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Abstract

This report presents the labour developed during six months of internship in the research
laboratory CERMICS working on the study of the Stochastic Grid Bundling Method (SGBM)
[7]. This method combines the techniques of simulation, regression, and bundling. Initially,
we analyse the use of SGBM for pricing multi-dimensional Bermudan options.

Subsequently we tackle the pricing of Credit Valuation Adjustment (CVA) on the back-
ward dynamics framework provided by the SGBM as exposed in [4]. The valuation of the
CVA has become a fundamental task these days due to the introduction of Basel III. There-
fore, the possibility to integrate the computation of exposure profiles in the SGBM means
a great advantage of this algorithm.

Computational results for several multi-dimensional European and Bermudan options show
the efficacy of the method studied for pricing purposes. Furthermore, we give examples of
calculating exposure and CVA for European and Bermudan options under the Black-Scholes
and Heston asset dynamics.

Key words — pricing, European options, Bermudan options, Stochastic Grid Bundling
Method (SGBM), Monte Carlo simulation, least-squares-polynomial-approximation, ex-
pected exposure, Credit Valuation Adjustment (CVA), Debit Valuation Adjustment (DVA),
Black-Scholes model, Heston model.
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1 Introduction

During my internship I have studied and implemented in Scilab and C the Stochastic Grid
Bundling Method (SGBM) proposed by Shashi Jain and Cornelis W. Oosterlee (2013) [7].
Coming face to face with both high dimensionality and path-dependent nature when pricing
Bermudan options under multi-dimensional stochastic processes, Monte Carlo simulation
methods appears to represent an interesting solution. The reason is that these methods,
based on stochastic sampling of the underlying state vector, have a convergence rate inde-
pendent of the dimension of the problem. In addition, pricing of Bermudan options, the
discrete version of the American-style options in which the holder can choose the time of
exercise, needs to take into account an optimal exercise policy. A dynamic programming
approach serves for this purpose. The SGBM exposed in [7] solves the difficulty of combin-
ing these two aspects at the same time for pricing Bermudan basket options. The method
employs techniques of simulation, regression, and bundling.

The second task accomplished in my internship has consisted of using the SGBM for com-
putation of exposure profiles. The possibility to integrate the computation of exposure
profiles in the SGBM thanks to its structure is proposed by Feng and Oosterlee (2014) [4].
This possibility means a great advantage of this algorithm due to the current importance
of pricing the Credit Valuation Adjustment (CVA), which needs the exposure values to be
computed. We apply the SGBM with European and Bermudan basket derivative products
under Black-Scholes dynamics, and options with a single asset under stochastic volatility
dynamics, the Heston model, in order to increase our range of financial models tackled.

My last task during the internship has comprised the understanding and translation from R
to C code of a method proposed by my internship directors Bernard Lapeyre and Marouan
Iben Taarit (2015) [8]. They establish a forward representation of a derivative’s expected
exposure, with the key idea of considering the expected exposure as the price of a compound
option, using Dupire-like arguments.

This report is organized as follows. After presenting the organizations involved in my
internship in Chapter 2, we describe the SGBM and we provide numerical experiments
of increasing complexity in Chapter 3 in order to discuss some features of the method.
Chapter 4 gives the framework to apply the SGBM for computing exposure profiles for Eu-
ropean and Bermudan options, and shows computational aspects and numerical examples
for Black-Scholes and Heston models. In Chapter 5, we present the approach for computing
derivatives exposure proposed by B. Lapeyre and M. Iben Taarit and we find again some
of their numerical results. Conclusions are finally addressed in Chapter 6.

Final Degree Internship Report 1



2 CERMICS

This internship has been developed in the CERMICS, has been framed in the Math-Risk
Project of INRIA, and has contributed to the software Premia. These three involved parts
are presented in this chapter.

2.1 CERMICS

CERMICS1 (‘Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scien-
tifique’) is a laboratory of École des Ponts ParisTech, hosting joint research teams with
INRIA and University of Marne-la-Vallée2. It is located at École des Ponts ParisTech in
Champs-sur-Marne. The scientific activity of CERMICS covers several domains in scientific
computing, modelling, and optimization.

The laboratory, whose direction is ensured by Jean-François Delmas, is organized in three
research teams :

• Modelling, Analysis, and Simulation group. The scientific themes of this group
are focused on the mathematical study, the numerical analysis, and the simulation of
mechanics and physics equations. The areas of application are :

– Molecular and multi-scale simulation, in particular, coupling the microscopic-
scale models (quantum physics and statistics) and the macroscopic-scale models.
The mathematical tools used are varied: partial differential equations analysis,
spectral analysis, stochastic processes analysis, variational methods, etc.

– Fluid and solid mechanics for which mathematical models and numerical methods
in a more macroscopic scale are developed. These works cover, on one hand, finite
element methods, discontinuous Galerkin methods, higher-order hybrid methods,
and error estimation a posteriori.

– PDE and materials. Dislocation dynamics modelled at different scales and open
boundary problems are studied.

• Optimization and Systems group. Focused on optimization and its applications.
Its main expertise domains are stochastic dynamic optimization and discrete opti-
mization. The group has established long-lasting cooperations with the industrial

1http://cermics.enpc.fr/
2http://www.u-pem.fr/
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2. CERMICS 3

world, the national and international academic community. Applications cover the
management of large-scale energy systems under uncertainty, the sustainable man-
agement of biodiversity, and the management and design of transport systems. For
this, the group develops numerical methods and scientific softwares.

• Applied Probability group. The objectives of the applied probability team are :

– The modelling, conception, and study of computational algorithms, from prob-
abilities or using them, in the following areas: financial mathematics, physics,
chemistry, biologist, and engineering sciences.

– The study of the probabilistic interpretation of partial differential equations.

Both of my supervisors, Bernard Lapeyre and Marouan Iben Taarit, are part of the Applied
Probability group as researcher and PhD student respectively.

In addition, the CERMICS is connected to the École Doctorale MSTIC3 and it adheres
to the SMAI4. The laboratory also contributes to the Labex Bézout5 at the interface be-
tween mathematics and computer science since 2011 and to the Labex MMCD6 since 2012.

Figure 2.1: Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scien-
tifique.

2.2 INRIA

INRIA7 (‘Institut national de recherche en informatique et en automatique’) is a public sci-
ence and technology institution which promotes "scientific excellence for technology transfer
and society".

3http://www.univ-paris-est.fr/fr/index.html
4Société de Mathématiques Appliquées et Industrielles http://smai.emath.fr/?lang=fr
5Models and algorithms: from discrete to continuous http://www.univ-paris-est.fr/fr/

bezout-modeles-et-algorithmes-du-discret-au-continu/
6Multi-Scale Modelling & Experimentation of Materials for Sustainable Construction http://www.

univ-paris-est.fr/fr/labex-mmcd-modelisation-experimentation-pour-la-construction-durable/
7http://www.inria.fr/

RR Algorithms Implementation for Computing Bermudan Options Price and CVA

http://www.univ-paris-est.fr/fr/index.html
http://smai.emath.fr/?lang=fr
http://www.univ-paris-est.fr/fr/bezout-modeles-et-algorithmes-du-discret-au-continu/
http://www.univ-paris-est.fr/fr/bezout-modeles-et-algorithmes-du-discret-au-continu/
http://www.univ-paris-est.fr/fr/labex-mmcd-modelisation-experimentation-pour-la-construction-durable/
http://www.univ-paris-est.fr/fr/labex-mmcd-modelisation-experimentation-pour-la-construction-durable/
http://www.inria.fr/


2. CERMICS 4

Graduates from the world’s top universities, INRIA’s 2,700 employees rise to the chal-
lenges of digital sciences. Research at INRIA is organised in "project teams" which bring
together researchers with complementary skills to focus on specific scientific projects. With
this open, agile model, INRIA is able to explore original approaches with its partners in
industry and academia and provide an efficient response to the multidisciplinary and ap-
plication challenges of the digital transformation. The source of many innovations that
add value and create jobs, INRIA transfers expertise and research results to companies
(startups, SMEs8 and major groups) in fields as diverse as healthcare, transport, energy,
communications, security, and privacy protection, smart cities and the factory of the future.

From the infancy of computer science to the digital dominance of today, INRIA’s history
dates back more than forty years. Below are a few key figures9 about the National Institute,
which is placed under the supervision of the French Ministries of Research and Industry.

• Scientific activities

– 170 INRIA project-teams

– 4,500 scientific publications per year

– 300 PhDs supported

• Industrial relations

– 370 active patents

– 143 software programmes registered with France’s Software Protection Agency
in 2014

– 24 start-ups INRIA since 2010

• Structure

– 8 research centres located throughout France (Rocquencourt, Rennes, Sophia
Antipolis, Grenoble, Nancy, Bordeaux, Lille, and Saclay) and a head office in
Rocquencourt, near Paris.

• Human resources

– 2700 members of staff

– including 1,800 scientists

• Budgetary resources

– Total budget: 230 m e

– Proportion self-financed: 37%

8Small and medium-sized enterprises
92014 figures

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



2. CERMICS 5

Figure 2.2: Institut National de Recherche en Informatique et en Automatique.

2.2.1 Math-Risk

Math-Risk is a research team led by Agnès Sulem-Bialobroda for a mathematical risk han-
dling and it is based on the former project team Mathfi (2000-2011). It is a joint team
between, INRIA Paris-Rocquencourt, Ecole des Ponts et Chaussées (CERMICS labora-
tory) and the Université Paris-Est Marne la Vallée (LAMA10 laboratory).

The Mathfi project team has extensively contributed to the development of modelling and
computational methods for the pricing and hedging of increasingly complex financial prod-
ucts. Since the crisis of 2008, there has been a critical reorientation of research priorities in
quantitative finance with emphasis on risk. Financial mathematics is facing the following
new evolutions:

(i) The complete market modelling has become unsatisfactory to provide a realistic pic-
ture of the market and is replaced by incomplete and multidimensional models which
lead to new modelling and numerical challenges.

(ii) Quantitative measures of risk coming from the markets, the hedging procedures, and
the lack of liquidity are crucial for banks.

(iii) Uncontrolled systemic risks may cause planetary economic disasters, and require bet-
ter understanding.

(iv) Deregulation of stock markets and its consequences lead to study high frequency trad-
ing.

Research themes

To meet these new issues, Math-Risk proposes to focus on dependence modelling, systemic
risk, market microstructure modelling, and risk measures. The research on the areas related
to the current expertise of the team in modelling and numerical analysis remains active in
this new context, motivated by new issues. Mathematical tools for dealing with the new
challenges of financial modelling are stochastic modelling, stochastic analysis, in particular
stochastic (partial) differential equations and various aspects of stochastic control of these
equations, and advanced numerical probability for effective solutions.

10http://www.u-pem.fr/recherche/unites-de-recherche/lama-umr-8050-cnrs/
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2. CERMICS 6

2.3 Premia

Since the beginning our aim was to integrate the methods code programmed during this
internship in Premia11. In addition, we needed to verify our results with an evidence-based
source in the process so we did it with other methods already present in this powerful tool
for professional financial research teams. Therefore, a presentation of this tool and its basic
working principle is deserved.

