂h
∂F 6

∂C
∂F 6

∂V x
∂F 6

∂V y
∂F 6

∂V z





∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=



S1 = −F 1

S2 = −F 2

S3 = −F 3

S4 = −F 4

S5 = −F 5

S6 = −F 6


(III.3)

Lets notice that each coefficient of the jacobian A(Uk), whose size is equal to (3Nc + Nx +

Ny +Nz)
2, is a bloc whose size is equal to:

• (Nc ∗Nc) for each ∂F i

∂§ such as i ∈ {1, 2, 3} and § ∈ {P, h, C};

• (Nc ∗Ne) for each ∂F i

∂§ such as i ∈ {1, 2, 3} and (Ne, §) ∈ {(Nx, V
x), (Ny, V

y), (Nz, V
z)};

• (Ne ∗Ne) for each ∂F i

∂§ such as i ∈ {4, 5, 6} and (Ne, §) ∈ {(Nx, V
x), (Ny, V

y), (Nz, V
z)};

• (Ne ∗Nc) for each ∂F i

∂§ such as § ∈ {P, h, C} and (Ne, i) ∈ {(Nx, 4), (Ny, 5), (Nz, 6)}.

The same applies to the components of ∆Uk+1 and S(Un, Uk) which are vectors of size:

• Nc for each (∆Uk+1)j and Sj such as j ∈ {1, 2, 3};

• Ne for each (∆Uk+1)j and Sj such as (j,Ne) ∈ {(4, Nx), (5, Ny), (6, Nz)}.

To solve the system (III.3) we use and compare two different methods:

* the full Jacobian method (see III.2).

* the "pressure-based solver" method (see III.3).

The two methods are used by CATHARE to solve the 6 equations model. The full Jacobian
method is used to deal with the 1D problems since the size of the matrix("not too big") allows
it. However in the 2D and 3D problems CATHARE uses the pressure-based method.
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III.2 The "full Jacobian" method

This method involves the inversion of the matrix in (III.3) when its size is reasonable. Actually
in this case it is very useful since it is simple to implement and because it allows the possibility
of "impliciting" all the variables in the discretization step which leads to a better resolution.
Despite the efficiency of the full Jacobian method to treat the "small sized" problems, its use is
bounded by a limit on the jacobian matrix size. Beyond this limit, the pressure-based method
becomes more efficient.

III.3 The "pressure-based solver" method

The "semi-implicit" scheme we used to discretize the 4 equations (see chapter II) allows to
simplify significantly the terms of the matrix that occur in the momentum equations F 4, F 5

and F 6. This will enable the expression of the velocity increments as functions of the pressure
increments (see section III.3.1) and then to eliminate them. In section (III.3.2) we will see how
to eliminate all the scalar variables (but the pressure increments) and then to obtain a linear
equation where only the pressure increments should occur.

III.3.1 Elimination of the velocity increments

The purpose of this step is to write the velocity increments as a function of the pressure
increments. To do so we consider only the momentum equations which corresponds to this
’partial’ linear system:



∂F 4

∂P
∂F 4

∂h
∂F 4

∂C
∂F 4

∂V x
∂F 4

∂V y
∂F 4

∂V z

∂F 5

∂P
∂F 5

∂h
∂F 5

∂C
∂F 5

∂V x
∂F 5

∂V y
∂F 5

∂V z

∂F 6

∂P
∂F 6

∂h
∂F 6

∂C
∂F 6

∂V x
∂F 6

∂V y
∂F 6

∂V z





∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=

S4

S5

S6

 (III.4)

According to (II.37),(II.38) and (II.39), the functions F 4, F 5 and F 6 don’t depend on h and
C at time step tn+1. Thus their derivatives with respect to these variables are equals to zero as
well as:

• the derivative of F 4 with respect to V y and V z;

• the derivative of F 5 with respect to V x and V z;

• the derivative of F 6 with respect to V x and V y.
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In this case, the system (III.4) becomes:



∂F 4

∂P
0 0 ∂F 4

∂V x
0 0

∂F 5

∂P
0 0 0 ∂F 5

∂V y
0

∂F 6

∂P
0 0 0 0 ∂F 6

∂V z





∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=

S4

S5

S6

 (III.5)

where:

∂F 4

∂P
=


∂F 4

M0
u

∂P
M0
c

∂F 4
M0
u

∂P
M1x
c

0 ...

