
Graduation Internship Report
Engineering college SUP’Galilée

Paris Nord XIII University

§

Alternative Energies and Atomic Energy Commission
CEA Saclay - DEN/DANS/DM2S/STMF/LMEC

From 1st April 2015 to 30th September 2015

Discipline: Applied Mathematics
Option: scientific calculations

Environment of Simulation for Boiling Flows
in Differentially Heated Parallel Channels

Prepared by : Tassadit SID ABDELKADER

Responsibles:

CEA Tutor : Michaël NDJINGA, Research Engineer CEA

University Tutor : Olivier LAFITTE, University Professor, Paris Nord XII

Viva’s date: 25th of September 2015

Abstract

For the sake of getting an engineering degree in applied mathematics and scientific com-
puting in Sup’Galilée College, Paris Nord University, I conducted a graduation internship
entitled: Environment of Simulation for Boiling Flows in Differentially Heated Parallel
Channels. In Cea-Saclay, from 1st April 2015 to 30th September 2015.

I already conducted a graduation project (from December 2014 to February 2015)
of research and literature review (bibliography) on the prototyping of industrial code
FLICA 4 in 1D, in order to improve the robustness. One of the conclusions of this
work is that a specific treatment is crucial to the stiff source terms for specific thermal
hydraulics cores of nuclear reactors (well balanced schemes).
The current graduation internship aims at confirming these conclusions in case of 2D, 3D
particularly in the configurations presenting a recirculation on the parallel channels. We
also hope to compare the well balanced schemes proposed by the graduation internship
with those precise Low Mach number schemes.

In this internship, I started by debugging, correcting and validating the developed
model in the PFE, which enabled me to gain in competence in Petsc library and the Eclipse
IDE. The second component of the internship was to develop the CoreFlows application
to handle any geometry (1D , 2D and 3D) , and impose boundaries conditions. For this,
I had to to take in the hand several open sources libraries, mesh handling, scientific
computing and visualization (Salomé, CDMATH , PETSc) and software development
tools . And finally, after a milestone study and implementation, I could validate the correct
operation of CoreFlows and compare the proposed numerical methods (well balanced
schemes and Low-Mach schemes).

The present report is composed of five main sections, the first one describes the intern-
ship’s context and the host structure(CEA). The second includes mathematical modeling
of multiphase flows concepts, which is briefly reviewed with a focus on balance equations.
The third section contains some numerical methods and schemes that we have studied.
The fourth describes the CoreFlows application with a detailed description of all the
software engineering tools WHICH have been used. The fifth section presents the findings
of the internship project. To conclude, some conclusions and future work recommendations
are suggested.

Key Word : Two-phase flow - Fluid Mechanics - Drift model - Numerical Simulation
- Roe Schemes - Well-Balanced schemes - Low-Mach scheme - Staggered Mesh - Open
Source software - Object-oriented programming

i

Acknowledgement

First of all, special thanks goes to my tutor, Micheal NDJINGA, who, by his competences,
experiences and his nobel human characteristics, guided me throughout this humble work.
I also want to show my gratitude to Professor Olivier LAFITTE for being there by my
side while conducting this internship.

And then I wish to thank the set of MACS and SUP’Galilée professors and particularly,
the two responsibles, Olivier LAFITTE and Emanuel AUDUSSE, for their encouragement
and the knowledge they provided for me.

Thanks to all LMEC laboratory’ members for their help, guidance, advice and encour-
agement, and precisely, Anouar MEKKAS. Also I want to show my gratitude to Pascal
OMNES, Adrien BRUNETON, Marc TAJCHMAN and Francis KLASS. In addition to
my colleagues trainees for the experiences and knowledge we shared during this training.

Finally, I would like to thank my family members who were always there by my
side, though the distance between us they were there to advise, support, encourage and
motivate me.

iii

Nomenclature

We denote by the index:

• k = l the physical quantities related to the liquid phase,

• k = v the physical quantities related to the vapor phase.

The physical quantities related to the thermodynamic

Symbol Signification Unity (SI)
ρk density kg.m−3

αk void fraction 1
ek internal energy J.kg−1

hk = ek + P/ρk specific enthalpy J.kg−1

Hk = hk + |uk|2/2 specific total enthalpy J.kg−1

¯̄σk viscosity tensor kg.m−1.s−2

hk,sat specific enthalpy at saturation J.kg−1

The physical quantities related to the mixture

Symbol Signification Unity (SI)
ρ = ∑

αkρk density kg.m−3

~U =
∑

αkρk
~Vk

ρ
velocity vector m.s−1

~Ur = ~uv − ~ul relative velocity m.s−1

Cv = αvρv

ρ
vapor mass concentration 1

e =
∑

αkρkek

ρ
internal energy J.kg−1

E = CvEv + (1− Cv)El total energy J.kg−1

h =
∑

αkρkhk

ρ
specific enthalpy J.kg−1

P pressure Pa

v

Sommaire

Abstract i

Acknowledgement iii

Nomenclature v

1 General introduction 1

2 The mathematical model 9

3 Numerical method 19

4 Application : CoreFlows 29

5 Numerical Results 51

6 Conclusion 69

7 Appendix 71

Bibliography 85

List of Figures 90

vii

Chapter 1

General introduction

1.1 Internship Context

1.1.1 CEA

The CEA is the French Alternative Energies and Atomic Energy Commission (Commis-
sariat à l’énergie atomique et aux énergies alternatives), which is the French scientific re-
search institution specialized in four wide fields: Low-carbon energies, Defense and Global
energy, Information technologies and Health technologies.
It is composed of five main divisions:

• Nuclear Energy Division (NED)

• Military Applications Division (MAD)

• Technological Research Division (TRD)

• Life Sciences Division (LSD)

• Material Sciences Division (MSD)

It was created in October 18th, 1945 by General De Gaulle, naming the high com-
missioner in atomic energy Frédéric Joliot-Curie as a president. Today, it includes more
than 15.000 employees in different centers situated allover France. (Figure 1.1 illustrates
the location of CEA’s centers throughout France). Divided into two types of centers, one
is for the Military Applications’ studies center whereas the other one is for the Civilian’
Studies center, CEA- Saclay where I had my internship is a part of this latter. In addition
to this there is a center which includes the biggest number of staff.

CEA has various partnerships with research organizations, local collectivities and uni-
versities. In this regard, it is an integral part in national alliances coordinating the French
research in the field of energy (ANCRE), Life and Health sciences (AVIESAN), Numerical
sciences and technologies (ALLISTENE) and environment sciences (AllEnvi).

As a leader in applied research, CEA hosts (center of Bruyeres le Chatel) one of the
most powerful supercomputers in Europe. With its 11,520 processors, 92160 cores of its

1

Chapter 1 – General introduction

calculations and its gigantic memory of 360 terabytes, the CURIE supercomputer can
reach speeds of 2 Petaflop1. CURIE is part of this network GENCI2.

Figure 1.1: The ten CEA centers in France

CEA also hosts the INSTN whose mission is teaching and professional internship in
the nuclear field, as well as many organizations or companies:

1.1.2 Saclay Center

CEA-Saclay Center is one of the most important research centers and development in
Europe. It is situated in the Essonne department (ile de France). The center is 220 ha
wide, located in the Saclay plateau in the scientific and technological pole of Paris-Saclay.

It consists of a main area which hosts CEA’s headquarters and an extension “l’Orme
de Merisiers”.
It was inaugurated in 1952 in order to activate the first nuclear research reactor, successor
of Zoe battery : EL23.

It contains approximately 400 buildings, nearly 8000 people who run daily there within
it, 5400 CEA and others coming from different institutions and companies.

CEA also hosts the INSTN4 whose mission is teaching and professional internship in
the nuclear field, as well as many organizations or companies:

1. 1 Petaflop = 1015 flops (i.e FLoating point Operation Per Second)
2. GENCI : Grand Équipement National de Calcul Intensif
3. Heavy water reactor n°2
4. Institut national des sciences et techniques nucléaires

2

1.1. Internship Context

• Agency for Radioactive Waste Management(Andra).

• International Institute of Nuclear Energy(I2EN).

• Iba, Producer of Radiolabel Molecules for Radiotherapy.

• Radiation Protection and Nuclear Safety (IRSN).

• Areva. TA (Formerly Technicatome).

• Euriso-Top, Solvet Containing Deuterium and Banded products Producer.

Figure 1.2: Cea-Saclay center, view of the sky

CEA-Saclay operates in different domains from which we can list: Nuclear energy,Life
sciences, Material sciences, Climate and Environment, Technological Research and Educa-
tion. In addition to these there are other research activities in Hydrogen and Bio-energies.
Furthermore, other works can be cited such as: researches on radioactive waste manage-
ment and the demolition of old nuclear research reactors.

In addition to the field of energy studies, other research areas are studied in CEA-
Saclay:

• Technological research: embedded computing systems, interactive systems (man-
machine relationships), sensors and signal processing.

• Health researches: the effect of radiation on cells and molecules, protein engineering,
medical imaging research and radioimmunoassay.

• Environmental studies: climate modeling, and the Global warming effects.

3

Chapter 1 – General introduction

1.1.3 Modeling Laboratory on a Components Scale

The internship has been conducted in LMEC laboratory (Laboratoire de Modèlisation à
l’Échelle Composante) which is part of "service of Thermal-hydraulics and Fluid Mechan-
ics "(STMF) which includes nearly 130 employees. STMF is part of the “Systems and
Structures Modeling Department” which includes 300 employees which is part of “ Del-
egated Management to Saclay Nuclear Activities” within the “Nuclear Energy Division”
(DEN), which includes 5000 employees.