Premia is a software designed for option pricing, hedging, and financial model calibra-
tion. It is provided with its C/C++ source code and an extensive scientific documentation.

Efficient computations of prices and hedges for derivative products are major issues for
financial institutions. The development of increasingly complex financial products requires
the use of advanced stochastic and numerical analysis techniques. A consortium of banks12

have been using Premia since its beginning in 1999 and have brought important contribu-
tions to the project.

After the release of each new version of Premia, two-year-older versions become available
on its web site (Figure 2.3) and can be freely downloaded for academic purposes.

Premia is developed by the Math-Risk team which gathers research scientists from IN-
RIA (the French national institute for research in computer science and control), École des
Ponts ParisTech (CERMICS), and the University of Marne la Vallée (Figure 2.4).

Figure 2.3: Premia’s home page.

Its working interface can be seen in Figure 2.5 for the pricing of an European put on several
assets under the Black-Scholes model and in Figure 2.6 for the pricing of an Asian call on
a single asset under the Heston model. We can appreciate in these figures all the possible
parameters to modify at user’s whim.

11https://www.rocq.inria.fr/mathfi/Premia/
12Premia is developed in interaction with a consortium of financial institutions or departments presently

composed of: Crédit Agricole Corporate and Investment Bank, Natixis, Société Générale, Raiffeisen Zen-
tralbank and Bank Austria. The participants of the consortium finance the development of Premia (by
contributing to the salaries of expert engineers hired by the Math-Risk project every year to develop the
software) and help to determine the directions in which the project evolves.

RR Algorithms Implementation for Computing Bermudan Options Price and CVA
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2. CERMICS 7

Figure 2.4: Premia’s creator institutions.

Figure 2.5: Example of European put pricing with Premia.

Figure 2.6: Example of Asian call pricing with Premia.

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



3 The Stochastic Grid Bundling Method: Effi-
cient Pricing of Bermudan Options

Shashi Jain and Cornelis W. Oosterlee (2013) [7] proposed the Stochastic Grid Bundling
Method (SGBM) for pricing of Bermudan options with several underlying assets. The steps
involved in the SGBM algorithm, are:

• Step I: Generating grid points

• Step II: Option value at terminal time

• Step III: Bundling

• Step IV: Mapping high-dimensional state space to a low-dimensional space

• Step V: Computing the continuation and option values at tm−1

We perform initially the first two steps and then, starting from tM and moving backwards in
time, steps III to V are performed for each time step, tm, m ≤M . The next sections retake
the theoretical support exposed in [7] and for more details and the proofs of all theoretical
results one can look into the paper.

As mentioned before, the study and understanding of the SGBM represents the first task
of my internship. I started working on the clustering algorithms isolated from the finan-
cial environment and later I came into the other parts involved in this pricing method.
Pseudocodes of the algorithmic process followed are presented in Appendix D. Every graph
displayed from here has been produced with the code I have done during the internship,
which version in C is meant to be in Premia v.18 (see Appendix C). We discuss the outcome
obtained for some examples of increasing complexity in the Numerical experiments section.

3.1 Stochastic Grid Bundling Method

We start providing the definition of the Bermudan options pricing problem and setting up
the notations given in [7] and used in this section, and then explaining the steps involved
in the SGBM algorithm.

Final Degree Internship Report 8



3. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options 9

3.1.1 Problem formulation

We assume a complete probability space (Ω,F ,P) and we consider the time duration [0, T ],
finite, corresponding to the derivative product’s life. Ω is the set of all possible realiza-
tions of the stochastic market in this temporal space and Ft, the information structure in
this market, t ∈ [0, T ]. P is the risk-neutral probability measure on elements of F . In
this frame, St = (S1

t , . . . , S
d
t ) ∈ Rd, represents the market state variable at each time

t ∈ [t0 = 0, . . . , tm, . . . , tM = T ], discrete.

Denoting rt the instantaneous risk-free rate of return, which we consider here constant,
we define the discount as :

Dtm =
Btm

Btm+1

,

where Bt = exp (
∫ t
0
rsds) is the risk-less savings account function. We call the intrinsic

value of the option h(St), which indicate that the holder of the option receives max (ht, 0),
if the option is exercised at time t. We are interested in finding the value of the option at
the initial state St0 , which can be computed as :

Vt0(St0) = max
τ

E
[
h(Sτ )
Bτ

]
,

where τ is a stopping time taking values in the discrete set {0, t1, . . . , T}. The value of
the option at its maturity T corresponds to the product’s pay-off,

VT (ST ) = max (h(ST ), 0). (3.1)

The conditional continuation value Qtm , i.e. the expected pay-off at time tm+1, is given by:

Qtm(Stm) = DtmE[Vtm+1(Stm+1)|Stm ]. (3.2)

For Bermudan options, the value of the option at time tm and state Stm is calculated as :

Vtm(Stm) = max (h(Stm), Qtm(Stm)). (3.3)

3.1.2 Initial steps

We start by doing a Monte Carlo simulation, following the indicated scheme for the required
financial model, of the stochastic paths. In Appendix A we can see the C code to gener-
ate grid points on a single or multiple assets under Black-Scholes dynamics, which is the
model treated in this Chapter. Simulating independent copies of the market state variable,
{St0(n), ...,StM (n)}, n = 1, ..., N , is a forward process in which all the paths start from the
same initial state St0 . Therefore, our grid is :

St0 St1(1) · · · · · · StM (1)
St0 St1(2) · · · · · · StM (2)
...

...
...

...
...

...
...

...
...

...
St0 St1(N) · · · · · · StM (N)

 .

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



3. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options 10

Subsequently the option value for all paths at terminal time is computed as :

VtM (StM ) = max (h(StM ), 0).

Figure 3.1 shows a N = 10, 000 paths simulation of a single asset under Black-Scholes model
for data set 1 in Table 3.1 (table further on this report introducing the parameters for the
numerical examples under Black-Scholes model presented).

Figure 3.1: Plot of generated paths.

3.1.3 Bundling

We want to sample the distribution of Stm conditional on the state Stm−1 , in a backward
loop. To accomplish this, the SGBM firstly clusters using some measure of proximity the
grid points at tm−1 into ν non-overlapping partitions. Then, we sample Stm with those
paths originated from the bundle that contains Stm−1 . We have considered the three differ-
ent approaches for partitioning proposed by Jain and Oosterlee (2013) [7] for SGBM and
we explain them next.

K-means clustering algorithm

The objective of this algorithm is to cluster points so as to minimize the sum of squares
within clusters, i.e :

arg min
Btm−1

ν∑
β=1

 ∑
Stm−1 (n) ∈ Btm−1 (β)

‖Stm−1(n)− µβ‖2
 ,

where µβ is the mean of the points into each of the ν non-overlapping bundles β, Btm−1(β).
The algorithm (Lloyd 1982 [9]) uses an iterative refinement technique. Initially, we take ν
aleatory points from the N points to cluster as bundle centroids, µ1

1, ..., µ
1
ν . Subsequently,

we perform the following steps alternately :

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



3. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options 11

• Step 1 : Assign grid points to the set whose mean is closest to it.

B(l)
tm−1

(β) = {Stm−1(n) : ‖Stm−1(n)− µ(l)
β ‖

2 ≤ ‖Stm−1(n)− µ(l)
j ‖2,∀ 1 ≤ j ≤ ν},

where grid point Stm−1(n) is assigned to just one bundle.

• Step 2 : If the assignment of the grid points does not change anymore from a previous
iteration the process has converged, else the means are updated into each of the new
clusters as :

µ
(l+1)
β =

1

|B(l)
tm−1

(β)|

∑
Stm−1 (n) ∈ B

(l)
tm−1

(β)

Stm−1(n),

where |B(l)
tm−1

(β)| is the cardinal of the set B(l)
tm−1

(β).

As we will see in ‘Numerical experiments’ section, this is computationally the most expen-
sive algorithm of the three presented here. In order to not prejudice k-means clustering
with respect to the others, especially in high dimensions, we can set a maximum number of
iterations before stopping performing those two steps, without having converged. Even in
this case, we find an accurate price.

In addition, we can specify directly centroids and just distribute grid points in clusters
as indicated in step 1. We use this procedure when computing path estimator with cen-
troids previously found in calibration phase. Figure 3.2 shows the bundles obtained using
the k-means clustering algorithm for a two dimension grid of normally distributed points.

Figure 3.2: Bundling of grid points in a two-dimensional space using k-means clustering.
The grid points are bundled into 6 non-overlapping partitions.

Recursive bifurcation

As convergence when facing high dimension state vectors in k-means algorithm can be
slow, Jain and Oosterlee (2013)[1] propose fast practical schemes to cluster grid points
based on proximity :

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



3. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options 12

• Step 1 : Compute the mean of the grid points along each dimension,

µδ =
1

N

N∑
n=1

Sδtm−1
(n), δ = 1, ..., d.

• Step 2 : Bundle separately along each dimension the grid points by dividing the grid
into 2d sets according to :

Aδ = {Stm−1(n) : Sδtm−1
(n) > µδ, n = 1, ..., N},

Āδ = {Stm−1(n) : Sδtm−1
(n) ≤ µδ, n = 1, ..., N},

where δ = 1, ..., d.

• Step 3 : The 2d unique non-overlapping clusters are obtained intersecting these sets
as follows :

Btm−1(1) = A1 ∩ A2 ∩ ... ∩ Ad,
Btm−1(2) = Ā1 ∩ A2 ∩ ... ∩ Ad,
Btm−1(3) = A1 ∩ Ā2 ∩ ... ∩ Ad,

..
...

Btm−1(2
d) = Ā1 ∩ Ā2 ∩ ... ∩ Ād,

(3.4)

We can continue performing as much iterations as we want of previous steps to split further
each bundle. Figure 3.3 shows an example of bundling grid points, N = 50, 000, in a two-
dimensional space with the recursive bifurcation approach. In first iteration we divide in
two each dimension obtaining 4 clusters. Then, each of these partitions follows the same
procedure, resulting in 16 partitions in the second iteration, 64 in the third iteration, and
256 bundles in the fourth iteration. Abstracting a formula, after p iterations the number
of bundles will be (2d)p. As we can appreciate, this scheme will be less interesting, even
unworkable, with increasing dimensions of the problem, as the number of clusters obtained
will be too large even after just one iteration.

Recursive bifurcation of reduced state space

We can also bundle the grid points based on proximity of the reduced state space h(Stm−1),
i.e. starting by using the payoff as a mapping function and then employing the cluster-
ing procedure of the recursive bifurcation to the mapped points (which belong to dimension
d = 1). However, in terms of programming, we do not call the recursive bifurcation function
after obtaining the reduced state space, because of feasible optimizations in the algorithm
and memory allocation. The number of bundles obtained after p iterations in this case
will be 2p. Figure 3.4 shows an example of bundling of uniformly distributed points in
[0, 1]× [0, 1]. It results in 8 partitions with three iterations of the method, 23.
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(a) Gaussianly distributed points (b) 1st bifurcation (c) 2nd bifurcation

(d) 3rd bifurcation (e) 4th bifurcation

Figure 3.3: Clustering of Gaussianly distributed points in a two-dimensional space.