0
∂F 4

MK
u

∂P
MK
c

∂F 4

MK
u

∂P
M+Lx
c

0 ...

0 ... 0 0
∂F 4

M
Nx
u

∂P
M
Nc
c


∂F 4

∂V x
=


∂F 4

M0
u

∂V x
M0
u

0 ... 0

0
∂F 4

MK
u

∂V x
MK
u

0 ...

0 ... 0
∂F 4

M
Nx
u

∂V x
M
Nx
u



∂F 5

∂P
=


∂F 5

M0
v

∂P
M0
c

∂F 5
M0
v

∂P
M

1y
c

0 ...

0
∂F 5

MK
v

∂P
MK
c

∂F 5

MK
v

∂P
M

+Ly
c

0 ...

0 ... 0 0
∂F 5

M
Ny
v

∂P
M
Nc
c


∂F 5

∂V y
=



∂F 5
M0
v

∂V y
M0
v

0 ... 0

0
∂F 5

MK
v

∂V y
MK
v

0 ...

0 ... 0
∂F 5

M
Ny
v

∂V y

M
Ny
v



∂F 6

∂P
=


∂F 6

M0
w

∂P
M0
c

∂F 6
M0
w

∂P
M1z
c

0 ...

0
∂F 6

MK
w

∂P
MK
c

∂F 6

MK
w

∂P
M+Lz
c

0 ...

0 ... 0 0
∂F 6

M
Nz
w

∂P
M
Nc
c


∂F 6

∂V z
=


∂F 6

M0
w

∂V z
M0
w

0 ... 0

0
∂F 6

MK
w

∂V z
MK
w

0 ...

0 ... 0
∂F 6

M
Nz
w

∂V z
M
Nz
w


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By developing the equation (III.5) in a cell MK
u , we obtain the following equation system:

∂F 4

MK
u

∂P
MK
c

(∆P )MK
c

+
∂F 4

MK
u

∂P
M+Lx
c

(∆P )M+Lx
c

+
∂F 4

MK
u

∂V x
MK
u

(∆V x)MK
u

= S4
MK
u

∂F 5

MK
v

∂P
MK
c

(∆P )MK
c

+
∂F 5

MK
v

∂P
M

+Ly
c

(∆P )M+Ly
c

+
∂F 5

MK
v

∂V y
MK
v

(∆V y)MK
v

= S5
MK
v

∂F 6

MK
w

∂P
MK
c

(∆P )MK
c

+
∂F 6

MK
w

∂P
M+Lz
c

(∆P )M+Lz
c

+
∂F 6

MK
w

∂V z
MK
w

(∆V z)MK
w

= S6
MK
w

(III.6)

⇒



(∆V x)MK
u

= 1
∂F4
MK
u

∂V x
MK
u

[S4
MK
u
−

∂F 4

MK
u

∂P
MK
c

(∆P )MK
c
−

∂F 4

MK
u

∂P
M+Lx
c

(∆P )M+Lx
c

]

(∆V y)MK
v

= 1
∂F5
MK
v

∂V
y

MK
v

[S5
MK
v
−

∂F 5

MK
v

∂P
MK
c

(∆P )MK
c
−

∂F 5

MK
v

∂P
M

+Ly
c

(∆P )M+Ly
c

]

(∆V z)MK
w

= 1
∂F6
MK
w

∂V z
MK
w

[S6
MK
w
−

∂F 6

MK
w

∂P
MK
c

(∆P )MK
c
−

∂F 6

MK
w

∂P
M+Lz
c

(∆P )M+Lz
c

]

(III.7)

By analogy we determine the velocity increments (∆V x)M−Lxu
, (∆V y)M−Lyv

and (∆V z)M−Lzw
as

functions of the pressure increments:

(∆V x)M−Lxu
= 1

∂F4

M−Lxu
∂V x

M−Lxu

[S4
M−Lxu

−
∂F 4

M−Lxu

∂P
M−Lxc

(∆P )M−Lxc
−

∂F 4

M−Lxu

∂P
MK
c

(∆P )MK
c

]