Figure 1.3: CEA’s organizational chart

The twenty members of the laboratory organized into teams work on several aspects:
Modeling, development, simulation and maintenance of industrial codes.

Competencies are situated essentially in the following fields:

• Physical modeling of two-phase flows,

• Numerical analysis,

• Design support for the safety analysis of reactors,

4

1.2. Problem Statement

• Software engineering.

1.2 Problem Statement

Among CEA activities, technologies related to the production of nuclear energies are a
crucial part of CEA’ original mission.

Working principle of a pressurized water reactor PWR France has 19 nuclear
stations, in which, energy is produced by “Pressurized Water Reactors ” and the term
“ pressurized water” is coming from the fact that water which carries the heat in the
primary circuit (see figure 1.4) is under a very strong pressure: 155 bars which means
155 times the atmospheric pressure

Therefore, their principle operation is as follows:

1. A nuclear reaction occurs in the reactor’s core and has a very significant heat,

2. The heat generated is transferred to water of primary circuit (figure 1.4). This water
is about 300°C.

3. Water of primary circuit in turn transfers its heat to the one of the secondary circuit
(figure 1.4) and makes it boil, in other words, transforms it to steam.

4. This steam turns the turbine generator group which produces electricity,

5. The steam is cooled by the water cooling system or the tertian circuit: it is condensed
i.e it becomes a liquid.

The risk of nuclear power plants usually comes from the used fuel, uranium.
Uranium is not classified among the most toxic elements of its radioactivity perspective,
but in the reaction of nuclear fission it undergoes in the core, it transforms into different
substances which are very radioactive.
Moreover, this reaction must be carefully controlled under penalty of race, which could
lead to a catastrophic meltdown. Thus,it is important to study the behavior of a reactor’s
rated velocity(performance improvement) or accidental system (safety study) to simulate
the flows of fluid within the reactor .

The STMF develops models and numerical methods dedicated to the study of flows
in the primary and secondary circuits, the enclosure of nuclear reactors, as well as exper-
imentation associated.
These flows generally comprise several phases, and it is important to understand and
simulate their dynamics accurately.

5

Chapter 1 – General introduction

Figure 1.4: Working principle of a pressurized water reactor PWR

Figure 1.5: Diagram of a PWR900 vessel

As part of research in physics reactor, LMEC suggest models and numerical two-phase
thermal-hydraulics codes (for models and numerical schemes) to simulate the static and
dynamic behavior of nuclear core systems requiring a good knowledge of two-phase flows6

The FLICA 4 code developed by LMEC is dedicated to the calculation of multiphase

6. see the definition of a two-phase flow in the introductory chapter 6

6

1.2. Problem Statement

flows (Liquid and steam water) to permanent or transient state in core of WRP. This is
a three-dimensional thermal-hydraulic code using the method of finite volume.

The two-phase flow comprising a liquid phase and a steam phase is modeled by four
conservation equations, with a set of closure laws.

In FLICA 4 computing code, the model with four equations is solved by VFRoe
[2] numerical method on a collocated mesh with a patch to improve precision low Mach
number. This correction allows better capture of the almost incompressible dynamics but
but introduces numerical instabilities flows. introduces numerical instability flows These
instabilities make certain calculations difficult to carry out, in the case of flows boiling in
differentially heated parallel channel.

On this configuration, we will test two new numerical approaches. The first scheme is
the use of an upwinding in the source terms in order to obtain a well balanced scheme.
The second scheme is inspired by schemes on collocated mesh and precise for low Mach
number.

7

Chapter 2

The mathematical model

A two-phase flow occurs in a system containing two different phases. For example, it is
possible to study a flow with water as a vapor flow and as a liquid.

A two-phase flow is defined as a mixture of two phases where the topology, the com-
position and the exchange phenomenon are parameters which can permanently fluctuate.
Because of their wide variety, they can be found among the industrial applications such
as nuclear reactors, turboprops, · · ·

Since it is quite difficult to find a valid mathematical model which rules a two-phase
system, this type of problem can be complex. These mathematical models are based both
on universal laws (principle of mass conservation, law of conservation of momentum) as
well as behavior laws which are essentially used to close the system of equations.
Even if it is always possible to write local equations, the direct solving seems to be almost
unaffordable because of the small scales of the problem. Moreover, the modeling of the
flows encountered in the industry need a particular approach (homogenization type)[1].

There are many two-phase flow applications, especially in the industry through nuclear
engineering, petroleum engineering, chemical engineering and automobile and aerospace
propulsion but also in biology and in chemistry through lubrication or distillation.

There are two main groups of two-phase flow modeling methods: the Lagrangian meth-
ods and the Eulerian methods. Within the Eulerian methods chosen at the STMF, the
two-phase flow modeling is based on a homogenization process[1] [3]. These techniques
consist in considering both phases as two distinct continuous media sharing the available
volume and then solving the equations ruling each phase’s state variables. In their most
generic formulation, they result in open systems, characterized by two distinct velocities
and pressures. Thus, if we consider only one space-dimension, these models are formed
of at least six equations: two mass balance equations, two momentum equations, two
energetic equations to which two closure relations may be added.

2.1 Eulerian single-phase balance equations

In the next part we will fix k = v, l the respective indexes of each phase. Every two-phase
medium can be assimilated to a set of pure one-phase areas in which the local equations
of fluid mechanics are applicable. These areas are separated by infinitely thin interfaces
and supposed without mass.

9

Chapter 2 – The mathematical model

Setting the mass balance ρk, the momentum ρkuk and total energy balance ρkEk =
ρkek + ρk

u2
k

2 with ek(Tk) as the specific intern energies which depend on the temperatures
Tk.
We obtain for each phase the classical system of the Navier-Stokes equations

∂ρk

∂t
+ div(ρkuk) = 0

∂ρkuk

∂t
+ div(ρkuk ⊗ uk) + ∇pk + div(−τ̄k) = ρkfvk

∂ρkEk

∂t
+ div(ρkEk + pk)uk + div(qk − τ̄k.uk) = ρkfvk.uk

(2.1)

Where τ̄k is the tensor constraints on viscosity,fvk the set of external volumetric forces
which apply to the phase k and qk is the heat flow.

2.2 Averaged balance equations

To describe the evolutions of the variables in both fluids, we denote by Ωk(t) the space
domain taken by the phase k in the flow domain at time t, and we define Xk as each
phase’s characteristic function by:

Xk(x, t) =
 1 if x ∈ ωk(t)

0 else
, (2.2)

Thus, we have ∑kXk(x, t) = 1. We denote by W the velocity of the interface. The
equation ruling the evolution of Xk is :

∂

∂t
Xk = W · nk · δ, (2.3)

Where nk is the unit normal vector at the interface conducted from the fluid k to the
fluid k̄1 and δ is the Dirac delta function concentrated on the interface.

On the other hand, we also have

∇Xk = −nkδ (2.4)

Which allows us to write 2.3 as

∂

∂t
Xk +W · ∇Xk = 0 (2.5)

We may also remind that the function Xk checks the following identities as distribu-
tions:

1. if k = g then k̄ = l else k̄ = g

10

2.2. Averaged balance equations

∇(Xkf) = Xk∇f + f∇Xk = Xk∇f − fnkδ

div(Xku) = Xkdivu + u∇Xk = Xkdivu− unkδ

div(Xkτ) = Xkdivτ + τ∇Xk = Xkdivτ − τnkδ

Where f is a scalar function, u a vector, τ a second-order tensor. The equations 2.1
and 2.5 give a complete and highly detailed description of the flow. However, they cannot
initialize a numerical method when the space steps are much more important than the
size of the liquid and gaseous inclusions. To deal with these cases, we must consider the
use of homogenized models.

In order to set the six-equation two-phase model or the four-equation drift model of
FLICA 4 [15], we use the methods described in [4] or [5] for the calculation of the
average, as we mentioned in this chapter’s introduction.
The homogenization process is given in [7], to which averaged interface conditions[7] must
be added and also assuming that the tensor constraints on viscosity, the heat flow and
the set of external volumetric forces equal their average value.
Thus, we obtain the following system of equations

∂

∂t
(αkρk) + div(αkρkuk) = Γk

∂

∂t
(αkρkuk) + div(αkρkuk ⊗ uk) +∇(αkpk) + div(−αkτ̄k)

= MΓ
k + pkI∇αk + Fdk + αkρkfvk

∂

∂t
(αkρkEk) + div(αkρkEk + αkpk)uk + div(αk(qk − τ̄k · uk))

= HΓ
k − pkI

∂αk
∂t

+ Fdk · ukI +QkI + αkρkfvk · uk

(2.6)

with :

• Γk,MΓ
k ,HΓ

k are terms of mass interfacial transfer,

• QkI is the term of heat interfacial transfer,

• Fdk is the term of interfacial friction force,

• pkI and ukI are respectively the pressure and the velocity of the phase k at the
interface.

The system 2.6 reflects the general form of the two-fluid model obtained by the process
of average. However, we can only count in this system six equations for seven unknowns

11

Chapter 2 – The mathematical model

ρk, uk, Ek et αk. This system is open and we have to find closure relations.
In the case of classical six-equation two-fluid models, this problem is solved thanks to the
relation between the pressures pv and pl the common pressure assumption is widespread[4].
Indeed, supposing the equality of the phasic pressures is physically legitimate:

pl = pv = pvI = plI = p

And also constitutive laws under the form ek = ek(Tk) for the phasic intern energies. And

therefore the conventional two-fluid model of six equations written as:

∂

∂t
(αkρk) + div(αkρkuk) = Γk

∂

∂t
(αkρkuk) + div(αkρkuk ⊗ uk) + αk∇(p) + div(−αkτ̄k)

= MΓ
k + p∇αk + Fdk + αkρkfvk

∂

∂t
(αkρkEk) + div(αkρkEk + αkp)uk + div(αk(qk − τ̄k · uk))

= HΓ
k − p

∂αk
∂t

+ Fdk · ukI +QkI + αkρkfvk · uk

(2.7)

2.3 Obtaining the equations of the drift model

By making simplistic assumptions on the velocity and the temperature of the existing
phases, it is possible to move from a six-equation model to a four-equation model. The
two-phase flow, which contains a liquid phase and a vapor phase, is modeled by four bal-
ance equations:

• Conservation of total mass of the mixture
• Vapor mass balance
• Momentum of mixture balance
• Energy of mixture balance

This model, called four-equation drift, is based on very simplistic assumptions.