Figure 3.4: Bundling into 8 non-overlapping clusters of grid points using recursive bifurca-
tion of reduced state space with the geometric mean as mapping function.
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3.1.4 Mapping high-dimensional state space to a low-dimensional
space

Corresponding to each bundle Btm−1(β), β = 1, ..., ν, a parametrized value function Z :
Rd × RK → R, is introduced. This approximation of the value function assigns values
Z(Stm , α

β
tm) to states Stm in order to better deal with the large dimension of the state

space. αβtm ∈ RK is a vector of free parameters and we aim to choose, for each tm and
bundle β, a parameter vector so that Z(Stm , α

β
tm) ≈ Vtm(Stm).

We are said to use basis functions that map the state space from Rd to R, to approxi-
mate the value functions. The function Z(Stm , α

β
tm) projecting the option values onto the

span of φ is restricted to a linear combination of basis functions and, can be approximated
by :

Z(Stm , α̂
β
tm) =

K∑
k=1

α̂βtm(k)φk(Stm), (3.5)

satisfying,

arg min
α̂βtm

|Btm−1 (β)|∑
n=1

(
Vtm(Stm(n))−

K∑
k=1

α̂βtm(k)φk(Stm(n))

)2

. (3.6)

Therefore, the parametrized function Z(Stm , α̂
β
tm) is computed, corresponding to each bundle

Btm−1(β), using ordinary least squares regression, so that:

Vtm(Stm(n)) = Z(Stm(n), α̂βtm) + εβtm , (3.7)

where Stm−1(n) ∈ Btm−1(β) and εβtm is the error made in the regression. In theoretical terms,
it is assumed that E[εβtm |Stm−1(n)] = 0.

Figure 3.5 shows an example of clustering into 5 bundles, with k-means algorithm, of the
paths at each time step when computing calibration for the SGBM. Calibration is how we
call to the phase in which we calculate the vector of free parameters αβtm for each tm and
bundle β by performing a least squares regression. These parameters are stored and used
to compute the estimators of the price. For this example we take data set 1 in Table 3.1
and N = 20, 000.

Figure 3.6 shows the evolution of the option value function for a put on a single asset, clus-
tering the paths at each time step in 8 bundles with k-means, when computing calibration
for SGBM. We obtain the graphics in backward, but we display them in the forward tempo-
ral order. The black line correspond to the linear regression and it can be appreciated how
it tends to the payoff from buying a put when the date approaches to the option maturity,
T = tM . For this example we take data set 1 in Table 3.1 and N = 50, 000.
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Figure 3.5: Clustering of the paths at each time step.

3.1.5 The continuation and option values at tm−1

Now, using the parametrized option value function Z(Stm , α̂
β
tm) corresponding to bundle

Btm−1(β), the continuation values for the paths into this cluster are approximated by :

Q̂tm−1(Stm−1(n)) = Dtm−1E[Z(Stm , α̂
β
tm)|Stm−1 = Stm−1(n)], (3.8)

where Stm−1(n) ∈ Btm−1(β), n = 1, ..., N , β = 1, ..., ν. Using Equation (3.5), this can be
written as:

Q̂tm−1(Stm−1(n)) = Dtm−1E

[(
K∑
k=1

α̂βtm(k)φk(Stm)

)
|Stm−1 = Stm−1(n)

]

= Dtm−1

K∑
k=1

α̂βtm(k)E[φk(Stm)|Stm−1 = Stm−1(n)].

(3.9)

The direct estimator of the option values for the paths at tm−1 is defined as :

V̂tm−1(Stm−1(n)) = max(h(Stm−1(n)), Q̂tm−1(Stm−1(n))),

where n = 1, . . . , N . The direct estimator is said to be an upper bound, E[V̂t0(St0)] ≥
Vt0(St0), converging to the true price when simulating an increasing number of paths and
using an increasing number of bundles to cluster paths at each time step.

We remark here that the theoretical support provided in [7] to show that the direct estima-
tor is an upper bound (biased high) is based on the assumption that E[εβtm|Stm−1(n)] = 0,
which is theoretically right. However, numerically, if the regression is not perfectly per-
formed, we will not obtain such an unbiased estimate in (3.7). Moreover, at this point, Jain
and Oosterlee [7] indicate choosing the vector of basis functions φ such that it represents the
most salient properties of a given state and ideally such that E[φk(Stm)|Stm−1 = Stm−1(n)]
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(a) t1 (b) t5 (c) t12

(d) t19 (e) t25 (f) t30

(g) t38 (h) t44 (i) tM−1 = t49

Figure 3.6: Regression evolution at different epochs tm. Corresponding dates are displayed
under each plot.

is known in a closed form, or has an analytic approximation, to use it. They point that h(·)
is usually an important basis function and we employ their same vector of basis functions,
but we do not utilize the closed form of E[φk(Stm)|Stm−1 = Stm−1(n)] corresponding to each
kind of option pricing. We use directly the first right hand side in (3.9). Therefore, it is not
strange that, in our numerical examples, direct estimator is not sometimes an upper bound
as it is shown in [7] experiments.

3.1.6 Computing path estimator

After finishing previous procedure to compute the direct estimator, we simulate a new
set of paths and we develop a lower bound estimator based on these new paths. Us-
ing the same scheme followed in prior generation of grid points, we simulate S(n) =

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



3. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options 17

St1(n), . . . , StM (n), n = 1, . . . , NL. Along each path, the approximate optimal policy
exercises at,

τ̂ ∗(S(n)) = min{tm : h(Stm(n)) ≥ Q̂tm(Stm(n)),m = 1, . . . , M},

where Q̂tm(Stm(n)) is computed using Equation (3.9), which means to compute another
backward loop including bundling again, but using directly the parameters αβtm stored be-
fore for the regression step.

The path estimator V t0
(St0), lower bound respect to the true option value, is :

V t0
(St0) = lim

NL

1

NL

NL∑
n=1

h(Sτ̂∗(S(n))) ≤ Vt0(St0).

3.1.7 Pros and cons of SGBM

Other advantages of this method include the possibility to use it to compute a duality-based
upper bound estimator and its capacity to compute Greeks at the same time, typically re-
quires much more computing time than pricing the contract. However, due to the limited
period of the internship, we have not had the time to tackle these powerful properties.

As a ‘weakness’ of the SGBM presented in [7] we can mention the closed formulas uti-
lized while pricing different payoffs. It is necessary to compute the moments involved in
calculation of the continuation value differently each time that we want to experiment with
another payoff. We avoid the necessity of the moments using directly (3.9) first right hand
side instead of the second one, and we employ the same method to price all the payoffs
present in the ‘Numerical experiments’ section.

3.2 Numerical experiments

We illustrate in this section the performance of the SGBM by pricing different types of
Bermudan options and European options. We compare our results with the ones found by
S. Jain and C. W. Oosterlee [7] and we discuss for different number of assets priced the role
of bundling in computing the option price. The pricing results of SGBM are also compared
against other methods.

In following examples, all underlying assets follow the standard single or multi-asset Black-
Scholes model, see Appendices A and B. Unless specified otherwise, we use MERSENNE
as PNL random generator; N = 50, 000 paths for computing the calibration, the direct
estimator, and the early exercise policy; and NL = 200, 000 paths for computing the path
estimator. In our code, we can easily choose to use a completely different set of paths for
the path estimator or to share the paths simulated for the direct estimator. As in initial
tests, we found better pricing results sharing the paths, the first 50,000 paths are common
for the examples shown here. In case of the k-means clustering algorithm, we fix to 100 the
maximum number of iterations before to stop without convergence.
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In addition, we point out that, due to the fine scale employed, sometimes a mili-scale,
we may not consider the prices achieved as precise as in fact they are. But we believe that
a fine scale is a better choice to appreciate special features of every plot.

The parameter sets used for the different problems are presented in Table 3.1. Remark
that in Premia interface there is an "Annual interest rate" parameter, see Figures 2.5 and
2.6; whereas for us, r, the drift of the process for the stock, is continuous compounding1. So
we have to use the formula (1 + R)T = er, where T is the maturity, to use the same cases.
For example, for r = 0.06 and T = 1, we have R = e0.06 − 1 = 0.06183654→ 6.183654% as
Premia parameter.

Sδt0 K r qδ σδ ρij T M
Set 1 40 40 0.06 - 0.2 - 1 50
Set 2 40 40 0.06 0 0.2 0.25 1 10

Table 3.1: Parameter values used in the examples.

3.2.1 Bermudan options on single asset

We begin with a Bermudan put on a single asset, where the risk-neutral asset price follows
the stochastic differential equation

dSt = rStdt+ σStdWt, (3.10)

r being the continuously compounded risk-free interest rate, σ the annualized volatility
(both constant), Wt is the standard Brownian motion. The option can be exercised a finite
number of times per year,M , including the final expiration time tM = T . As basis functions
we use φk(Stm) = Sk−1tm , where k = 1, . . . , 3, unless specified otherwise.

First, the convergence of the three clustering algorithms and their corresponding computa-
tional times are compared. Figures 3.7 (a) and (b) show the convergence with an increasing
number of bundles for the two schemes. Being in dimension one, it needs to be noticed that
for recursive bifurcation (RB) and recursive bifurcation of reduced state space (RBRSS) we
obtain the same pricing results because the mapping function does not change the actual
state space, we already are in dimension 1. Therefore we show their convergence results
all at once, but we display both computational times, Figure 3.7 (c), because they are not
exactly the same due to algorithm performances. A highly accurate option price, computed
using the COS method [3], is given as reference in [7], so we also use it as reference. We add
equally as reference here the price computed with Monte Carlo (MC) Longstaff Schwartz
method in Premia for Black-Scholes options on single asset. Figures 3.7 (c) and (d) compare
the total computational times. Fast convergence with increasing bundles for lower compu-
tational time makes recursive bifurcation methods the prioritized methods in this case. In

1"The process of earning interest on top of interest. The interest is earned constantly, and immediately
begins earning interest on itself." investopedia.com
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case of the k-means clustering algorithm, [7] establishes first the use of a set of 5, 000 train-
ing paths to obtain the optimal centroids corresponding to each bundle. However, it is not
indicated if the time to do such optimization is taken into account in the computational
time displayed. Differences in k-means clustering computational time between 3.7 (c) and
(d) are supposed to come from this point, because we just take the centroids aleatory.

(a) (b)

(c) (d)

Figure 3.7: Option price for a put on a single asset, corresponding to different numbers
of bundles used, when (a) k-means clustering is used and (b) recursive bifurcation scheme
is used to partition the state space. Parameter set 1 in Table 3.1 is employed. The true
option value is 2.3140. (c) Total computational time with our algorithms and (d) total
computational time presented in [7].

We have also studied how affected by the number of basis functions (approximation di-
mension) the pricing with SGBM is. Figures 3.8 (a) and (b) show the evolution of the
price w.r.t. this parameter for the two methods. In Figures 3.8 (c) and (d) we display the
approximation absolute error, |RefPrice − Estimator|, where the vertical bars denote the
absolute value and RefPrice the paper reference price, 2.3140.