(∆V y)M−Lyv
= 1

∂F5

M
−Ly
v

∂V
y

M
−Ly
v

[S5
M−Lyv

−
∂F 5

M
−Ly
v

∂P
M
−Ly
c

(∆P )M−Lyc
−

∂F 5

M
−Ly
v

∂P
MK
c

(∆P )MK
c

]

(∆V z)M−Lzw
= 1

∂F6

M−Lzw
∂V z

M−Lzw

[S6
M−Lzw

−
∂F 6

M−Lzw

∂P
M−Lzc

(∆P )M−Lzc
−

∂F 6

M−Lzw

∂P
MK
c

(∆P )MK
c

]

(III.8)

This step enabled the writing of the velocity increments(∆U4, ∆U5 and ∆U6) at each face of
the mesh as functions of the pressure increments. This will be useful in the next step (see section
III.3.2) to establish a linear pressure equation (such as only pressure increments are unknown).
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III.3.2 Triangulation

In this step we aim to eliminate the scalar variables increments. To do so we use the three scalar
variables equations (mass, concentration and energy), which corresponds to the following system:



∂F 1

∂P
∂F 1

∂h
∂F 1

∂C
∂F 1

∂V x
∂F 1

∂V y
∂F 1

∂V z

∂F 2

∂P
∂F 2

∂h
∂F 2

∂C
∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z

∂F 3

∂P
∂F 3

∂h
∂F 3

∂C
∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z





∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=

S1

S2

S3

 (III.9)

As we did previously, some simplifications take place (thanks to (II.7) and (II.18)) since F 1

and F 3 don’t depend on C at tn+1. Thus, the system (III.9) becomes:



∂F 1

∂P
∂F 1

∂h
0 ∂F 1

∂V x
∂F 1

∂V y
∂F 1

∂V z

∂F 2

∂P
∂F 2

∂h
∂F 2

∂C
∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z

∂F 3

∂P
∂F 3

∂h
0 ∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z





∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=

S1

S2

S3

 (III.10)

At this stage applying the operations (L1)←− (L1)× ∂F 2

∂h
− (L3)× ∂F 1

∂h
and then (L2)↔ (L3)

on the system (III.10) results in:

J1,1 0 0 J1,4 J1,5 J1,6

∂F 3

∂P
∂F 3

∂h
0 ∂F 3

∂V x
∂F 3

∂V y
∂F 3

∂V z

∂F 2

∂P
∂F 2

∂h
∂F 2

∂C
∂F 2

∂V x
∂F 2

∂V y
∂F 2

∂V z




∆U1

∆U2

∆U3

∆U4

∆U5

∆U6


=

D1 = S1 ∂F 2

∂h
− S2 ∂F 1

∂h

S3

S2

 (III.11)

where :

J1,1
MK
c

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK
c

∂PMK
c

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK
c

∂PMK
c

)

J1,4
MK
u

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK
c

∂V x
MK
u

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK
c

∂V x
MK
u

)

J1,5
MK
v

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK
c

∂V y
MK
v

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK
c

∂V y
MK
v

)
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J1,6
MK
w

= (
∂F 2

MK
c

∂hMK
c

∂F 1
MK
c

∂V z
MK
w

)− (
∂F 1

MK
c

∂hMK
c

∂F 2
MK
c

∂V z
MK
w

)

We develop the first row of the system (III.11) in a cell MK
c , we get the following equation:

(J1,1)MK
c

(∆P )MK
c

+ (J1,4)MK
u

(∆V x)MK
u

+ (J1,4)M−Lxu
(∆V x)M−Lxu

+(J1,5)MK
v

(∆V y)MK
v

+ (J1,5)M−Lyv
(∆V y)M−Lyv

(III.12)

+(J1,6)MK
w

(∆V z)MK
w

+ (J1,6)M−Lzw
(∆V z)M−Lzw

= D1
MK
c

It is at this stage where we make use of the velocity increments we calculated in the last step
(see (III.7) and (III.8)). Their integration in the equation (III.12) gives us:

A(∆P )MK
c

+B(∆P )M+Lx
c

+C(∆P )M−Lxc
+D(∆P )M+Ly

c
+E(∆P )M−Lyc

+F(∆P )M+Lz
c

+G(∆P )M−Lzc
= S

(III.13)
where :