• First, the velocity gap between the phases is a priori ruled by a correlation ur =
uv − ul = fr(cv,um, ρm).
This assumption limits the use of the model to the small velocity deviations between
both phases and most of the correlations suppose that there are flows which have
almost the same velocity.

• Secondly, the vapor is supposed to reach the saturation level: Tv = T satv .
This assumption avoids particularly the simulation of overheated vapor.

12

2.3. Obtaining the equations of the drift model

2.3.1 The drift model of FLICA 4

FLICA 4 is a 3D two-phase thermal-hydraulics software which is developed at the STMF
service of the CEA. It is dedicated to the calculations of two-phase flows (liquid water and
steam) within the core of the nuclear reactors for unsteady and steady flows. It considers
the presence of solid hindrances within the flow, through a porous perspective.

The mathematical model of FLICA 4 is a four-equation model which is established
from the six-equation model (cf. 2.7), by including the porosity, by removing two partial
differential equations and by replacing them by two algebraic equations which give the
velocity gap between the phases and the thermodynamic imbalance.

A Drift model is used to take into account the shift between the two phases (vapor
and liquid) and therefore, gives the velocity gap ur = uv − ul = fr(cv,um, ρm).
Both phases are compressible and supposed to be at the same pressure.
The thermodynamic imbalance between the phases is obtained by supposing that one of
them (vapor in our case) reaches the saturation level.

The conservation of mass of the mixture

It is obtained by adding the liquid and vapor mass balance equations(2.7). The linearity
of the operators in these two equations allows us to write to following equation:

∂
∂t
φ(ρlαl + ρvαv) + divφ(ρlαlul + ρvαvuv) = 0

The l index represents the liquid phase and the v index the vapor phase.

The vapor mass balance equation

∂
∂t

(φρvαv) + divφ(ρvαvuv +Kcvgradcv) = φΓv

Γv : vapor mass created by unit of time
Kcv is an optional turbulent diffusion coefficient

The momentum balance equation

The momentum balance equation for the mixture of the two phases is also obtained by
adding the liquid and vapor momentum balance equations in (2.7) and is written:

∂
∂t
φ(ρvαvuv + ρlαlul) + divφ(∑k=v,l ρkαkuk ⊗ uk + αkpI + αkΠk) = φρ~g + φ~τ

I : is the identity matrix with the same dimension as u
Πk : is the tensor constraints on viscosity of the phase k

13

Chapter 2 – The mathematical model

The energy balance equation

The energy balance equation is written :

∂
∂t

(φ∑k=v,l ρkαkEk) + divφ(∑k=v,l ρkαkukEk − αkΠkuk − qk)
= Qktot + φ

(∑
k=v,l ρkαkuk

)
· ~g

Qktot : is the source term of total volumetric power received by the phase k.
qk : is the thermal flow generated by the thermal conduction of the phase k

Thus the four-equation FLICA 4 model is written under the form:

∂
∂t
φ(ρlαl + ρvαv) + divφ(ρlαlul + ρvαvuv) = 0
∂
∂t

(φρvαv) + divφ(ρvαvuv +Kcvgradcv) = φΓv
∂
∂t
φ(ρvαvuv + ρlαlul) + divφ(∑k=v,l ρkαkuk ⊗ uk + αkpI + αkΠk) = φρ~g + φ~τ
∂
∂t

(φ∑k=v,l ρkαkEk) + divφ(∑k=v,l ρkαkukEk − αkΠkuk − qk)
= Qtot + φ

(∑
k=v,l ρkαkuk

)
· ~g

(2.8)

Source terms of the FLICA 4 model

Total mass equation :
The first component is null because there isn’t any material created but only a transfor-
mation from liquid to vapor.

Vapor mass equation :
Γv is the phase change rate: quantity of liquid vaporized by unit of time, which is the sum
of the vaporization on contact with the heating walls Γwv and the mass exchange at the
interface between the phases Γlv.

The phase change term Γv is non-zero if the enthalpy hm of the fluid lies between the
enthalpy of the liquid and the enthalpy of the vapor. However, FLICA 4 also models the
undersaturated boiling where the bubbles appear only on contact with the heated walls
whereas the average temperature in the canal stays lower than the boiling temperature

Momentum equation :
The source term τ represents the sum of the mixture frictions on the walls τw and on the
singular hindrances τs (the solid hindrances present in the reactor).
The parietal friction term is linearized under the form −Kρmum with K defined as a con-
stant normally depending on the hydraulic diameter and the Reynolds number. Therefore,
we will not consider in this case the heating wall coefficient and the two-phase multiplier
either

14

2.3. Obtaining the equations of the drift model

Energy equation :
The source of energy provided to the fluid is described by the Qtot term, which is the
volumetric power received by the fluid which comes into contact with the heating walls.

2.3.2 The Drift model in CoreFlows

In order to replicate the numerical complexities of FLICA 4, we are going to develop
a replica of the code based on a simplified version of the model, which will allow us to
study new numerical approaches.

We shall consider simplified source terms of phase shift, parietal friction and heating.
Rather than supposing that the steam reaches its saturation level, we may suppose

the thermal equilibrium: Tv = Tl.
We have seen that this assumption is simpler and more general than the vapor saturation
assumption. As of now, we will not take into account the relative velocity ur.

Therefore, we are working on a four-non-linear partial differential equation system
which conservative form is the following:

∂tU +∇ · F (U) = S, (2.9)

with the following terms for the vector of conservative variables U :

U =


αvρv + αlρl

αvρv

αvρvuv + αlρlul
αvρvEv + αlρlEl

 ,

And the matrix of flow F (U) = FNV (U) + FV (U)

FNV (U) = t


αvρv

tuv + αlρl
tul

αvρv
tuv

αvρvuv ⊗ uv + αlρlul ⊗ ul + pId
αvρvHv

tuv + αlρlHl
tul

 , (2.10)

FV (U) = t


0
0

αvµv ~∇uv + αlµl~∇ul
αvµvuv · ~∇uv + αlµlul · ~∇ul + αvλv ~∇T + αlλl~∇T

 . (2.11)

15

Chapter 2 – The mathematical model

With, for each phase:
The viscosity µk, k = l, v

The conductivity λk, k = l, v

The total energy: Ek = ek + 1
2 |uk|

2, k = l, v

The total enthalpy: Hk = hk + 1
2 |uk|

2, k = l, v

Where ek is the intern energy, and hk = ek + p
ρk

the enthalpy associated to the phase k

State laws and constitutive parameters

For each phase, the state low is approached by a linear stiffened gas law

pk = (γk − 1)ρkek − γkp0k

And a linear intern energy law

ek(T) = ek(345K) + cvk(T − 345K)

Which are applicable in the vicinity of the saturation point p0 = 155bars, T sat0 = 345.

The values of density, constant-volume intern energy and heat capacity, viscosity and
conductivity for each phase around the point (p0, t0) are derived from the NIST base [20].

Source terms

We shall consider a simplified source term under the form

S =


0

Γv(cv, T)
ρm~g −Kρm||um||um

Φ + ρm~g · um −Kρm||um||3

 ,

with

ρm = αlρl + αvρv

um = αlρlul+αvρvuv

αlρl+αvρv

hm = αlρlhl+αvρvhv

αlρl+αvρv

The first component is null because there isn’t any material created but only a transfor-
mation from liquid to vapor.
Γv is the phase change rate: quantity of liquid vaporized by unit of time.
ρm~g−Kρm||um||um represents the volumetric forces applied to the fluid. ~g represents the

16

2.3. Obtaining the equations of the drift model

gravity and −Kρm||um||um the friction on the solid hindrances in the reactor. Φ repre-
sents the thermal power transferred to the liquid by unit of time.
The phase change term Γv is non-zero if the enthalpy hm of the fluid lies between the
enthalpy of the liquid and the enthalpy of the vapor, both taken at the saturation point
(p0,t0) (p0, T0).

In this case, all the heat received by the thermal flow is used to the phase change:

Γv =


Φ
L si h0

l ≤ h < h0
v et cv < 1

0 sinon
. (2.12)

If the thermal power is null, Γv = 0 and there is no phase change.
Therefore, we are not modeling a spontaneous boiling/condensation of the fluid, and the
phased are never supposed to reach the saturation level.

The parietal friction term is linearized under the form −Kρm||um||um with K defined
as a constant normally depending on the hydraulic diameter and the Reynolds number.
Therefore, we will not consider in this case the heating wall coefficient and the two-phase
multiplier either

17

Chapter 3

Numerical method

We are going to apply a finite volume method in order to solve the balance equations
ruling the two-phase flow.
The exact solution of the problem is approached by a grid constant function. Its values
are solutions of a discrete problem obtained by integrating local equations on each mesh
element in the domain of definition. The conservation equations of the thermohydraulic
model are written under the following form:

∂tU + div · F (U) = S(U) (3.1)

where
- U is the vector of conservative variables
- F (U) is the flow vector in the three directions. It can be separated into two parts:

F (U) = FNV (U) + FV (U)

such that

• FNV (U) represents the convective flows,

• FV (U) represents the contribution of the viscous flows,

• S(U) is the vector of the source terms .