The convergence of the bundling schemes when increasing the number of Monte Carlo sim-
ulated paths is additionally studied. Figures 3.9 (a) and (b) show the estimators evolution
with an increasing number of Monte Carlo simulations for the two methods. We keep
proportional the relation between N , the number of paths for computing the calibration
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(a) (b)

(c) (d)

Figure 3.8: Option price for a put when modifying the number of basis functions to
parametrize when (a) k-means clustering is used and (b) RB scheme is used to partition the
state space. (c) Approximation absolute error with k-means clustering and (d) recursive
bifurcation scheme. Parameter set 1 in Table 3.1 is employed and the number of clusters is
fixed to 8. MC Longstaff Schwartz method in Premia is also compared.

and direct estimator, and NL, the number of paths for computing the path estimator, so
that NL = 4 × N . Graphics x axis represents NL. We validate that compared to another
regression-based method, the Least Squares Method, Longstaff and Schwartz (2001) [10],
the approximate option values computed using SGBM have lower numerical noise.

Finally, we examine variance of direct and path estimators. It is pointed in [7] that the direct
estimator (DE) has a significantly lower variance when compared to the path estimator
(PE), however for our version we find quite similar low variances for both of them, Table
3.2. Figure 3.10 displays a series of 1, 000 computed direct and path estimators using a
random generator whose seed is initialised aleatory each iteration with the current calendar
time (on Unix systems, seconds since 1st January 1970). Parameter set 1 in Table 3.1 is
employed and the number of clusters is fixed to 8 for this experiment.
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(a) (b)

Figure 3.9: Option price for a put when increasing the number of MC simulations when (a)
k-means is used and (b) RB scheme is used to partition the state space. Parameter set 1
in Table 3.1 is employed and the number of clusters is fixed to 8. MC Longstaff Schwartz
method in Premia is also compared.

Mean DE Var DE Mean PE Var PE
k-means 2.31832 1.4317e-04 2.31101 3.7988e-05

RB 2.31845 1.5182e-04 2.31151 3.7484e-05

Table 3.2: Means and variances values for direct and path estimators with k-means cluster-
ing and recursive bifurcation schemes. The sample size is 1, 000. The true option value is
2.3140.

Figure 3.10: Plot of a series of 1, 000 computed direct and path estimators.

3.2.2 Geometric Basket Option

Consider now the pricing of a Bermudan option on the geometric average of d assets, the
put has intrinsic value :

h(Stm) = K − (
d∏
δ=1

Sδtm)
1
d .

The asset prices are assumed to follow correlated geometric Brownian motion processes, i.e.

dSδt
Sδt

= (r − qδ)dt+ σδdW
δ
t , (3.11)

where each asset pays a dividend at a continuous rate of qδ, again different with respect to
the Premia interface "Annual dividend rate" parameter. W δ

t , δ = 1, . . . , d, are standard
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Brownian motions and ρij is the instantaneous correlation coefficient between W i
t and W j

t ,
see Appendix A and B. As basis functions we use

φk(Stm) =

(
(
d∏
δ=1

Sδtm)
1
d

)k−1

, k = 1, . . . , 3.

As a benchmark result for the algorithm, [7] takes the price of the problem reduction to
a one-dimensional problem, using again the COS method [3]. We also take that price as
reference.

For a five-dimensional problem, Figure 3.11 shows the convergence of the DE and PE
with an increasing number of clusters for the different bundling schemes. For the recursive
bifurcation of the reduced state space (RBRSS), the geometric mean of the asset prices
is used to map the high-dimensional state space. RBRSS leads to better convergence, is
computationally most efficient, and, has a great flexibility on the choice of the number of
bundles. There is no graphic for RB because it would be just a point corresponding to
estimators when we take the 2d = 25 = 32 clusters resulting in the first bifurcation, so we
could not appreciate any convergence. Figure 3.11 (c) and (d) compare the computational
times corresponding to the bundling schemes used.

The convergence of the bundling schemes when increasing the number of Monte Carlo
simulated paths for the five-dimensional problem is studied as for Bermudan options on
single asset. Figures 3.12 (a), (b) and (c) show the estimators evolution with an increasing
number of Monte Carlo simulations for the three clustering methods.

Figures 3.13 (a) and (b) compare the convergence for a geometric basket on 15 assets, when
k-means and RBRSS are used for clustering. We do not use RB here due to the high
dimension of the problem. We obtain 2d = 215 = 32, 768 bundles just with one iteration of
RB, so having N = 50, 000 grid points, a significant number of the clusters do not contain
enough points. Figures 3.13 (c) and (d) give the total computational time for the two
methods. Notice that both k-means computational times are comparable, however, our
RBRSS computational time halve its peer in the paper. We study as well in this case the
convergence of the bundling schemes when increasing the number of Monte Carlo simulated
paths, Figures 3.14 (a) and (b).

Table 3.3 compares direct and path estimator variances and Table 3.4 displays the results
when using two different established random generators of PNL for the 15 assets case. The
results correspond to 32 bundles.

Mean DE Var DE Mean PE Var PE
k-means 1.11854 4.2740e-05 1.11468 1.0243e-05
RBRSS 1.12125 4.0163e-05 1.117 1.0817e-05

Table 3.3: Means and variances values for direct and path estimators with k-means cluster-
ing and RBRSS scheme. The sample size is 1, 000. The true option value is 1.1190.
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(a) (b)

(c) (d)

Figure 3.11: Put on geometric average of 5 assets pricing when (a) k-means is used, and (b)
RBRSS is used, to partition the state space. Parameter set 2 from Table 3.1 is employed.
The true option price is 1.3421. (c) Total computational times with our algorithms and (d)
total computational times presented in [7].

(a) (b) (c)

Figure 3.12: Option price for a put when increasing the number of MC simulations when
(a) k-means is used, (b) RB in high-dimensions is used and (c) RBRSS is used, to partition
the state space. Parameter set 2 in Table 3.1 is employed and the number of clusters is
fixed to 32. MC Longstaff Schwartz method in Premia is also compared.
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(a) (b)

(c) (d)

Figure 3.13: Option value for a put on geometric average of 15 assets, when (a) k-means
is used and (b) RBRSS scheme is used, for bundling. The reference option price is 1.1190.
Parameter set 2 in Table 3.1 is employed. Total computational times (c) with our algorithms
and (d) presented in [7].

(a) (b)

Figure 3.14: Option price for a put when increasing the number of MC simulations when (a)
k-means clustering is used, and (b) RBRSS is used, to partition the state space. Parameter
set 2 in Table 3.1 is employed and the number of clusters is fixed to 32. MC Longstaff
Schwartz method in Premia is also compared.
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k-means DE RBRSS DE k-means PE RBRSS PE
Knuth 1.1232 1.12415 1.11563 1.11585

Mersenne 1.1184 1.12013 1.11312 1.11652

Table 3.4: Direct and path estimators for Knuth and Mersenne generators with k-means
and RBRSS.

3.2.3 Arithmetic Basket Option

The intrinsic value function for an arithmetic average put option on d−assets is given by :

h(Stm) = K − (
1

d

d∑
δ=1

Sδtm).

The asset prices follow Equation (3.11) dynamics and as basis functions we use :

φk(Stm) = (
1

d

d∑
δ=1

Sδtm)k−1, k = 1, . . . , 3.

Figure 3.15 (a) and (b) show the convergence of the method with an increasing number
of bundles for an arithmetic basket on 15 assets. We just consider k-means and RBRSS
for bundling, as in the case of RB we have the same problem previously commented of a
too high number of clusters. The arithmetic mean of the asset prices is used to map the
high-dimensional state space for RBRSS. Figure 3.15 (c) displays the computational times
corresponding to different numbers of bundles, which is still in seconds, with the RBRSS
being computationally most efficient.

3.2.4 European options

Additionally, in order to use the method to price as much as possible different products,
we study the pricing of European options on d−assets, where the asset prices follow the
dynamics given by Equation (3.11). Another important reason to comprise the computa-
tional results of European basket options is that it has helped us to guarantee the correct
implementation of certain parts of the code, since it is a more basic case (see Appendix D).
As for Bermudan arithmetic basket options, the intrinsic value function of an European put
option on d−assets, is

h(StM ) = K − (
1

d

d∑
δ=1

SδtM ),

but it can be exercised only at its maturity, tM = T . The product’s pay-off is VT (ST ) =
max(h(StM ), 0). The difference resides in the possible exercise dates. We also use the same
basis functions as for the arithmetic Bermudan options and the arithmetic mean of the asset
prices to map the high-dimensional state space to the single-dimensional space for recursive
bifurcation of reduced state space.

Figure 3.16 (a) shows the convergence of the method with an increasing number of bundles
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(a) (b)

(c)

Figure 3.15: Option value for a put on arithmetic average of 15 assets, when (a) k-means
clustering is used and (b) RBRSS scheme is used, for bundling. The paper results reported
correspond to the case of 32 bundles. The parameter values from set 2 in Table 3.1 are
employed. (c) Computational times corresponding to different numbers of bundles.

for an European basket on 5 assets and, equally, in (b) for an European basket on 15 as-
sets. The pricing of European options is not affected by the clustering method and by the
number of clusters neither, so neither by the regression, which can be better understood
with pseudocodes in Appendix D.

(a) (b)

Figure 3.16: Option price when increasing the number of MC simulations for an European
put on (a) 5 assets, and (b) 15 assets. Parameter set 2 in Table 3.1 is employed. Monte
Carlo Jourdain Lelong method in Premia is also compared, using 95% confidence interval.
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4 The SGBM: Monte Carlo Calculation of Ex-
posure Profiles for Bermudan Options

This task of my internship has consisted of, firstly, understand what the exposure and the
Credit Valuation Adjustment (CVA) are, why it is so important to compute them these
days, and how we can compute exposure profiles using the advantageous structure of the
SGBM as proposed by Feng and Oosterlee (2014) [4]. In order to show the SGBM working
on this purpose, we apply it to European and Bermudan multiple asset derivative contracts
under Black-Scholes dynamics and options with a single asset under stochastic volatility dy-
namics, the Heston model. There is also a focus on the use of the SGBM for computation
of exposure profiles of options with a single asset under stochastic interest rate dynamics,
the Heston Hull-White model (HHW), in [4]. The development of this case is contemplated
as well previous to the end of the internship, but it will not be included in the present report.

Following the same planning as [4], we start introducing the concepts and mathemati-
cal formulation of CVA and exposure and subsequently we explain the base to employ the
SGBM to compute the CVA.

4.1 CVA and exposure

The introduction of Basel III1 has made the pricing of CVA a fundamental duty to all the
players in financial world these days. There are three key elements in assessing CVA :

(1) Loss given default, which is the percentage of loss in a default event.

(2) Expected exposure, which quantifies the expectation of the losses at a future moment.

(3) Probability of the counterparty default.

We assume here independence of these three elements, but in a general real-life situation,
they are correlated.

The credit exposure is the economic loss for a contract holder in case of counterparty
default without any recovery. The problem comes because the market moves unpredictably

1A comprehensive set of reform measures designed to improve the regulation, supervision and risk
management within the banking sector. The Basel Committee on Banking Supervision published the first
version of Basel III in late 2009, giving banks approximately three years to satisfy all requirements. Largely
in response to the credit crisis, banks are required to maintain proper leverage ratios and meet certain
capital requirements. http://www.investopedia.com/terms/b/basell-iii.asp
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and so the future exposure value is uncertain. A solution is to create an empirical exposure
density by Monte Carlo simulation of a big number of asset paths. Afterwards, we com-
pute the market values of the contract for each grid point, for example, as with the SGBM.
Thus, we have all the information needed to calculate the exposure at each grid point as well.