A = (J1,1)MK
c
− (J1,4)MK

u

∂F 4

MK
u

∂P
MK
c

∂F 4

MK
u

∂V x
MK
u

− (J1,4)M−Lxu

∂F 4

M−Lxu

∂P
MK
c

∂F 4

M−Lxu

∂V x
M−Lxu

−(J1,5)MK
v

∂F 5

MK
v

∂P
MK
c

∂F 5

MK
v

∂V x
MK
v

− (J1,5)M−Lyv

∂F 5

M
−Ly
v

∂P
MK
c

∂F 5

M
−Ly
v

∂V x
M
−Ly
v

−(J1,6)MK
w

∂F 6

MK
w

∂P
MK
c

∂F 6

MK
w

∂V x
MK
w

− (J1,6)M−Lzw

∂F 6

M−Lzw

∂P
MK
c

∂F 6

M−Lzw

∂V x
M−Lzw

B = −(J1,4)MK
u

∂F 4

MK
u

∂P
M+Lx
c

∂F 4

MK
u

∂V x
MK
u

D = −(J1,5)MK
v

∂F 5

MK
v

∂P
M

+Ly
c

∂F 5

MK
v

∂V y
MK
v

F = −(J1,6)MK
w

∂F 6

MK
w

∂P
M+Lz
c

∂F 6

MK
w

∂V z
MK
w

C = −(J1,4)M−Lxu

∂F 4

M−Lxu

∂P
M−Lxc

∂F 4

M−Lxu

∂V x
M−Lxu

E = −(J1,5)M−Lyv

∂F 5

M
−Ly
v

∂P
M
−Ly
c

∂F 5

M
−Ly
v

∂V y
M
−Ly
v

G = −(J1,6)M−Lzw

∂F 6

M−Lzw

∂P
M−Lzc

∂F 6

M−Lzw

∂V z
M−Lzw
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S = D1
MK
c
− [

(J1,4)MK
u
S4
MK
u

∂F 4

MK
u

∂V x
MK
u

+
(J1,4)M−Lxu

S4
M−Lxu

∂F 4

M−Lxu

∂V x
M−Lxu

+
(J1,5)MK

v
S5
MK
v

∂F 5

MK
v

∂V y
MK
v

+
(J1,5)M−Lyv

S5
M−Lyv

∂F 5

M
−Ly
v

∂V y
M
−Ly
v

+
(J1,6)MK

w
S6
MK
w

∂F 6

MK
w

∂V z
MK
w

+
(J1,6)M−Lzw

S6
M−Lzw

∂F 6

M−Lzw

∂V z
M−Lzw

]

As a solution of this equation, the pressure increments will be used to compute the velocity
increments thanks to (III.7) and (III.8).

III.3.3 Incréments d’enthalpie et de concentration

To compute the enthalpy increments all we need is to develop the second row of the system
(III.11):

(J3,1)MK
c

(∆P )MK
c

+
∂F 3

MK
c

∂hMK
c

(∆h)MK
c

+
∂F 3

MK
c

∂(V x)MK
u

(∆V x)MK
u

+
∂F 3

MK
c

∂(V x)M−Lxu

(∆V x)M−Lxu

+
∂F 3

MK
c

∂(V y)MK
v

(∆V y)MK
v

+
∂F 3

MK
c

∂(V y)M−Lyv

(∆V y)M−Lyv
(III.14)

+
∂F 3

MK
c

∂(V z)MK
w

(∆V z)MK
w

+
∂F 3

MK
c

∂(V z)M−Lzw

(∆V z)M−Lzw
= D2

MK
c

In the equation (III.14), the pressure increments and the velocity increments are supposed to
be known (see sectionIII.3.2). Then only the enthalpy increments are unknown and they can be
computed as follows:

(∆h)MK
c

=
1

∂F 3

MK
c

∂h
MK
c

[D2
MK
c
−
∂F 3

MK
c

∂PMK
c

(∆P )MK
c
−

∂F 3
MK
c

∂(V x)MK
u

(∆V x)MK
u
−

∂F 3
MK
c

∂(V x)M−Lxu

(∆V x)M−Lxu

−
∂F 3

MK
c

∂(V y)MK
v

(∆V y)MK
v
−

∂F 3
MK
c

∂(V y)M−Lyv

(∆V y)M−Lyv

(III.15)