We may outline the specific notations of the mesh:
The footprint of a control cell on a horizontal plane is a quadrangle or a random triangle.
The control volumes are numbered by the index i, as well as the constant variables.

We use the following rules for the indexes:

• i is the index of a cell of Ci

• j is the index of the neighbor of Ci

• ij is the interface between neighbor cells Ci and Cj

• I(i) is the set of indexes j whose neighbors of Cj are neighbors of Ci

19

Chapter 3 – Numerical method

• V (i) is the set of indexes j such that the cell Cj has a common edge with the cell
Ci

We denote V ol(Ci) as the volume of the control cell Ci et ∂Ci its border. We also
denote Sij the area of the interface ∂Ci ∩ ∂Cj.

The finite volume formulation consists in associating a constant value Ui for the vector
of conservative variables to each control cell Ci, and then integrating the conservation
equations 3.1 on this cell. We denote ∂Ω the border of the domain Ω and n = (nx, ny, nz)
the outgoing normal unit vector of ∂Ω

The semidiscrete finite volume formulation of 3.1 is :
∫
Ci

S(U) dv8 = V ol(Ci)∂tUi +
∫
∂Ci

F (U) · n dσ9 (3.2)

We can see in the appendix the time discretization (explicit and implicit schemes) and
the processing of the boundary conditions.

3.1 Finite volume formulation of FLICA 4
Within FLICA 4, the 3D meshes considered are obtained by a translation following the
axial direction (z direction) of a 2D mesh (structured or not), in a horizontal plane (xy
plane).

3.1.1 Convective flows

We are looking at the calculation of the convective flows shown in the equation 3.2.
The area of the cell Ci is formed of polygonal faces:

∫
∂Ci

FNV (U) · n dσ =
∑
j∈I(i)

∫
∂Cij

FNV (U) · n dσ +
∫
∂Ci∩∂Ω

FNV (U) · n dσ (3.3)

In the first term, the sum is extended to all the neighbors Cj which have a common
interface ∂Cij = ∂Ci ∩ ∂Cj with the cell Ci. The second term represents the integration
at the boundaries. The intern flows, which are the reflect of an interface strictly lower to
the domain Ω, are approached by :

∫
∂Cij

FNV (U) · n dσ = SijF̃ (Ui, Uj, nij) (3.4)

where :
F̃ is the numeric flow that we will express further.

8. représente un élément de volume
9. représente un élément de surface

20

3.1. Finite volume formulation of FLICA 4

The limited flows reflect an interface on the boundary of the domain Ω, and are calculated
thanks to the same numeric flow function, and after introducing a fake adjacent cell to
the face Cik outside the domain (7.2).

VFRoe Scheme

FLICA 4 currently uses a VFRoe scheme with a pressure correction to make it more
accurate. These equations are discretized thanks to the finite volume method.
The domain is divided into cells (also called mesh elements) which can have any form (non-
structured mesh and/or non-conform mesh). The following releases of FLICA 4 use the
alternative called VFRoe [2], which consists in calculating the state at the interface (U∗)
and then taking the physical flow of this state :

F̃ (Ui, Uj, nij) = F (U∗)

With
U∗(Ui, Uj, nij) = Ui + Uj

2 − signe(Aij)
Ui − Uj

2 . (3.5)

pressure correction In the alternative VFRoe of the scheme (equation 3.5), the pres-
sure correction consists in calculating the primitive state V ∗ associated to U∗ (see [6]), then
replacing the pressure of V ∗ by pi+pj

2 and finally calculating a new conservative stage pi+pj

2

Unfortunately, although the scheme’s accuracy is upgraded using this method, these
pressure corrections downgrades the stability of the original Roe scheme (oscillations of
the solution) (see figure 3.1)

3.1.2 Viscous flows

We are now going to work on the calculation of the second order terms associated to the
modeling of the viscous constraints of the two-phase fluid studied. The viscous contribu-
tion of the total flow F (U) is a function of the conservative variables U and the gradient
∇U of these variables. We can write again the viscous flows which occur in the equation
3.2 under the following form :

∫
∂Ci

(FV (U)nx +GV (U)ny +HV (U)nz)n dσ =
∫
∂Ci

F̃V (U,∇U, n) dσ (3.6)

where F̃V (U,∇U, n) represents the viscous flow in the direction normal to the surface ∂Ci.
This last expression can be divided into two terms involving the internal interfaces and
on the boundary:
∫
∂Ci

F̃V (U,∇U, n) dσ =
∑
j∈I(i)

∫
∂Cij

F̃V (U,∇U, n) dσ +
∑

k∈K(i)

∫
∂Cik

F̃V (U,∇U, n) dσ (3.7)

21

Chapter 3 – Numerical method

Figure 3.1: Comparison of numerical schemes: stationary pressure Uentree = 1m/s

To calculate the viscous flows at an interface ∂Cij, it is necessary to evaluate the
gradient of conservative variables at this interface. Actually, we can notice that the viscous
flow is a linear function of the velocity gradient and each phase’s enthalpy. In a structured
mesh, the estimation of these quantities’ gradient at an interface is classical with a finite
difference central scheme.

In the case of a non structured mesh, the estimation of the gradient at the interface
is not as classical.

To approach properly the partial derivatives (normal and tangential) of U on an inter-
face depending on the values at the barycenter of the mesh, we will introduce the following
points (see Figure 3.2):

• N1 and N2 two points belonging to the interface Cij

• NG and ND two points belonging to the interface Cij passing through the midpoint
M

Then, we define the normal and tangential derivatives of U by :
UN2−UN1
||N1N2|| and UND

−UNG

||NDNG||

These definitions are first-order consistent approximations of the exact derivatives at the
midpoint M if UN1 , UN2 , UNG

, UND
are second-order approximations of the vector of con-

servative variables respectively at points N1, N2, NG and ND.

22

3.1. Finite volume formulation of FLICA 4

The geometric definition of these points as well as the detailed calculations of the
gradient at an interface are all given in the document [16]

This approach leads to an estimation of the viscous flow combining the control cell Ci
and all the neighbors which have at least one common vertex.

Figure 3.2: Calculation of the gradients for the viscous flows

23

Chapter 3 – Numerical method

3.1.3 Discretization of the source terms

The source terms are calculated using a central scheme. Since the conservative variables
are constant in the control cell Ci, we obtain the following discretization for the second
member of the equation 3.2 :

∫
Ci

S(U), dv ≈ vol(Ci)S(Ui).

3.2 Finite volume formulation of CoreFlows

As a result of the final year project we realized in February 2015, we have developed
a model which compares the Roe schemes and the VFRoe schemes with and without
pressure correction on calculations of 1D and 2D boiling channels. In conclusion of this
work, we discovered that it is essential shift the center of the Roe schemes in order to
apprehend the solution efficiently. Theoretical guidelines inspired this processing of the
source terms in the case of stiff or discontinuous source terms. We are going to extend
this work by comparing the balanced Roe scheme with specific schemes with low Mach
number in the CoreFlows environment on CDMATH and Salomé.

3.2.1 Convective flows

The convective flows are under the form

F̃ (Ui, Uj, nij) = F (Ui) + F (Uj)
2 nij −Dij

Ui − Uj
2 . (3.8)

where Dij is the shift matrix of the scheme

Upwind scheme

The numerical flow of the Roe scheme ([21]) is based on the of a one-dimensional linearized
Riemann’s problem in the direction normal to an interface between two control cells

∂tU + A(Ui, Uj)∂xnU = 0

With:

• xn represents the direction of the normal n,such that U(xn, 0) =
 U t

i si xn < 0
U t
j si xn > 0

,

• A(Ui, Uj) A(Ui,Uj) linearized jacobian matrix, called Roe matrix (see appendix 7.3)

The numerical flow obtained thanks to the exact resolution of this Riemann’s problem,
which is also the flow that the first releases of FLICA 4 use is given by the following

24

3.2. Finite volume formulation of CoreFlows

expression
F̃ (Ui, Uj, nij) = F (Ui) + F (Uj)

2 nij − Aij
Ui − Uj

2 . (3.9)

The detail of the calculation of the Roe matrix and the shift are given in the appendix
7.3.

The first term of (3.9 and 3.5) is the central part which is responsible for the consis-
tency of the numerical flow F̃ with the physical flow F : F̃ (U,U, n) = F (U)n because the
other terms get cancelled when Ui = Uj .

The last terms of (3.9 and 3.5) ensure the stability of the numerical scheme and some
other numerical properties such as the maximum principle or the positivity of certain
physical quantities such as concentration, density or pressure.

Low Mach scheme

Although the Roe schemes are stables, they may have accuracy problems with low Mach
number [17]. When the Mach number of a compressible flow is low and if there is no source
term, the flow becomes nearly incompressible and the Godunov methods, which use a shift
based on the acoustic wave propagation, become less accurate. To solve this problem of
accuracy, the designers of FLICA 4 have then introduced "pressure corrections in order
to increase the accuracy.
The adjusted flow associated to the original formulation of the Roe scheme (equation 3.9)
is written:

F̃ (Ui, Uj, nij) = F (Ui) + F (Uj)
2 nij − |Aij|

Ui − Uj
2 + ã(ρmiumi − ρmjumj) · nij

2


0
0

nij
0

 ,
(3.10)

where ã is the velocity of sound on the interface between Ui and Uj The detail of the
calculation of the pressure correction is given in the appendix 7.3.5.