As it is logical, the contract holder suffers a loss only if the derivative has a positive market
value when the counterparty defaults. Therefore, the option exposure is defined as,

E(t,Xt) := max(V (t,Xt), 0), (4.1)

where V (t,Xt) is the option value at time t depending on market state variable Xt, which
follows the corresponding stochastic dynamics (Black-Scholes or Heston in our case).

The expectation of the exposure, Expected Exposure (EE), is an estimate of the expected
value of loss and its mathematical expression conditioned on the initial market state is :

EE(t) := EQ[E(t,Xt) | X0], (4.2)

where Q is the risk-neutral measure. The discounted EE at time t is then given by :

EE∗(t) := EQ [D(0, t)E(t,Xt) | X0] , (4.3)

where the discount factor is defined by

D(s, t) := exp

(
−
∫ t

s

rudu

)
, s < t, (4.4)

with the interest rate ru at time u.

As we are confronted with Black-Scholes and Heston models, where the interest rate is
deterministic, it can be written EE∗(t) = D(0, t)EE(t). EE(t) represents the future expo-
sure and EE∗(t), the current value of the future exposure.

The formula to compute the CVA provided in [5], assuming independence between exposure
values and default events, is written as follows :

CV A = (1− δ)
∫ T

0

EE∗(t)dPD(t), (4.5)

where δ is the recovery rate and PD(s) is the default probability function,

PD(t) = 1− exp

(
−
∫ t

0

h(t)dt

)
, (4.6)

where h(t) is called the intensity.

As simulation is done in a discrete time grid, we need a discrete version formula to compute
the CVA, which can be given as :

CV A ≈ (1− δ)
M−1∑
m=0

EE∗(tm)(PD(tm+1)− PD(tm)). (4.7)
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4.2 SGBM to compute CVA

The holder receives the payoff value, g(Sm), when the option is exercised. When the option
contract is still alive (tm < τm), the discounted option value, the continuation value w.r.t.
state vector Xm, is

Q̂m(Xm) := EQ [Vm+1(Xm+1) ·D(tm, tm+1)|Xm] , (4.8)

where Vm+1(·) represents the option value at time tm+1.

For European options, denoting Sm = exp(xm) as the underlying asset variable at time
tm, the option value equals the continuation value before maturity and the holder receives
the payoff value only at maturity, i.e.

V Euro
m (Xm) =

{
g(SM), for tM ,
Q̂m(Xm), for tm ∈ T − tM .

(4.9)

For Bermudan options, we assume that the credit information of the other party does
not influence the exercise decision of the option holder. At each exercise date the holder
compares the payoff value with the continuation value of the option, based on the currently
available information. The holder keeps the option until the payoff value is higher. When
the option is still alive at time tm, denoting Te the exercise dates, the option can be computed
via

V Berm
m (Xm) =

{
max{Q̂m(Xm), g(Sm)}, for tm ∈ Te,
Q̂m(Xm), for tm ∈ T − Te.

(4.10)

On the other hand, the exposure value becomes 0 when the option is exercised as there
is not possible economic loss for the contract holder any longer, EM = 0. Equally, for
Bermudan options, after being exercised at time tm the exposure later is 0. By definition,
the value of the exposure can be represented mathematically as :

Em(Xm) =

{
0, when the option is exercised,
Vm(Xm), when the option is alive. (4.11)

where Em(·) represents the exposure at time tm, m = 1, 2, . . . , M − 1.

Having computed the exposure values for all the simulated paths at times tm,m = 0, . . . , M−
1, the EE value at time tm is approximated as an average of them :

EE(tm) ≈ 1

N

N∑
i=1

Em(x̂m(i)), (4.12)

where N represents the number of paths and x̂m(i), i = 1, . . . , N , the values of the state
variables of the i-th path at tm. As we previously mentioned, since the interest rate is
deterministic in our case, the discounted exposure is the product of the discount factor and
the precedent EE value and so we also can obtain the CVA, the direct estimator CVA.
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4.2.1 Backward iteration for exposure values

We provide here the procedure for calculating the exposure values in a backward iteration,
starting at final time T . This procedure corresponds to the one introduced in [4] as well
and uses the results explained in Chapter 3.

At time tM , as we mentioned before, the exposure values are 0 as there is not possible
economic loss for the holder any longer. For each path, the option value is calculated as
VM(x̂M(i)), with the corresponding formulas of European or Bermudan options, (4.9) and
(4.10).

At time tM−1, for all the paths, the continuation values Q̂M−1(x̂M−1), i = 1, . . . , N ,
can be calculated with (3.9), and so the option values, VM−1(x̂M(i)), (4.9) or (4.10), and
the exposure values, EM−1(x̂M(i)), (4.11), can be also computed.

Then the iteration goes backward in time repeating the bundling and regression exposed
in Chapter 3 to compute the continuation, option, and exposure values at each time step
until we arrive to the initial time. When we arrive at t0, we have the option and exposure
values of every grid point.

For Bermudan options, we also need to take into account the optimal early-exercise strategy
in this case. If the option is still alive at tm, both option and exposure values are set to
the corresponding continuation value. Then, the payoff value is calculated for each path,
and compared with the continuation value to determine if the option should be exercised.
If yes, the exposure at this path from time tm will be 0, and the option value at time tm
corresponds to the payoff value. The EE function is then written as :

EE(tm) ≈ 1

N

∑
τi>tm

(D(tm, τi) · cash-flow(i)), (4.13)

where τi is the exercise time of the i-th path, and the cash-flow is the payoff value at time
τi, g(Sτi(i)), with Sτi(i) the value of the stock of the i-th path at time τi. The EE values
calculated with precedent expression, provide the path estimator CVA, which considers the
obtained "optimal" exercise strategy. For computing the path estimator CVA, we simulate
a new set of paths and we employ again, in a backward procedure, the same regression
coefficients for each bundle that we used to compute direct estimator (and that we have
previously saved at each time step). In Appendix D we can see the pseudocode with the
procedure to compute exposure profiles in the path estimator case.

4.3 Black-Scholes model

We retake Bermudan options on the geometric average of several assets exposed in Section
3.2.2, with all underlying assets following the standard multi-asset Black-Scholes model
(geometric Brownian motion). We provide also an example of European options.
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4.3.1 Numerical experiments

For the examples considered, unless specified otherwise, we use MERSENNE as PNL ran-
dom generator, N = 50, 000 paths for computing the direct estimator and the early exercise
policy, and NL = 200, 000 paths for calculate the path estimator, where the first 50,000
paths are shared. We utilise RBRSS as clustering method and we fix the number of clusters
to 32 for all the examples here, because we previously validated it to be the ideal number to
have convergence when pricing basket options of 5 assets. We take a recovery rate of 40%,
i.e. δ = 0.4, and we set constant the hazard rate, h = 0.03, for CVA and DVA computation.

Figure 4.1 (a) shows the evolution of the direct estimator and path estimator prices with
an increasing maturity for a Bermudan option on the geometric average of 5 assets. Figure
4.1 (b) displays the corresponding evolution of CVA and DVA values of the direct and path
estimator. Parameter set 2 in Table 3.1 is employed, with increasingly maturity and keeping
proportional per year the number of option exercise dates, M , i.e. M = 10× T .

(a) (b)

Figure 4.1: (a) Price and (b) CVA/DVA, for a Bermudan put on 5 assets under Black-
Scholes model with increasingly maturity until ten years. Monte Carlo Longstaff Schwartz
method in Premia is also compared in (a).

When two firms are both including CVA in fair value of the new trade, they will not agree
on the price unless they include the other firm’s CVA as well2. The term DVA, Debt or
Debit Valuation Adjustment, has been adopted to mean the other firm’s CVA. DVA is an
adjustment used to price OTC (over-the-counter) derivatives trades based on both parties’
credit risk. In this way, the expected exposure previously explained to compute CVA is
also called Expected Positive Exposure (EPE), i.e. EPE is our average exposure to the
counterparty default; and the Expected Negative Exposure (ENE) is the equivalent of EPE
from the perspective of our counterparty, i.e. the expected exposure needed to compute
DVA. In Figure 4.1 (b), DVA values are always 0 because for this product there is not going
to be ENE different from 0. We expected that since we take max(·, 0) in (4.13) cash-flow
formula and so there is no negative part, however, we display DVA as information and to
discard errors in the method’s code. DVA will be more interesting to compute in the case

2http://www.prmia.org/sites/default/files/references/SokolPresentation.pdf
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of financial products such as swaps3, where it is possible to have negative cash flows and
so, ENE different from 0.

Due to the recent establishment of the necessity to compute the CVA, there is not free
sources available to compare CVA/DVA values. Therefore, we have just validated our im-
plementation with cases used in reliable reference papers and prices with Premia.

Figures 4.2 show the same results of Figures 4.1 for the same kind of option and parameters,
but including a dividend in this case, qd = log(1.08). The equivalent Annual Dividend Rate
parameter in Premia for the MC Longstaff Schwartz method, which is also compared in
Figure 4.2 (a), is 8%. As it can be appreciate and seems logical, prices are higher and the
adjustment CVA too, since loss given default would have more impact.

(a) (b)

Figure 4.2: Evolution of (a) price (estimators) and (b) CVA/DVA, for a Bermudan put on
the geometric average of 5 assets which pays dividends.

In Figure 4.3 (a) we can see the evolution of the direct and path price estimators with an
increasing maturity for an European option on the arithmetic average of 5 assets. Monte
Carlo Jourdain Lelong method in Premia using 95% confidence interval is also compared in
this plot. Figure 4.3 (b) displays the corresponding progression of the CVA value of these
estimators. Parameter set 2 in Table 3.1 is employed, with increasingly maturity. This
time, the proportionality of the number of option exercise dates is not relevant because the
holder receives the payoff value only at maturity.

4.4 Heston model

The Heston stochastic volatility model has been one of the most popular extensions to the
Black-Scholes model in finance since its appearance in a paper of Steven L. Heston [6] in
1993. Instead of assuming volatility as a constant, the Heston model assumes that variance,

3A swap is a derivative in which two counterparties exchange streams of cash flows.
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(a) (b)

Figure 4.3: (a) Price and (b) CVA, for an European put on 5 assets under Black-Scholes
model with increasingly maturity until ten years.

or the square of volatility, follows the square root diffusion process (also known as the Cox-
Ingersoll-Ross (CIR) (1985) [2] process in interest rate modelling), which has the attractive
properties of being non-negative and mean-reverting.