−
∂F 3

MK
c

∂(V z)MK
w

(∆V z)MK
w
−

∂F 3
MK
c

∂(V z)M−Lzw

(∆V z)M−Lzw
]

The same method applies for the concentration increments that can be computed using the
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following relationship:

(∆C)MK
c

=
1

∂F 2

MK
c

∂C
MK
c

[D3
MK
c
−
∂F 2

MK
c

∂PMK
c

(∆P )MK
c
−
∂F 2

MK
c

∂hMK
c

(∆h)MK
c

−
∂F 2

MK
c

∂(V x)MK
u

(∆V x)MK
u
−

∂F 2
MK
c

∂(V x)M−Lxu

(∆V x)M−Lxu

−
∂F 2

MK
c

∂(V y)MK
v

(∆V y)MK
v
−

∂F 2
MK
c

∂(V y)M−Lyv

(∆V y)M−Lyv
(III.16)

−
∂F 2

MK
c

∂(V z)MK
w

(∆V z)MK
w
−

∂F 2
MK
c

∂(V z)M−Lzw

(∆V z)M−Lzw
]

III.3.4 Consistency

Before applying the "pressure-based method" it is necessary to ensure its consistency. To do so
we consider the simplified moment equation in one dimension :

V n+1
MK
u
− V n

MK
u

∆t
+

1

∆x

[(
(V D)n+1

M+Lx
c

(V M)n+1

M+Lx
c
− (V D)n+1

MK
c

(V M)n+1
MK
c

)
+ (V )n+1

MK
u

(
(V M)n+1

M+Lx
c
− (V M)n+1

MK
c

)]
= 0

(III.17)
with:

(V M)n+1
MK
c

=
V n+1
MK
u

+ V n
M−Lxu

2
; (V M)n+1

M+Lx
c

=
V n
M+Lx
u

+ V n+1
MK
u

2

(V D)n+1
MK
c

=


V n
M−Lxu

if (V M)n+1
MK
c
> 0

V n+1
MK
u

otherwise

(V D)n+1

M+Lx
c

=


V n+1
MK
u

if (V M)n+1
MK
c
> 0

V n
M+Lx
u

otherwise

We assume that (V M)n+1
MK
c
> 0 and (V M)n+1

MK
c
. The equation III.17 becomes:

V n+1
MK
u
− V n

MK
u

∆t
+

(V n+1
MK
u

)2 − (V n
M−Lxu

)2

2∆x
= 0 (III.18)

⇒
V n+1
MK
u
− V n

MK
u

∆t
+

(V n+1
MK
u

)2 − (V n
MK
u

)2

2∆x
+

(V n
MK
u

)2 − (V n
M−Lxu

)2

2∆x
= 0
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⇒ Using a Taylor expansion such that CFL = ∆t|V |
∆x

we have :

∂V

∂t

(
1 + CFL

V

|V |

)
+

[
∂(V × V )

∂x
− V ∂V

∂x

]
+ Θ(∆x) + Θ(∆t) = 0

Then the consistency given by the truncation error e = ∂V
∂t

CFL V
|V | + Θ(∆x) + Θ(∆t) is

obtained when CFL = 0.

III.3.5 Key variables

In this step we determine the converged 1 key variables of the porous 4 equations model (I.26):

• the pressure field P using the pressure increments;

• the enthalpy field h using the enthalpy increments;

• the concentration field C using the concentration increments;

• the velocity field
−→
V using the velocity increments.

Once the variables P , h, C and
−→
V are known, we easily compute the rest of the variables of

the model:

• the density field and the internal energy field using the equations of state(I.27);

• the phase variables using the mixture variables.

1Convergence if ∆Uk+1 = Uk+1 − Uk < ε where ε is the user’s desired convergence criterion



Chapter IV
Numerical test

To check out the efficiency of the numerical method described in chapters II and III we realize
different 1-D tests:

The physical quantities that we use in these tests matches the functioning of the Pressurized
Water Reactors or PWR.
We consider a 4.2 m length channel heated by a thermal flux Q constant in time and space and
a stiffened gas fluid ([4]) on which we impose the following conditions :

• Zero inlet gas concentration Ci = 0

• Constant inlet enthalpies hli = 1.3106 J/kg and hvi = 2.6106 J/kg

• Constant outlet pressure Po = 155 bars

• Positive inlet velocities uli > 0 and uvi > 0

The table below gives the details of the realized tests.