Staggered scheme

The new scheme is designed to be accurate with low Mach number in the spirit of the
donor cell schemes ([18]). The method is necessarily implicit with a flow under the form:

Fi+ 1
2

= F (Ui) + F (Ui+1)
2 +DMAC

Ui − Ui+1

2 . (3.11)

where DMAC is built like the jacobian of F on the face except that the coefficients linked
to the pressure are multiplied by −1. This idea represents the fact that for MAC schemes,

25

Chapter 3 – Numerical method

the scalar unknowns (density, pressure and energy) are discretized on mesh which is dif-
ferent from the one holding the velocity vector.

More specifically, the jacobian of the four-equation model under the assumption uv =
ul is in 1D

Jac(U) =


“0 0 tnij 0
−unc un ctnij 0

(χ+ 1
2κ|u|

2)nij − unu ξnij u⊗ nij + unId − κnij ⊗ u κnij
(χ+ 1

2κu
2 −H)un ξun H tnij − κuntu (κ+ 1)ũn


with χ, ξ and κ the partial derivatives of the pressure defined by the relation

dp = χdρ+ ξd(ρc) + κd(ρe).

and the matrix DMAC related is:

DMAC(U) = signe(un)


0 0 tnij 0
−unc un ctnij 0

−(χ+ 1
2κ|u|

2)nij − unu −ξnij u⊗ nij + unId + κnij ⊗ u −κnij
(−χ− 1

2κu
2 −H)un −ξun H tnij + κun

tu (−κ+ 1)ũn

 .

3.2.2 Viscous flow FV

Since our main goal is the improvement of the discretization of the convective flows and
other source terms of FLICA 4, the viscous flows of CoreFlows are discretized by a
simple two-point approach which is less accurate than the FLICA 4 one.

The gradient of U on the face between the cells Ci and Cj of the figure 3.2 is simply
equal to:

Ui − Uj
||GiGj||

where Gi and Gj are the respective barycentres of the cells Ci and Cj.

3.2.3 Processing of the source terms

The semi-discrete finite volume scheme of the equation (3.1) is written under the form:

dUi
dt (t) + 1

|Ci|
∑
j∈ν(i)

sijFij = Si (3.12)

26

3.2. Finite volume formulation of CoreFlows

The central processing consists in taking

S(Ui) = S(Ui, xi, t). (3.13)

The upwinding (shift) processing consists in taking

Si = 1
perimeter(i)

∑
j∈ν(i)

sijSij (3.14)

With
Sij = S(Ui) + S(Uj)

2 + signe(Ai,j)
S(Ui)− S(Uj)

2 (3.15)

27

Chapter 4

Application : CoreFlows

4.1 Presentation of CoreFlows

CoreFlows is an open source C++/Python library intended to solve PDE systems
arising from the thermalhydraulics of two phase flows in power plant boilers. It is a
simple environment meant for students and researchers to test new numerical methods on
general geometries with unstructured meshes. It proposes a few basic models and finite
volume numerical methods.
Some of the main objectives are the study of

• Numerical schemes for compressible flows at low Mach numbers

• Well balanced schemes for stiff source terms (heat source, phase change, pressure
losses)

• Flow inversion and counter-current two phase flows

• Schemes that preserve the phasic volume fraction α ∈ [0, 1]

• Convergence of finite volume methods

• New preconditioners for implicit methods for two phase flows

• The coupling of fluid models or multiphysics coupling (eg thermal hydraulics and
neutronics or thermal hydraulics and solid thermics)

CoreFlows relies on the toolbox [9] of the project CDMATH [8] for the handling of
meshes and fields, and on the library Petsc [31] (version 3.4.5) for the handling of large
sparse matrices.

29

Chapter 4 – Application : CoreFlows

4.2 The physical models

The physical models proposed in CoreFLows, are presented in order of mathematical
complexity:

4.2.1 Scalar models

The transport equation

∂th+ ~u · ~∇h = Φ + λsf (Ts − T) (4.1)

where

• h the main unknown is the fluid enthalpy field

• ~u is the constant transport velocity,

• Φ is the heat source term if explicitely known,

• Ts is the solid temperature field,

• T = T0 + H−H0
cp

is the fluid temperature field

• λsf is the fluid-solid heat transfer coefficient,

• cp is the fluid specific heat.

The class TransportEquation implements a scalar advection equation for the enthalpy
of a fluid. The fluid can be either steam or liquid water around 1 bar or 155 bars.

In Examples’s section (4.7.2), we find Python’s script to solve ??.

The diffusion equation

The diffusion equation solved in CoreFlows is :

∂tT = d4T + Φ + λsf (Tf − T)
ρcp

(4.2)

where

• T the main unknown is the solid temperature field

• λ is the solid thermal conductivity,

• ρ is the solid density assumed constant,

• cp is the solid specific heat,

• d = λ
ρcp

is the solid diffusivity

30

4.3. The Navier-Stokes equations

• Φ is the heat source term if explicitely known

• Tf is the fluid temperature field provided by the user

The class DiffusionEquation implementing a scalar diffusion equation for the temperature
in a solid. The default values for ρ, cp, λ are those of Uranium oxyde around 900K.

4.3 The Navier-Stokes equations

The model consists of the following three balance laws for the mass, the momentum and
the energy:



∂ρ
∂t

+ ∇.~q = 0
∂~q
∂t

+ ∇.
(
~q ⊗ ~q

ρ
+ pId

)
− ν∆~u = ρ~g −Kρ||~u||~u

∂(ρE)
∂t

+ ∇.
[
(ρE + p) ~q

ρ

]
− λ∆T = Φ + ρ~g · ~u−Kρ||~u||3

(4.3)

where

- ρ is the density,

- ~u the velocity,

- ~q = ρ~u the momentum,

- p the pressure,

- ρe the internal energy,

- ρE = ρe+ ||~q||2
2ρ the total energy,

- T the absolute temperature,

- Φ a heat source term,

- ν the viscosity and

- λ the thermal conductivity.

We close the system (4.3) by the ideal gas law p = (γ − 1)ρe for steam water and a
stiffened gas law p = (γ−1)ρe−γp0 for liquid water. For the sake of simplicity, we consider
constant viscosity and conductivity, and neglect the contribution of viscous forces in the
energy equation.
The parameters λ, ν,~g,K and Φ can be set by the user.

As for Transport equation, we find a script’s Python example to solve 4.3 in (4.7.2)
section.

31

Chapter 4 – Application : CoreFlows

4.4 Two phase flow models

We present the homogeneised two phase flow models implemented in CoreFlows. This
models are obtained by averaging the balance equations for each separated phase or for
the mixture, using space, time or ensemble averaged quantities (see [1] and [3]). The drift
model is used in the thermal hydraulics software Flica 4 (see [15]), whilst the two-fluid
models are used in Cathare [18], Neptune_CFD [19], Cobra-TF [12], Relap5 [11].

The Drift model

The drift model is a system of four nonlinear equations taking the following conservative
form:

∂t(αgρg + αlρl) +∇ · (αgρgt~ug + αlρl
t~ul) = 0

∂t(αgρg) +∇ · (αgρgt~ug) = Γg(hm,Φ)
∂t(αgρg~ug + αlρl~ul) +∇ · (αgρg~ug ⊗ ~ug + αlρl~ul ⊗ ~ul + pId) = ρm~g −Kgαgρg||~ug||~ug −Klαlρl||~ul||~ul
∂t(αgρgEg + αlρlEl) +∇ · (αgρgHg

t~ug + αlρlHl
t~ul) = Φ + ρ~g · ~u−Kgαgρg||~ug||3 −Klαlρl||~ul||3

,

where the total energy and total enthalpy are defined by

Ek = ek + 1
2 |~uk|

2 , Hk = hk + 1
2 |~uk|

2, k = v, l,

where ek is the internal energy, and hk = ek + p
ρk

the enthalpy associated to phase k and

ρm = αgρg + αlρl

~um = αgρg~ug + αlρl~ul
αgρg + αlρl

hm = αgρghg + αlρlhl
αgρg + αlρl

.

We need a drift correlation for the relative velocity:

~ur = ~ug − ~ul = ~fr(cg, ~um, ρm).

The phase change is modeled using the formula

Γg =


Φ
L if hsatl ≤ h < hsatg and 0 < αg < 1

0 otherwise
. (4.4)

32

4.4. Two phase flow models

The isothermal two-fluid model

The model consists in the phasic mass and momentum balance equations. The main
unknowns are α, P , ~ug, ~ul. The model uses stiffened gas laws pg(ρg) and pl(ρl) for a
contant temperature. The subscript k stands for l the liquid phase and g the gas phase.
The common averaged pressure of the two phases is denoted by p. In our model, pressure
equilibrium between the two phases is postulated, and the resulting system to solve is:



∂mg

∂t
+ ∇ · ~qg = 0,

∂ml

∂t
+ ∇ · ~ql = 0,

∂~qg

∂t
+ ∇ · (~qg ⊗ ~qg

mg
) + αg ~∇p

+ ∆p∇αg − νg∆~ug = mg~g −Kgmg||~ug||~ug
∂~ql

∂t
+ ∇ · (~ql ⊗ ~ql

ml
) + αl~∇p

+ ∆p∇αl − νl∆~ul = ml~g −Klml||~ul||~ul,

(4.5)

where αg + αl = 1, mk = αkρk and ~qk = αkρk~uk. Here, νk is the viscosity of phase k,
and ∆p denotes the default pressure p − pk between the bulk average pressure and the
interfacial average pressure.

The five equation two-fluid model

The model consists in the phasic mass and momentum balance equations and one mixture
total energy balance equation. The main unknowns are α,P ,~ug,~ul and T = Tg = Tl. The
model uses stiffened gas laws pg(ρg, T) and pl(ρl, T).