We consider the 2-d state variable Xt = [xt, vt]
T , with xt = log(St) the log-asset vari-

able and vt the variance variable. The dynamics of the Heston stochastic volatility model,
are given by the coupled two-dimensional stochastic differential equations :

dvt = κ(θ − vt)dt+ γ
√
vtdW

v
t

dxt =
(
r − 1

2
vt
)
dt+

√
vtdW

x
t ,

(4.14)

where W x
t and W v

t are two correlated Brownian motions in the time variable t, and dW x
t ×

dW v
t = ρx,vdt. κ, θ, γ are positive constants. κ represents the mean reversion speed for the

variance, θ is the mean reversion level for the variance, and γ is the volatility of the variance,
called vol-of-vol parameter. r, the drift of the process for the stock or constant interest rate,
is a non-negative constant, and the correlation between the two Brownian motions ρ is a
constant in [−1, 1]. The initial conditions x0 and v0 are assumed to be strictly positive.

The option dynamics is a function of the log-asset price and variance. For orders p =
{0, 1, 2, 3}, corresponding to approximation dimensions {1, 2, 3, 4}, the set of basis func-
tions used in regression step of the SGBM is presented in Table 4.1. Values for the variance
are much lower than values for the log-asset, and so, coefficients found in regression would
be too much conditioned by the big values. Therefore, before performing regression at each
time step, we normalize log-asset and variances values by dividing for the corresponding in
each case max simulated value.

4.4.1 Simulation schemes for paths under the Heston model

We explain in this section how we have simulated paths under the Heston model, employing
two different schemes. First we used Euler scheme to test the SGBM and fit the necessary
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order p of the polynomial space basis functions
0 { 1 }
1 { 1, x, v }
2 { 1, x, v, x2, x · v, v2 }
3 { 1, x, v, x2, x · v, v2, x3, x2 · v, x · v2, v3 }

Table 4.1: The basis functions of order p.

changes with respect to the Black-Scholes SGBM algorithm implementation. We simulate
xt = log(St), the log-asset variable, and vt, the variance variable, following :{

v0 = V0
vi+1 = vi + κ (θ − vi) ∆ti + γ

√
vi
√

∆tiW
v
i{

x0 = X0

xi+1 = xi + (r − q − 1
2
vi)∆ti +

√
vi
√

∆tiW
x
i

where q is the dividend paid at a continuous rate. ∆ti means ti+1 − ti, and xi and vi rep-
resent xti and vti , respectively. As we mentioned while introducing this model, the initial
conditions x0 and v0 are assumed to be strictly positive.

We notice that we could have problems if vi < 0 because it is inside a square root. To
avoid this possibility, we take |vi| inside the square root. There is also an alternative so-
lution for this situation consisting in taking max(vi, 0) inside the sqrt function. These are
acceptable solutions and provide a valid simulation, used even in real world by banks. How-
ever, there is a better approach.

Once we proved the SGBM was completely adapted to the Heston model requirements, we
changed the Euler scheme for the one proposed by Damiano Brigo and Aurélien Alfonsi4 in
[1]. In order to ensure positivity of vi, they explain their Euler Implicit Positivity-Preserving
Scheme, which consist in simulate vi+1 as follows :

vi+1 =

γ(W v
i+1 −W v

i ) +
√
γ2(W v

i+1 −W v
i )2 + 4(vi + (κθ − γ2

2
)∆ti)(1 + κ∆ti)

2(1 + κ∆ti)

2

,

where (W v
i+1 −W v

i ) =
√

∆ti W
v
i . We just need to respect 2κθ > γ2 to use this scheme,

which is a much less restrictive condition.

4.4.2 Numerical experiments

For the cases exposed in this section, unless specified otherwise, we use again MERSENNE
as PNL random generator, N = 50, 000 paths for computing the direct estimator and the
early exercise policy, and NL = 200, 000 paths for computing the path estimator, with the
first 50,000 paths shared. We fix the number of clusters to 8 for all the examples here be-
cause, as we appreciate for pricing Bermudan options on a single asset in previous chapter,

4A. Alfonsi is part of the Applied Probability group in the CERMICS as researcher.

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



4. The SGBM: Monte Carlo Calculation of Exposure Profiles for Bermudan Options 35

it is the ideal clustering to converge to an accurate price in this case. Additionally, we do
not utilize any more recursive bifurcation of reduced state space because we just have an
asset. We take a recovery rate of 40%, i.e. δ = 0.4, and we set constant the hazard rate,
h = 0.03, for CVA computation. As DVA is still always 0, we do not display it this time.
The parameter set employed for options under the Heston model is presented in Table 4.2.

St0 Vt0 q r ρ κ θ γ T K M
40 0.2 0 log(1.05) 0.25 1 0.07 0.1 1 40 24

Table 4.2: Parameter values for the Heston model experiments.

Figure 4.4 (a) shows the evolution of the direct estimator and path estimator prices with
an increasing maturity for a Bermudan option on a single asset under the Heston model.
Figure 4.4 (b) displays the corresponding evolution of the CVA value of the direct and path
estimator.

(a) (b)

Figure 4.4: (a) Price and (b) CVA, for a Bermudan put on a single asset under the Heston
model. MC Longstaff Schwartz method in Premia is also compared in (a). Parameters
values in Table 4.2 are employed, with increasingly maturity until ten years and keeping
proportional per year the number of exercise dates, M = 24× T .

Differences between the use of k-means or recursive bifurcation (RB) for clustering and the
simulation of paths by Euler or Alfonsi scheme, when pricing a Bermudan put under the
Heston model, are exposed in Table 4.3. We take as reference price for these results the
MC Longstaff Schwartz with Alfonsi scheme simulation Premia price, 5.3120. Therefore,
we highlight that k-means clustering is not so accurate for options under the Heston model,
which could explain why it is not used in [4].

In Figure 4.5 (a) we can see the evolution of the direct and path price estimators with an
increasing maturity for an European option under the Heston model. The price from the
existing closed formula computed in Premia is also compared in this plot. Figure 4.5 (b)

RR Algorithms Implementation for Computing Bermudan Options Price and CVA



4. The SGBM: Monte Carlo Calculation of Exposure Profiles for Bermudan Options 36

DE k-means DE RB PE k-means PE RB
Euler 5.40561 5.34642 5.38082 (8.11 s) 5.35056 (2.94 s)
Alfonsi 5.42828 5.36977 5.40773 (8.12 s) 5.37607 (3.10 s)

Table 4.3: Direct and path estimators with k-means and RB as clustering method and
Euler and Alfonsi schemes to simulate paths. The total computation time in each case is
also included.

displays the corresponding progression of the CVA of these estimators. Parameter set in
Table 4.2 is employed. Neither the number of clusters nor the number of exercise dates
affect to these outcomes. In addition, remark that, even if the direct and path estimators
are sometimes "quite" separated, both produce almost the same CVA.

(a) (b)

Figure 4.5: Evolution of (a) price and (b) CVA, for an European put on a single asset under
the Heston model with increasingly maturity until ten years.
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5 A Forward Solution for Computing Deriva-
tives Exposure

The quantification of the exposure to a counterparty’s default represents the main func-
tion of the valuation and management of counterparty risk. This exposure is expressed
as the expectation of entering cash flows at a chosen set of observation dates ending at
the final date of the contract. The exposure expression is provided under a risk probability
measure, which, for B. Lapeyre and M. Iben Taarit (2015) [8], is the risk neutral probability.

Considering the expected exposure as the price of a compound option1, they give a for-
ward representation of a derivative’s expected exposure using Dupire-like arguments in [8].
They show then that this approach reduces considerably the computation efforts with sev-
eral numerical examples.

After study the proposed forward representation to understand its workings, my task here
has included to rediscover their computation outcomes translating their method to C code
from the R code proportioned by Marouan Iben Taarit. The purpose is again to add the
C code to Premia v.18. We can not come into more specifications about their approach
because the paper is still not published since they are working on last details.

The immediate theoretical interests and practical perspectives that they highlight for the
forward representation in [8] are : First, it gives a payoff-free analytical representation that
can be easily used to compute the expected exposure, as a function of the observation date,
the contract’s Delta, and the underlying volatility. An advantage of the forward repre-
sentation is that the method can be also used for a fast approximation of the expected
exposure Greeks. Second, the forward solution is incremental. Therefore, the computation
effort benefit from being concentrated on the exposure increments between each couple of
consecutive observation dates. Thus, one can freely set the own observation dates, corre-
spondingly to a hedging strategy or default believes, without impacting the accuracy of
the exposure calculation. More precisely, the forward representation can be written as an
incremental scheme that gives the entire expected exposure trajectory, incrementally, over
several observation dates.

1An European Call option on the residual contract with a 0-strike price and maturing at the default
observation date.
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5.1 Numerical experiments

This section shows the results found with C code, meant to be the same as in [8]. The
performance of both codes is also compared and some numerical aspects related to the
implementation of the forward representation are discussed. We just address the case of
an Equity Forward under the Black-Scholes model, because I still work on this task during
these last weeks.

5.1.1 Equity Forward under the Black-Scholes model

Considering an Equity forward contract for which the expected exposure is given explicitly.
We refer by S to the price of an Equity asset and by X its logarithm. We assume that X
has the following dynamics{

dXs = (r − q − 1
2
σ2)ds+ σdWs, s ≥ t

Xt = x
(5.1)

where r is the risk-free rate, q is the continuous dividend rate and σ the instantaneous
volatility. The price V of the forward contract is given by

V (t, x; t) = Et
[
D(t, T )

(
eX

t,x
T −K

)]
= e−q(T−t)ex − e−r(T−t)K. (5.2)

At an intermediate maturity s, the expected exposure for this contract is given by the
Black-Scholes Call formula :

EE(t, x; s) = Et

[
e−r(s−t)

(
e−q(T−s)eX

s,X t,x
s

T − e−r(T−s)K

)+]

= e−q(T−s)CallBS(t, ex; s,Ks),

(5.3)

where Ks = e−(r−q)(T−s)K, and
CallBS(t, ex; s,Ks) = e−q(T−t)exN (d1)−Kse

−r(T−t)N (d1 − σ
√
T − t)

d1 =
ln( e

xe−q(T−t)

Ke−r(T−t) )

σ
√
T − t

+
1

2
σ
√
T − t

(5.4)

The expected exposure is computed at different observation dates si, with the number of
payment dates equal to 1. The simulation parameters are taken as follow in Table 5.1.

S K T si r q σ

1 ATM 5 Y T × i
N

1% 5% 50%

Table 5.1: Parameter values used for an Equity Forward.

Figure 5.1 shows the results presented in [8] of the forward solution versus the exact one ob-
tained through the closed formula. Figure 5.2 displays the reproduction of these results that
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we find with the code in C. The execution times of both solutions with both programming
languages are introduced in Table 5.2. As we previously mention, their approach reduces
considerably the computation efforts. On the other hand, even if all results are obtained in
less than a second, we can also appreciate how fast is C code and imagine how useful it can
be for this kind of algorithms where performance is so important and represents money.

Figure 5.1: Expected Exposure of an Equity Forward: Expected Exposure Profile (left),
Absolute Error (right).

Figure 5.2: Expected Exposure of an Equity Forward: Expected Exposure Profile (left),
and contour lines of Absolute Error (right).