Test Chanel simple Low inlet velocity Porosity Charge loss Channel complete
Q (W ) 108 7.5× 106 0 0 108

ui (m.s
−1) 1 0.01 1 1 1

g (m.s−2) −9.81 −9.81 0 0 −9.81

φ [1; 1; 1] [1; 1; 1] [1, 0.5, 1] [1; 1; 1] [1; 0.5; 1]

K 0 0 0 5 5

To realize each of the tests we make use of the "Full Jacobian" and "pressure-base" methods.
We also compare the Ishii and the slip models of the relative velocity. The analytic solutions are
given in section see section IV.1
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IV.1 Analytic solutions

According to [4], the analytic solutions are given by:

h∞(z) = he +

∫ z

0

Q(y) dy (IV.1)

ρ(h∞(z), P0) =



ρl(h
∞(z), P0) if h∞(z) ≤ hsl

ρsl ρ
s
l (h

s
v−hsl )

ρsvh
s
v−ρsl h

s
l−h∞(z)(ρsv−ρsl )

if hsl ≤ h∞(z) ≤ hsv

ρv(h
∞(z), P0) if h∞(z) ≥ hsv(P0)

(IV.2)

α(h∞(z), P0) =



0 if h∞(z) ≤ hsl

ρsl (h
∞(z)−hsl )

ρsvh
s
v−ρsl h

s
l−h∞(z)(ρsv−ρsl )

if hsl ≤ h∞(z) ≤ hsv

1 if h∞(z) ≥ hsv(P0)

(IV.3)

u∞(z) =
Di

ρ(h∞(z), p0)
such that Di = ui ρ(hi, p0) (IV.4)

P∞(z) = P0 + g

∫ L

z

ρ(h∞(y), P0) dy +

[
(D2

i )

ρ(h∞(y), P0)

]y=L

y=z

(IV.5)

The quantities hsl = hsl (P0) , hsv = hsv(P0) , ρsl = ρsl (P0) and ρsv = ρsv(P0) are computed using the
stiffened gas’s state laws(see [4]).
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Channel simple

Fig. IV.1 : Channel simple/slip model

Porosity

At the stationary state and according to the mass equation we have:

∂ρ

∂t
= 0 ⇒ ∂φρV

∂x
= 0

⇒ φρV = cst

Yet ρ varies little in space(then considered as a constant) then we have

φV = cst

⇒ V =
cst

φ
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And since φ = [1, 0.5, 1] (constant piecewise function) . Then the velocity is also a constant
piecwise function(see figure IV.2).
Porosity is divided by 2 in the middle φmid = φ

2
then the velocity is multiplied by 2:

Vmid =
cst

φmid
= 2

cst

φ

Fig. IV.2 : Porosity/slip model
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Charge loss

To compute the pressure drop due to the charge loss we recall the expression of the singular
charge loss:

τs =
−K
2∆x

ρV |V |1x=xs

At the stationary state the mass equation implies that the velocity is constant in space. So
according to the moment equation we can write:
At x = xs: 1

∆x
∂P
∂x

= τs = −K
2∆x

ρV |V | ⇒ ∂P
∂x

= −K
2
ρV |V |

⇒ PO − Pxs =
−K

2
ρV |V |∆x =

−5

2
× (0.002× 716.53× 1× 1)× (4.2/100) ' 18.655

Fig. IV.3 : Charge loss/slip model
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Channel complete

Fig. IV.4 : Channel complete/slip model



Conclusions

In this project we elaborated and implemented the "pressure-based solver" and the "full-jacobian
method"(see chapters II and III) based on a staggered grid to solve a two-phase 4 equation
model(see chapter I). Different tests have been realized to verify the efficiency of the method in
question. The results seem quite promising(see chapter IV).

In my internship I had the chance to discover what working in a reputable research center like
CEA looks like. There I was able to put into practice many things that I had learned in class
especially the numerical analysis and computing science courses and of course I learned many
things that make me love more and more working in the applied mathematics field.
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