∂mg

∂t
+ ∇ · ~qg = Γg(hg,Φ),

∂ml

∂t
+ ∇ · ~ql = Γl(hl,Φ),

∂~qg

∂t
+ ∇ · (~qg ⊗ ~qg

mg
) + αg∇p

+ ∆p∇αg − νg(∆ ~qg

mg
) = mg~g −Kgmg||~ug||~ug

∂~ql

∂t
+ ∇ · (~ql ⊗ ~ql

ml
) + αl∇p

+ ∆p∇αl − νl(∆ ~ql

ml
) = ml~g −Klml||~ul||~ul,

∂tρmEm + ∇ · (αgρgHg
t~ug + αlρlHl

t~ul) = Φ + ρ~g · ~u−Kgmg||~ug||3 −Klml||~ul||3

33

Chapter 4 – Application : CoreFlows

where

ρm = αgρg + αlρl

Em = αgρgEg + αlρlEl
αgρg + αlρl

.

The phase change is modeled using the formula

Γg =


Φ
L if hsatl ≤ h < hsatg and 0 < αg < 1

0 otherwise
. (4.6)

4.5 The numerical methods

CoreFlows gives a variety of finite volume methods (see [25] for an introduction). The
method can be explicit or implicit, upwind or centered as in [24]. The basic method for
non scalar fluid model is the Roe scheme [21] with entropic correction [23] and/or source
upwinding [22].

The finite volume discretization allows an easy handling of general geometries and
meshes generated by Salomé[26].
Explicit schemes are used in general for fast dynamics solved with small time steps while
implicit schemes allow the use of large time steps to quickly reach the stationary regime.
The implicit schemes result in nonlinear systems that are solved using a Newton type
method.
The upwind scheme is the basic scheme but options are available to use a centered scheme
(second order in space) or entropic corrections.

The four numerical methods available in CoreFlows to discretize the drift model
are :

• Upwind scheme,

• Centered scheme,

• Low-Mach scheme,

• Staggered scheme.

more details on these methods and schemes are given in sub-section 3.2.

34

4.6. IT development

4.6 IT development

CoreFlows was developed in the object-oriented programming language: C++, using
standard libraries and multi-platform stl.
CoreFlows relies on the toolbox [9] of the project CDMATH [8] for the handling of
meshes and fields, and on the library Petsc [31] (version 3.4.5) for the handling of large
sparse matrices.

4.6.1 Software architecture

CoreFlows is composed of 6 concrete classes dealing with specific models. They are
listed in chronological order

• SinglePhase implementing the compressible Navier-Stokes equations (section 4.3)

• DriftModel implementing the 4 equation drift model (section 4.4)

• IsothermalTwoFluid implementing the isentropic two-fluid model (section 4.4)

• FiveEqsTwoFluid implementing the equal temperature two fluid model (section
4.4)

• TransportEquation implementing a scalar advection equation for the fluid en-
thalpy (section 4.2.1)

• DiffusionEquation implementing a scalar heat equation for the Uranium rods
temperature (section 4.2.1)

On top of these classes there are two abstract classes that mutualize functions that
are common to several models.

• ProblemFluid which contains the methods that are common to the non scalar models
: SinglePhase DriftModel IsothermalTwoFluid and FiveEqsTwoFluid

• ProblemCoreFlows which contains the methods that are common to the scalar and
non scalar models: ProblemFluid, TransportEquation and DiffusionEquation

Here follows 4.1 an inheritance diagram of CoreFlows

35

Chapter 4 – Application : CoreFlows

Figure 4.1: Inheritance diagram of CoreFlows

The program can build simple geometries and meshes using the library CDMATH [8]
or read complex geometries and meshes written with the MED file system (see [26]). The
output files containing the fields resulting from the calculation can be either of VTK ([28])
or MED type. One can use Paraview [27] or Salome [26] to visualise the results.
Vector and matrices structures come from the Petsc [31] library. The matrices are stored
in a block sparse format (type baij in Petsc conventions). The default linear solver is
GMRES and the default preconditioner is ILU, both provided by Petsc.

4.6.2 Software engineering

CMake

CoreFlows uses the CMake production engine.
CMake is cross-platform free and open-source software for managing the build process
of software using a compiler-independent method. It is designed to support directory
hierarchies and applications that depend on multiple libraries. It is used in conjunction
with native build environments such as make. It has minimal dependencies, requiring only
a C++ compiler on its own build system

CMake can handle in-place and out-of-place builds, enabling several builds from the
same source tree, and cross-compilation. The ability to build a directory tree outside the
source tree is a key feature, ensuring that if a build directory is removed, the source files
remain unaffected

CoreFlows uses also "gcov", which is a source code coverage analysis and statement-
by-statement profiling tool. It generates exact counts of the number of times each state-
ment in a program is executed and annotates source code to add instrumentation. The
gcov utility gives information on how often a program executes segments of code.

36

4.6. IT development

Graphical user interface ’GUI’ : Qt-Designer

Qt Designer is Qt’s tool for designing and building graphical user interfaces (GUIs) from
Qt [36] components. We can compose and customize our widgets or dialogs in a what-
you-see-is-what-you-get (WYSIWYG) manner, and test them using different styles and
resolutions. Widgets and forms created with Qt Designer integrated seamlessly with pro-
grammed code, using Qt’s signals and slots mechanism, that lets us easily assign behavior
to graphical elements. All properties set in Qt Designer can be changed dynamically within
the code.

37

Chapter 4 – Application : CoreFlows

Fi
gu

re
4.
2:

D
ev
el
op

m
en
t
en
vi
ro
nm

en
t

C
or

eF
lo

w
s’
s
G
U
I

38

4.6. IT development

API Python : SWIG

SWIG11 is an open source software tool used to connect computer programs or libraries
written in C or C++ with scripting languages such as Python.

There are two main reasons to embed a scripting engine in an existing C/C++ pro-
gram:

• The program can then be customized far faster, via a scripting language instead of
C/C++.

• Even if the final product is not to contain the scripting engine, it may nevertheless
be very useful for writing test scripts.

SWIG’s generating mechanism is shown in figure 4.3.

Figure 4.3: SWIG’s generating mechanism

The result is a Python module, usable by a person knowing CoreFlows methods.
Python’s API is favored by the flexibility of its language, its interactivity and its readable
prototyping. The CoreFlows’s documentation remains valid in Python.

The SWIG has brought the power of Python to the performance of C ++.

11. Simplified Wrapper and Interface Generator

39

Chapter 4 – Application : CoreFlows

Figure 4.4: Example of CoreFlows’s use on Python

4.6.3 Documentation : Doxygen

Doxygen is a documentation generator, a tool for writing software reference documenta-
tion. The documentation is written within code, and is thus relatively easy to keep up
to date. Doxygen can cross reference documentation and code, so that the reader of a
document can easily refer to the actual code.
Doxygen supports multiple programming languages, in particular C++, C, C#, Python,
· · ·
Doxygen allows one to extract the following information contained in the source code :

+ Prototype and documentation of classes and their hierarchy;

+ Different types of graphs: Class diagrams, · · ·

+ Documentation of data structures;

+ List of included files;

+ Prototype and documentation of functions, whether local, private or public, etc. ;

+ List of modules ;

+ An index of all identifiers;

+ Source files annotated (for example with line numbers) and Navigable (eg with
HTML, with which the identifiers refer to the associated documentation).

40

4.6. IT development

Figure 4.5: CoreFlows’s home page
41

Chapter 4 – Application : CoreFlows
4.
7

E
xa

m
pl
es

of
C
or
eF

lo
w
s’
s
us
e

4.
7.
1

G
ra
ph

ic
al

us
er

in
te
rf
ac
e
’G

U
I’ Fi

gu
re

4.
6:

C
or

eF
lo

w
s’
s
G
U
I1
/4

42

4.7. Examples of CoreFlows’s use

Fi
gu

re
4.
7:

C
or

eF
lo

w
s’
s
G
U
I2
/4

43

Chapter 4 – Application : CoreFlows

Fi
gu

re
4.
8:

C
or

eF
lo

w
s’
s
G
U
I3
/4

44

4.7. Examples of CoreFlows’s use

Fi
gu

re
4.
9:

C
or

eF
lo

w
s’
s
G
U
I4
/4

45

Chapter 4 – Application : CoreFlows

4.7.2 Scripts Python

Although CoreFlows’s GUI is very simple to use, we cannot make too complex calcu-
lations, therefore the use of Python scripts may be interesting in that case.