R C
Exact solution 426 ms 170 ms
Forward solution 135 ms 100 ms

Table 5.2: Execution times of the exact and forward solutions with R and C code, for a
number of observation dates, N = 106.
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6 Conclusions

The main subject of my internship has been the Stochastic Grid Bundling Method (SGBM),
introduced in [7] for approximating the value of Bermudan options. We summarize here
some ideas that we have extracted from the numerical experiments made. The first one,
and the key concept of the SGBM, is that we are interested in clustering paths. This
takes us computation time, but we regain part by doing regression of smaller size into each
cluster, and we gain accuracy as shown in figures of Chapter 3. So the algorithm that we
have coded is computationally competitive with respect to other methods existing in this
domain. Secondly, remark that, even if the thought that increasing the polynomial order
of the approximation leads to a better approach is logical, the truth is that, numerically,
an order greater than four comes of a distancing from the right price. That is the case for
Monte Carlo Longstaff Schwartz method. On the other hand, with an appropriate number
of clusters fixed, the SGBM is not affected equally for this parameter evolution. Finally,
as it was not unexpected, with an increasing number of Monte Carlo simulations we obtain
more accurate pricing results. However, as the random generator takes part into the out-
comes, occasionally we can not find a perfect convergence when testing this aspect.

Taking advantage of the SGBM algorithmic structure lets us apply it for the computa-
tion of exposure profiles [4] and makes this method doubly interesting because we are able
to assess the currently precious CVA as well. In this case, we enrich our range of financial
asset dynamics studied, employing the Black-Scholes model, constant volatility, and the
Heston model, stochastic volatility, in our numerical examples.

The study of SGBM has carried me to face different types of bundling algorithms, a key idea
in the learning machine field. Another example that shows how extended and important
this domain has become these days. In addition, to improve the computational efficiency
of the SGBM, impacted by the number of clusters used, a parallelization of the algorithm
will be interesting.

Apart from the conclusions concerning the themes developed during the internship, there
are also some other reflections which are worth doing. This internship has allowed to in-
troduce myself more in the research world in a unique frame, representing an opportunity
to apply the knowledge I have acquired in my academic training and to delve into mathe-
matical finance. I could work on three papers due to a continuous labour and thanks to an
excellent guide, facing difficulties as well, but concluding in a rewarding experience. This
internship represents the closure of a period of my life and I am ready and excited about
what is coming next.
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A Code to generate paths

This appendix introduces the code in C of the scheme to generate grid points for single and
multiple assets under Black and Scholes model. We can see in Appendix B some mathe-
matical details about correlation when multiple assets are simulated.

Listing A.1: Generation of grid points algorithm
/∗∗
∗ @br ie f Generate the s t o c h a s t i c paths .
∗
∗ @param [ out ] SPaths Simulated s t o c h a s t i c paths .
∗ @param [ in ] genera tor Random genera tor .
∗/
stat ic void g e tT r a j e c t o r i e s (PnlMat∗∗ SPaths , PnlRng∗ genera to r )
{

a s s e r t ( SPaths != NULL) ;
a s s e r t ( genera to r != NULL) ;

int i , j ;
double dt ;

i f ( InstrumentType == SINGLE)
{

double auxValue ;
PnlMat∗ SPathsAux = pnl_mat_new ( ) ;
PnlVect∗ i n i t i a l V = pnl_vect_create_from_scalar

(
NRepl ,
l og ( S0 [ 0 ] )

) ;
pnl_mat_rng_normal ( SPathsAux , NRepl , numDates , genera to r ) ;
pnl_mat_set_col ( SPathsAux , i n i t i a lV , 0 ) ;

for ( j = 1 ; j < numDates ; j++)
{

dt = Dates [ j ] − Dates [ j −1] ;
for ( i = 0 ; i < NRepl ; i++)
{

Final Degree Internship Report 42



A. Code to generate paths 43

auxValue = ( r − CDividendR [ dim−1] −
0 .5∗SQR( sigma [ 0 ] ) ) ∗ dt +

sigma [ 0 ] ∗ s q r t ( dt )∗MGET(SPathsAux , i , j ) ;
MLET(SPathsAux , i , j ) = auxValue ;

}
}
pnl_mat_cumsum(SPathsAux , ’ c ’ ) ;

for ( j = 0 ; j < numDates ; j++)
{

pnl_mat_resize ( SPaths [ j ] , NRepl , dim ) ;
for ( i = 0 ; i < NRepl ; i++)

MLET( SPaths [ j ] , i , dim−1) =
exp (MGET(SPathsAux , i , j ) ) ;

}

pnl_vect_free(& i n i t i a l V ) ;
pnl_mat_free(&SPathsAux ) ;

}
else
{

int k , l ;
double depBrow ;
double SigmaMatValue = 0 . ;
PnlMat∗ SPathsAux = pnl_mat_create (dim , numDates ) ;
PnlMat∗ NormalMat = NULL;

for ( j = 0 ; j < NRepl ; j++)
{

for ( l = 0 ; l < dim ; l++)
MLET(SPathsAux , l , 0) = log ( S0 [ l ] ) ;

NormalMat = pnl_mat_new ( ) ;
pnl_mat_rng_normal (NormalMat , dim , numDates ,

genera to r ) ;
for ( i = 1 ; i < numDates ; i++)
{

dt = Dates [ i ] − Dates [ i −1] ;
for ( k = 0 ; k < dim ; k++)
{

depBrow = 0 . 0 ;
for ( l = 0 ; l < dim ; l++)

depBrow += MGET(SigmaMat , k , l )∗
MGET(NormalMat , l , i ) ;

depBrow = depBrow / sigma [ k ] ;
MLET(SPathsAux , k , i ) =

( r − CDividendR [ k ] − 0 .5∗SQR( sigma [ k ] ) ) ∗ dt +
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sigma [ k ]∗ s q r t ( dt )∗depBrow ;
}

}
pnl_mat_cumsum(SPathsAux , ’ c ’ ) ;

for ( i = 0 ; i < numDates ; i++)
{

i f ( j == 0)
pnl_mat_resize ( SPaths [ i ] , NRepl , dim ) ;

for ( k = 0 ; k < dim ; k++)
MLET( SPaths [ i ] , j , k ) =

exp (MGET(SPathsAux , k , i ) ) ;
}
pnl_mat_free(&NormalMat ) ;

}
pnl_mat_free(&SPathsAux ) ;

}

return ;
}

/∗∗
∗ @br ie f Compose the ensemble o f e x e r c i s e and d i s c r e t i z a t i o n
∗ da te s wi thou t r e p e t i t i o n s .
∗/
stat ic void setDates ( )
{

s e tD i s c r e tDate s ( Nsteps ) ;
i f ( NumExerciseDates != 0)
{

s e tExe r c i s eDate s ( NumExerciseDates ) ;
numDates = Nsteps + NumExerciseDates ;

}
else

numDates = Nsteps + 1 ;

Dates = (double∗) mal loc ( numDates∗ s izeof (double ) ) ;
i f ( Dates == NULL)

abort ( ) ;
memcpy(Dates , DiscretDates , ( Nsteps+1)∗ s izeof (double ) ) ;
i f ( NumExerciseDates != 0)
{

memcpy(&Dates [ Nsteps +1] , &Exerc i seDates [ 1 ] ,
( NumExerciseDates−1)∗ s izeof (double ) ) ;

// Quick−Sort
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qso r t ( Dates , numDates , s izeof (double ) , comparer ) ;
// remove r e p e t i t i o n s
int i ;
int count = 1 ;
for ( i = 1 ; i < numDates ; i++)
{

i f ( Dates [ i ] != Dates [ i −1])
{

Dates [ count ] = Dates [ i ] ;
count++;

}
}
numDates = count ;

}

return ;
}

/∗∗
∗ @br ie f Create the c o r r e l a t i o n matrix .
∗/
stat ic void setRhoMat ( )
{

rhoMat = pnl_mat_create_from_scalar (dim , dim , rho ) ;
pnl_mat_set_diag ( rhoMat , 1 . , 0 ) ;

}

/∗∗
∗ @br ie f Create Sigma matrix by doing Cholesky decomposi t ion .
∗/
stat ic void setSigmaMat ( )
{

int i , k ;
SigmaMat = pnl_mat_create (dim , dim ) ;

for ( i = 0 ; i < dim ; i++)
for ( k = 0 ; k < dim ; k++)

MLET(SigmaMat , i , k ) = sigma [ i ]∗ sigma [ k ]∗
MGET( rhoMat , i , k ) ;

i f ( pnl_mat_chol (SigmaMat ) == FAIL)
abort ( ) ;

}
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B Correlation between Brownian motions

In this appendix we introduce some mathematical support related with correlation for sim-
ulating paths when pricing options of several assets. I have studied the corresponding basis
theory presented at the beginning of this appendix in different courses of probability during
my academic training as well as discussing with my director Bernard Lapeyre about them
during my internship. Precise theorems, propositions, proofs, and definitions exposed here
are mostly taken from [11] and I was confronted to have a good command of these results
and proofs. Apart from being useful knowledge, understanding of these concepts has been
a fundamental part to justify which values are acceptable for correlation and for this reason
I include them in this appendix. It also shows again that it was not at all an internship
merely in computer science or just programming.

Definition B.1. A symmetric real matrix M is said to be positive semi-definite if and only
if it verifies one of the two following equivalent properties :

1. For all column vector V we have V tMV ≥ 0

2. All its eigenvalues are positive or nil i.e. Sp(M) ⊂ [0,+∞[

The spectral theorem implies that ifM is symmetric positive semi-definite, then there exists
an orthogonal matrix P and a diagonal matrix D = Diag(λ1, . . . , λd) (positive) such that
M = PDP t. From that we can deduce that there exists a matrix A (not unique in general),
such that M = AAt; for example A = PDiag(

√
λ1, . . . ,

√
λd). A is called a squared root

of M .

Theorem B.1. The covariance matrix of a vector X = (X1, . . . , Xd) is a symmetric
positive semi-definite matrix.

Proof. By construction the covariance matrix is symmetric. It is written as the product
of a vector and its transpose (the mean is applied then to each component and therefore
symmetry is not changed). For the second point we only need to notice that if M is the
covariance matrix of the random vector X and if V is a constant vector of Rd, taking into
account the bilinearity of the covariance, then

V tMV =
d∑

i,j=1

vivjCov(Xi, Xj) = Cov(Z,Z) = V ar(Z) ≥ 0, Z = v1X1 + v2X2 + . . .+ vdXd.

Theorem B.2. If X is a random (column) vector in Rp with mean vector m and covariance
matrix Γ. Then, if A is a real matrix q× p, the random vector AX in Rq has Am as mean
vector and AΓAt as covariance matrix.
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Proof. It is a simple consequence of the expectation linearity. For the mean we have :

E[AX] = AE[X] = Am

and for the covariance matrix :

E[(AX−Am)(AX−Am)t] = E[A(X−m)(X−m)tAt] = AE[(X−m)(X−m)t]At = AΓAt.

Theorem B.3. Every symmetric positive semi-definite matrix Γ of d× d dimension is the
covariance matrix of a random vector of Rd.

Proof. Let A be a matrix square root of Γ. We denote X a random vector of Rd of which
components are independent, with mean 0 and variance 1. Therefore the expectation of X
is the zero vector, and the covariance matrix is equal to Idd. The random vector AX is
then centred of covariance matrix AIdAt = AAt = Γ.