Example 1 : Transport Equation

import CoreFlows as cf

def TransportEquation_1DHeatedChannel():
spaceDim = 1;

Prepare for the mesh
xinf = 0 ;
xsup=4.2;
nx=2;

set the limit field for each boundary
inletEnthalpy=1.3e6;

Set the transport velocity
transportVelocity=[5];
myProblem = cf.TransportEquation(cf.Liquid,cf.around155bars600K,
transportVelocity);
nVar = myProblem.getNumberOfVariables();

Prepare for the initial condition
VV_Constant = [1.3e6]; #initial enthalpy
#Set rod temperature and heat exchamge coefficient
rodTemp=623;#Rod clad temperature
heatTransfertCoeff=1000;#fluid/solid heat exchange coefficient
myProblem.setRodTemperature(rodTemp);
myProblem.setHeatTransfertCoeff(heatTransfertCoeff);

#Initial field creation
print("Building initial data ");
myProblem.setInitialFieldConstant(spaceDim,VV_Constant,xinf,xsup,nx,"inlet",
"neumann");

Set the boundary conditions
myProblem.setInletBoundaryCondition("inlet", inletEnthalpy);
myProblem.setNeumannBoundaryCondition("neumann")

Set the numerical method
myProblem.setNumericalMethod(cf.upwind, cf.Explicit);

name file save
fileName = "1DHeatedChannel";

46

4.7. Examples of CoreFlows’s use

parameters calculation
MaxNbOfTimeStep = 3 ;
freqSave = 5;
cfl = 0.95;
maxTime = 5;
precision = 1e-6;
myProblem.setCFL(cfl);
myProblem.setPrecision(precision);
myProblem.setMaxNbOfTimeStep(MaxNbOfTimeStep);
myProblem.setTimeMax(maxTime);
myProblem.setFreqSave(freqSave);
myProblem.setFileName(fileName);
myProblem.setDISPLAY(True,True, True, True);

evolution
myProblem.initialize();
print("Running python "+ fileName);
ok = myProblem.run();
if (ok):
print("Simulation python " + fileName + " is successful !");
pass
else:
print("Simulation python " + fileName + " failed ! ");
pass
print("------------ End of calculation !!! -----------");
myProblem.terminate();
return ok

47

Chapter 4 – Application : CoreFlows

Example 2 : Navier–Stokes equations - single phase -

import CoreFlows as cf
def SinglePhase_3DHeatDrivenCavity():
spaceDim = 3;

#Preprocessing: mesh data
xinf=0;
xsup=1;
yinf=0;
ysup=1;
zinf=0;
zsup=1;
nx=10;
ny=10;
nz=10;

set the limit field for each boundary
coldWallVelocityX=0;
coldWallVelocityY=0;
coldWallVelocityZ=0;
coldWallTemperature=563;
hotWallVelocityX=0;
hotWallVelocityY=0;
hotWallVelocityZ=0;
hotWallTemperature=613;

physical constants
gravite = [0] * spaceDim
gravite[2]=-10;
gravite[1]=0;
gravite[0]=0;
viscosite=[8.85e-5];
conductivite=[1000];#Wall heat transfert due to nucleate boiling.

#---
myProblem = cf.SinglePhase(cf.Liquid,cf.around155bars600K,spaceDim);
nVar = myProblem.getNumberOfVariables();
#Initial field creation
print("Building initial data ");

Prepare for the initial condition
VV_Constant = [0] * nVar

48

4.7. Examples of CoreFlows’s use

constant vector
VV_Constant[0] = 155e5;
VV_Constant[1] = 0 ;
VV_Constant[2] = 0;
VV_Constant[3] = 0;
VV_Constant[4] = 573;

#Initial field creation
myProblem.setInitialFieldConstant(spaceDim,VV_Constant,xinf,xsup,nx,"hotWall",
"hotWall",yinf,ysup,ny,"hotWall","hotWall",zinf,zsup,nz, "hotWall", "coldWall");

Set the boundary conditions
myProblem.setWallBoundaryCondition("coldWall", coldWallTemperature, coldWallVelocityX,
coldWallVelocityY, coldWallVelocityZ);
myProblem.setWallBoundaryCondition("hotWall", hotWallTemperature, hotWallVelocityX,
hotWallVelocityY, hotWallVelocityZ);

set physical parameters
myProblem.setViscosity(viscosite);
myProblem.setConductivity(conductivite);
myProblem.setGravity(gravite);

set the numerical method
myProblem.setNumericalMethod(cf.upwind, cf.Implicit);
myProblem.setLinearSolver(cf.GMRES,cf.ILU,True);
myProblem.setEntropicCorrection(False);
myProblem.setWellBalancedCorrection(False);

name file save
fileName = "3DHeatDrivenCavity";

simulation parameters
MaxNbOfTimeStep = 3 ;
freqSave = 1;
cfl = 10;
maxTime = 50;
precision = 1e-6;
myProblem.setCFL(cfl);
myProblem.setPrecision(precision);
myProblem.setMaxNbOfTimeStep(MaxNbOfTimeStep);
myProblem.setTimeMax(maxTime);
myProblem.setFreqSave(freqSave);
myProblem.setFileName(fileName);
myProblem.setNewtonSolver(precision,20);
myProblem.saveConservativeField(True);

49

Chapter 4 – Application : CoreFlows

if(spaceDim>1):
myProblem.saveVelocity();
pass

evolution
myProblem.initialize();
print("Running python "+ fileName);
ok = myProblem.run();
if (ok):
print("Simulation python " + fileName + " is successful !");
pass
else:
print("Simulation python " + fileName + " failed ! ");
pass
print("------------ End of calculation !!! -----------");
myProblem.terminate();
return ok

50

Chapter 5

Numerical Results

In the current section we are first going to validate the three numerical methods: Low-
Mach, Upwind and Staggered, on the classical configuration of the cavity driven by its lid
(in sub-section 5.1).
And then study a specific configuration called the thermal hydraulics of the dynamics of
a flow controlled by a thermal conduction (sub-section 5.2).
Finally, we are going to study a specific configuration for nuclear reactors, that is to say
the flow between two different channels, which is the main objective of this internship
(sub-section 5.3) .

5.1 The Driven Cavity

The first investigation was to demonstrate the upwind scheme’s limitations when the flow
is at low-Mach number and Froude, and the dynamic almost incompressible.
We consider a 2D [0, 1]x[0, 1] domain, where all the domain’s edges are (fixed) walls, ex-
cept the top one, which has a velocity in the ~x direction Ux = 1m/s.

We apply a 273◦C temperature, a pressure of 155bars and a viscosity of 0.025. We
consider the following meshes:

51

Chapter 5 – Numerical Results

Figure 5.1: Driven Cavity : structed mesh

Figure 5.2: Driven Cavity : unstructed mesh

Indeed, the results of the upwind scheme are not very accurate (see 5.3 & 5.4)

52

5.1. The Driven Cavity

Figure 5.3: Driven Cavity : Upwind scheme - structed mesh

Figure 5.4: Driven Cavity : Upwind scheme - unstructed mesh

The LowMach scheme is more precise but causes robustness problems

53

Chapter 5 – Numerical Results

Figure 5.5: Driven Cavity : LowMach-explicite scheme - structed mesh

Figure 5.6: Driven Cavity : LowMach-implicite scheme - structed mesh

The staggered scheme gives accurate results without any parasitic oscillations (5.7 &
5.8).

54

5.2. Flow led by the conduction

Figure 5.7: Driven Cavity : Staggered scheme - structed mesh

Figure 5.8: Driven Cavity : Staggered scheme - unstructed mesh

5.2 Flow led by the conduction

The second investigation is related to the Riemann problem which is a mixture of two
water slides of different temperature, for instance from two channels differently heated
with

55

Chapter 5 – Numerical Results

The second investigation is related to the Riemann problem which is a mixture of two
water slides of different temperature, for instance from two channels differently heated
with T1 = 563K and T2 = 623K, in [0, 20cm]x[0, 40cm]. We impose an input velocity in
the ~y direction equals to Uy = 1m/s, and output pressure of 155bar.
We consider viscosity of 1.5Pa.s, and a conductivity of 5000W/m/s

Figure 5.9 represents the initial configuration of the calculation with a mesh of 40x80
elements.

Figure 5.9: Riemann problem: T1 = 563K et T2 = 623K à t = 0s

56

5.2. Flow led by the conduction

Figure 5.10: Riemann problem: LowMach scheme

As in the previous case, we notice that the low-mach scheme presents strong oscilla-
tions. The upwind and staggered schemes give similar results.
We notice that in this pure thermal calculation without any term source, the staggered
scheme (figure 5.11), is less diffusive than the upwind scheme (figure 5.12).

57

Chapter 5 – Numerical Results

Figure 5.11: Riemann problem: Staggered scheme

Figure 5.12: Riemann problem: Upwind scheme

58

5.3. Recirculation between parallel channels

5.3 Recirculation between parallel channels

The last case is the hardest, we are going to model the core of PWR900 in 2D in a
rectangular domain Ω = [0, R] × [0, L] which is heated using a flax of 108W/m2, in
Ω = [0, R2]× [L4 ,

3L
4] with the following values:

L = 4m
R = 2m.

We impose an input velocity in the ~y direction Uy = 0.75m/s, and an output pressure of
155bar.
We consider a gravity ~g = (0,−10)

The figure 5.13 represents the initial configuration of the calculation of the mesh of
800 elements (20X40).

Figure 5.13: Initial configuration of channel

59

Chapter 5 – Numerical Results

5.3.1 Single phase case

Figure 5.14: Single phase - Velocity Uy, LowMach Scheme

Figure 5.15: Single phase - Velocity Uy, LowMach-well-balanced Scheme

60

5.3. Recirculation between parallel channels

Figure 5.16: Single phase - Velocity Uy, Staggered Scheme

Figure 5.17: Single phase - Velocity Uy, Staggered-well-balanced Scheme

61

Chapter 5 – Numerical Results

Figure 5.18: Single phase - Velocity Uy, Upwind Scheme

Figure 5.19: Single phase - Velocity Uy, Upwind-well-balanced Scheme

Single phase case : inclined

In this case, we take the same parameters as in the section 5.3, except the gravity. In this
case, g=(7,-7). The image 5.20 represents the initial configuration of the channel.

62

5.3. Recirculation between parallel channels

Figure 5.20: Initial configuration of inclined channel

Figure 5.21: Single phase - inclined channel - Single phase - Velocity Uy, Upwind-well-
balanced Scheme

The LowMach and staggered case blow up because of the presence of a wall. Only the
upwind scheme goes until the end of the calculation.