Definition B.2. A random vector of Rd is a Gaussian random vector if and only if every
linear combination of its components is a Gaussian real-valued random variable, i.e. :

∀a ∈ Rd, atX
L∼ N (m,σ2)

Theorem B.4. Let X be a random vector of Rd with mean m and covariance matrix Γ.
The following assertions are equivalent :

• The vector X is a Gaussian vector.

• The distribution of vector X is the same as the distribution of vector m+AZ, where
Z is a random vector of Rd with independent components of law N (0, 1) and A is a
matrix square root of Γ.

Proof. The equivalence comes from theorem B.2 and the properties of the symmetric posi-
tive semi-definite matrices.

The distribution of a Gaussian vector is characterised by its mean vector m and its covari-
ance matrix Γ. It is called Gaussian distribution in Rd and it is denoted by N (m,Γ). The
distribution N (0, Id) is called standard Gaussian distribution in Rd. A Gaussian vector
following this distribution is called standard Gaussian random vector.

Proposition B.1. Every symmetric positive semi-definite matrix Γ of dimension d× d is
the covariance matrix of a Gaussian random vector of Rd.

Proof. Let Z be the Rd Gaussian vector of which every component are independents and
follow distribution N (0, 1). It is a standard Gaussian random vector. From the theorem
B.2 and the theorem B.4, AZ is a Rd Gaussian vector of distribution N (0,Γ).
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In our case, the asset prices are assumed to follow correlated geometric Brownian motion
processes, i.e.

dSit
Sit

= (r − qi)dt+ σidW
i
t

where each asset pays a dividend at a continuous rate of qi that we take equal to 0 here
for simplicity. W i

t , i = 1, . . . , d, are standard Brownian motions and the instantaneous
correlation coefficient between W i

t and W j
t is ρij, i.e. d〈W i

t ,W
j
t 〉 = ρijdt, i.e. the process

(W i
tW

j
t − ρt, t ≥ 0) is a martingale and E[W i

tW
j
t ] = ρij × t. We define :

ρ = (ρij) , 1 ≤ i ≤ d, 1 ≤ j ≤ d =


1 ρ0 · · · · · · ρ0

ρ0 1
. . . ...

... . . . . . . . . . ...

... . . . . . . ρ0
ρ0 · · · · · · ρ0 1

 , ρ0 ∈ [−1, 1], (B.1)

which must be a symmetric positive semi-definite matrix, ρijdt = d〈W i,W j〉t. We have
then :

dSit
Sit

= rdt+ (Σ dW̄t)i

= rdt+ σidW
i
t

(B.2)

where W̄t is an independent Brownian motion of dimension d× 1, and Σ is a matrix d× d
that we obtain as follows. Equalising terms in (B.2) we arrive to :

dW i
t =

∑d
j=1 ΣijdW̄

j
t√√√√ d∑

j=1

Σ2
ij︸ ︷︷ ︸

(=σi)

Then, according to what we have exposed before,

d < W i
t ,W

k
t >= ρikdt = (

1

σiσk

d∑
j=1

ΣijΣkj)dt

which can be expressed as :

ΣΣ∗ = (σiσkρik), 1 ≤ i ≤ d, 1 ≤ k ≤ d. (B.3)

Finally, doing Cholesky factorization in right hand side of (B.3) we find Σ, lower triangular
matrix. In order to apply Cholesky factorization we need a symmetric positive definite ma-
trix. σi ≥ 0, for 1 ≤ i ≤ d and ρ0 ∈ [−1, 1]. Therefore, the only inconsistency with problem
setting can be caused by certain values of ρ0 with which ρ would not be a correlation matrix
and Cholesky factorization could not be done.
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We can express :
ρ = (1− ρ0)Id+ ρ0M, (B.4)

where

M =

 1 · · · 1
... . . . ...
1 · · · 1


Doing spectral analysis of M , M~x = ~0⇔ x1 + . . . +xd = 0, the kernel of M has dimension
d− 1, and the eigenvalues of M are λ1 = 0 and λ2 = tr(M) = d, where tr(M) is the trace
of M1. So, to be a positive semi-definite matrix, conditions upon eigenvalues of ρ are :

(1− ρ0) ≥ 0 −→ ρ0 ≤ 1

(1− ρ0) + ρ0d ≥ 0 −→ 1 + ρ0(d− 1) ≥ 0 −→ ρ0 ≥
−1

d− 1

Therefore, we obtain for the correlation value that we have to impose not only ρ0 ∈ [−1, 1],
but ρ0 ≥ −1

d−1 in order to have a problem setting which makes sense.

1The trace of a matrix is the sum of the (complex) eigenvalues, and it is invariant with respect to a
change of basis.
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C Code and documentation

Apart from the code showed in Appendix A, we do not introduce the code made during
this internship in the present report. The reasons are both its volume and the fact that it
belongs to the new version of Premia, which will not become freely available on its web site
for up to two years. However, in this Appendix we bring up some relevant aspects of the
work made in the code subject.

In total, approximately more than 1,000 lines in Scilab and about 3,000 - 4,000 lines of
C code have been programmed to accomplish the main goals of the internship. At the
beginning, I was proposed to start programming in Scilab1 in order to familiarise myself
with clustering methods involved in SGBM and SGBM in general. Because Scilab is an
interpreted language2, understanding of the operation and error detection were easy. After
this phase, we proceeded with C implementation, which was the real aim to add the pro-
grams in Premia. As it is well known, C is a compiled language, so we could execute the
tests faster, even increasing the number of Monte Carlo simulations performed. For our C
code, we have used a numerical library for C and C++ programmers, PNL3. PNL is a free
software with a wide range of routines available on topics as cumulative distribution func-
tions, fast Fourier transform, Laplace inversion, least-squares fitting, linear algebra, MPI
bindings, multidimensional root finding, multivariate polynomial regression, numerical in-
tegration, optimization with inequality constraints, complex numbers, and random number
generators. I had previously worked with PNL during the development of my Final Degree
Project.

In addition, C implementation has been exhaustively documented in English by specify-
ing description, input and output parameters, and return values of each function, as well as
inside function comments. It will be useful in case of someone needs to continue working on
these methods or for academic purposes. To produce this code documentation, Doxygen4,
the de facto standard tool for generating documentation from annotated C++ sources5, has

1Scilab is free and open source software for numerical computation providing a powerful computing
environment for engineering and scientific applications. Scilab includes hundreds of mathematical functions.
It has a high level programming language allowing access to advanced data structures, 2-D and 3-D graphical
functions. http://www.scilab.org/

2An interpreted language is a programming language for which most of its implementations execute
instructions directly, without previously compiling a program into machine-language instructions. Another
examples of interpreted languages are Python and MATLAB.

3http://pnl.gforge.inria.fr/dokuwiki/doku.php
4http://www.stack.nl/~dimitri/doxygen/
5It also supports other popular programming languages such as C, Objective-C, C#, PHP, Java, Python,

IDL (Corba, Microsoft, and UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent D.
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been used. We have generated with Doxygen an on-line documentation browser in HTML
from our set of documented source files. The documentation is extracted directly from the
sources, which makes it much easier to keep the documentation consistent with the source
code. Figure C.1 shows an example of the HTML documentation created for two of our
functions.

Figure C.1: Functions’ HTML documentation generated with Doxygen.
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D Pseudocodes of SGBM

We exhibit in this appendix the pseudocodes of the three main functions involved in SGBM
in order to summarise in few lines how it works. The pseudocodes should help to clarify
the cycle of SGBM described in Section 3.1, steps II to V.

Listing D.1: calibration - Compute calibration of a model.
/∗∗
∗ Input Parameters :
∗ Simulated s t o c h a s t i c paths .
∗ Returns :
∗ Coe f f i c i e n t s found in each time s t ep f o r each c l u s t e r .
∗ Centres , i f k−means c l u s t e r i n g a lgor i thm , f o r each time s t ep .
∗/

I n i t i a l i z e e x e r c i s e time at exp i r a t i on
Compute i n t r i n s i c va lue o f the opt ion at te rmina l time t_M = T

for date = t_{M−1} to date t_1

Update the i n t r i n s i c value , mul t ip ly i t by the d i scount o f
one time step

Clus te r the paths at date
for every c l u s t e r

Build r e g r e s s i o n matrix with paths data o f t h i s c l u s t e r

So lve the l i n e a r system Ax = b in the l e a s t square
sense , i . e . x = arg min_U | | A ∗ u − b | | ^ 2 , where
A i s the r e g r e s s i o n matrix bu i l t and b the i n t r i n s i c va lue

Set cont inuat i on value to the r e s u l t o f A ∗ x

i f e x e r c i s e opt ion type = American opt ion
Compute opt ion value at date

i f opt ion value > cont inuat i on value
Set i n t r i n s i c va lue to opt ion value
Update e x e r c i s e time to date , the optimal s topping time
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Listing D.2: getDirectEstimator - Compute the direct estimator.
/∗∗
∗ Input Parameters :
∗ Simulated s t o c h a s t i c paths .
∗ Coe f f i c i e n t s found in each time s t ep f o r each c l u s t e r .
∗ Centres , i f k−means c l u s t e r i n g a lgor i thm , f o r each time s t ep .
∗/

Clus te r the paths at date t_1

for every c l u s t e r
Build r e g r e s s i o n matrix with paths data o f t h i s c l u s t e r

Set cont inuat i on value to the r e s u l t o f A ∗ x , where A i s the
r e g r e s s i o n matrix b u i l t and x the c o e f f i c i e n t s from
c a l i b r a t i o n phase

Update cont inuat i on value , mul t ip ly i t by the d i scount o f one
time step

Compute opt ion value at i n i t i a l date , t_0

Set d i r e c t e s t imator to max between mean o f cont inuat i on value
and opt ion value at t_0

Listing D.3: getPathEstimator - Compute the path estimator.
/∗∗
∗ Input Parameters :
∗ Simulated s t o c h a s t i c paths .
∗ Coe f f i c i e n t s found in each time s t ep f o r each c l u s t e r .
∗ Centres , i f k−means c l u s t e r i n g a lgor i thm , f o r each time s t ep .
∗/

I n i t i a l i z e e x e r c i s e time at exp i r a t i on
Compute i n t r i n s i c va lue o f the opt ion at te rmina l time t_M = T

Compute exposures for CVA at T

for date = t_{M−1} to date t_1

Update the i n t r i n s i c value , mul t ip ly i t by the d i scount o f
one time step

Clus te r the paths at date
for every c l u s t e r
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Build r e g r e s s i o n matrix with paths data o f t h i s c l u s t e r

Set cont inuat i on value to the r e s u l t o f A ∗ x , where A i s
the r e g r e s s i o n matrix bu i l t and x the c o e f f i c i e n t s from
c a l i b r a t i o n phase

i f e x e r c i s e opt ion type = American opt ion
Compute opt ion value at date

i f opt ion value > cont inuat i on value
Set i n t r i n s i c va lue to opt ion value
Update e x e r c i s e time to date , the optimal s topping time

Compute exposures for CVA at date

Update i n t r i n s i c value , mul t ip ly i t by the d i scount o f one
time step

Compute exposures for CVA at t_0

Set path es t imator to the mean o f the i n t r i n s i c va lue
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