63

Chapter 5 – Numerical Results

5.3.2 Two-phase case

Figure 5.22: Two-phase - Velocity Uy, Low Mach Scheme

Figure 5.23: Two-phase - Velocity Uy, Upwind-well-balanced Scheme

64

5.3. Recirculation between parallel channels

Figure 5.24: Two-phase - Temperature, velocity’s streamlines Uy – Upwind-well-balanced
Scheme

Figure 5.25: Two-phase - Concentration, velocity’s streamlines Uy – Upwind-well-balanced
Scheme

Two phase cases : inclined

65

Chapter 5 – Numerical Results

We take the same configuration as in the section 5.3.1

Figure 5.26: Two-phase - Inclined channel : Velocity Uy, Upwind-well-balanced Scheme

Figure 5.27: Two-phase - Inclined channel : Concentration, velocity’s streamlines Uy –
Upwind-well-balanced Scheme

66

5.3. Recirculation between parallel channels

The upwind well-balanced schemes were way more robust and the capture of the
recirculation was not a problem unlike the low Mach number scheme which diverge around
the wall.

These results show that the accuracy at low Mach number does not ensure a better
behavior of the numerical methods

67

Chapter 6

Conclusion

Scientifically: :
The recirculation problem of the boiling flows in the parallel channels causes numerical

and physical instabilities which make some calculations difficult to accomplish. This led
us to test two new numerical approaches on this configuration.

The first scheme is the use of an upwinding in the source terms in order to obtain a
well balanced scheme.
Whereas, the second is inspired by schemes on staggered mesh and is precise in low-Mach
number.

After validating our development on an academic case test (Driven cavity), as we
expected, we achieved better results with precise low-Mach number scheme(staggered).

• In a calculation on a pure thermal conduction (no source term), we have found that
the staggered scheme is less diffusive than the upwind scheme.

• Whereas, for the calculations with a term of high thermal power, the results ob-
tained by the upwind and well balanced scheme were much more robust and the
recirculation capturing posed no difficulty, contrary to the low-Mach scheme which
diverge around the bulkhead.

From all these results, we concluded that the precision in low March number doesn’t
guarantee a better behavior of numerical methods in the simulation of nuclear reactor’s
cores.

Futur work :

• It would be interesting to implement these numerical schemes in the industrial code
FLICA 4, to assess their robustness with more complex correlation and tabulated
state laws.

• As a following up for this work would be an introduction of porosity and point losses
to study the robustness of the proposed schemes. Analysis of the flows distribution
problem between parallel channels would allow a validation of the physics of our
numerical results.

• Analysis of the flows distribution problem between parallel channels would allow a
validation of the physics of our numerical results.

69

Chapter 6 – Conclusion

On the personal level :
Having received a mathematical formation, this internship alowwed me to strengthen

my knowledge in physics including mechanical fluids. It also allowed me to discover and
use various libraries, open source, mesh handling, scientific computing and visualization.
Furthermore, it was an opportunity to share and collaborate with lab engineers LGLS,
which was very beneficial for me in particular.
I had also to overcome the obstacles due to safety standards, particularly, high at CEA
Saclay.
Finally, I assume that the results of this training are highly positive because in addition to
reaching the main objectives, I have got experienced and I have enlarged my professional
environment by meeting scientists, researchers and engineers.

70

Chapter 7

Appendix

7.1 Time-discretization

7.1.1 Explicit scheme

We denote Un+1
i as the conservative variables at time n + 1, in the control cell Ci. The

time explicit scheme is first-order in space and we can write the following discretization
from the equation (3.2)

Un+1
i = Un

i −
∆t

vol(Ci)
∑
j∈v(i)

SijF̃ (Un
i , U

n
j , nij) + ∆tS(Un

i) (7.1)

The equation (7.1) explicitly gives the conservative variables at time n+ 1, depending on
these variables at time n. However, the use of this explicit formula needs small time steps
which are limited by a CFL condition:

4t ≤ 4x
|λM |

, 4t ≤ 1
K
,

where λM is the highest eigenvalue of the matrixes ∇Fnij.
If the velocities are equal, λM = ||um10 || + am where am is the sound velocity of the

two-phase mixture defined by:

a2
m = κ(Hm −

1
2u2) + χ+ cmξ (7.2)

with χ, ξ and κ defined in [6].

7.1.2 Implicit scheme

The use of implicit schemes enables to avoid stability conditions due to time steps and
leads to more efficient numerical methods. The implicit scheme derived from (3.2) can be
written under the following form:

Un
i = Un−1

i − ∆t
vol(Ci)

∑
j∈v(i)

SijF̃ (Un
i , U

n
j , nij) + ∆tS(Un

i) (7.3)

10. um = αlρlul+αvρvuv

αlρl+αvρv

71

Chapter 7 – Appendix

The equation (7.3) is valid for all the control cells Ci, which define a non-linear system of
equations that needs an iterative method and would be too heavy in terms of computing
time.

Then, we have to solve a non-linear equation f(U) = 0,
where U = (U1, . . . , UN) and f = (f1, . . . , fN) where fi(U) is given by

fi(U) = Ui − Un
i

4t
+ 1
vi

∑
j∈ν(i)

sijF̃ (Ui, Uj, ~nij)− S(Ui).

The equation f(U) = 0 is solved in a classic way using Newton’s iterations

∇f(Uk) (Uk+1 − Uk) = −f(Uk).

Each Newton’s iteration needs a calculation of the gradient of f and the resolution of
a linear system.
The exact calculation of the gradient of f is impossible because differentiating the func-
tion Dij(U) is very difficult. However, it is not necessary to calculate exactly the gradient
to find the convergence of the Newton scheme. If the sequence Uk converges, then the
limit U∞ verifies f(U∞) = 0.

Within Flica 4, in order to calculate an approximation of the gradient of the convection
operator, we use the following relation

∑
j∈ν(i)

sijF̃ (Ui, Uj, ~nij) = −
∑
j∈ν(i)

sijA
−
ij(Ui, Uj)(Ui − Uj), (7.4)

Where A−ij = 1
2(ARoe(Ui, Uj)− |ARoe(Ui, Uj)|), where ARoe(Ui, Uj) is the Roe matrix of

the flow F between the states Ui and Uj.

The equation (7.4) is written thanks to the definition of the Roe matrix(7.8), (3.9)

F̃ (Ui, Uj, ~nij) = F (Ui)~nij − A−(Ui, Uj)
Ui − Uj

2 ,

Since the Roe matrix is unknown in the Flica4 model, we use the approximation

A−ij ≈ Am−ij

with Am−ij = 1
2(AmRoe(Ui, Uj)− |AmRoe(Ui, Uj)|)

where AmRoe(Ui, Uj) is the Roe matrix of the flow Fm (équation 7.9) between the states Ui
and Uj.

72

7.2. Boundary conditions

The final iterative scheme is written under the form:

Uk+1
i − Uk

i

4t
− 1
vi

∑
j∈ν(i)

sijA
m−
ij (Uk

i , U
k
j)((Uk+1

i − Uk
i)− (Uk+1

j − Uk
j))

−∇S(Uk
i)(Uk+1

i − Uk
i) = −U

k
i − Un

i

4t
− 1
vi

∑
j∈ν(i)

sijF̃ (Uk
i , U

k
j , ~nij) + S(Uk

i). (7.5)

In the case of a face located at the border, we must know Ub(Uk
i) and approach

Ub(Uk+1
i)− Ub(Uk

i) from the equation (7.5).
The simplest process consists in dealing with the boundary conditions by using the

linearization

Ub(Uk+1
i)− Ub(Uk

i) ≈ ∇Ub(Uk
i)(Uk+1

i − Uk
i), (7.6)

which needs the calculation ofUb(Uk
i) and∇Ub(Uk

i) for each boundary condition (appendix
7.2).

7.2 Boundary conditions

There are two types of boundary conditions in fluid mechanics: those which are linked
with solid walls (normal zero flow) and those which are linked with the borders of the
domain fixed by the user.
The process of boundary conditions in a finite volume scheme is tricky because the vari-
ables are defined in the volumes and not at the interfaces of the mesh.

To force the physical boundary conditions at the border of the domain, we add a fake
mesh element (Ub, Vb) at the other side of the interface. This element is used only for
computation: it allows the process of the limit interfaces as well as the interior interfaces
(U ,V). Once the state in the fake element is determined, all that remains is to calculate
the numerical flow as if it was an interior interface.

The problem now consists in assigner to the fake mesh element a state such that the
numerical flow calculated at the interface satisfies the required boundary conditions. From
a mathematical point of view, the number of boundary conditions that we can impose
must be the same number of inbound characteristics in the domain.

For the equations of FLICA 4, we consider four types of boundary conditions:

• Neumann :

Vb(V) = V, Ub(U) = U

73

Chapter 7 – Appendix

• Wall :

Vb :


cv

p

u
T

→


cv

p

−u
T

 , Ub :


ρm

ρmcv

ρmum
ρmEm

→


ρm

ρmcv

−ρmum
ρmEm



• Input : concentration cve = 1− cle, velocity ue, temperature are all imposed Te

Vb :


cv

p

u
T

→

cve

p

ue
Te

 , Ub :


ρ

ρcv

ρu
ρE

→


ρe

ρecve

ρeue
ρeEe


with

ρe = ρv(p, Te)ρl(p, Te)
ρv(p, Te)cle + ρl(p, Te)cve

Ee = cve(ev(Te) + 1
2 |uve|

2) + cle(el(Te) + 1
2 |ule|

2)
uve = ue + cleur(cve, ue, ρe)
uve = ue − cveur(cve, ue, ρe).

• Output: pressure ps imposed

Vb :


cv

p

u
T

→

cv

ps

u
T

 , Ub :


ρ

ρcv

ρu
ρE

→


ρs

ρscv

ρsu
ρsE


with

ρs = ρv(ps, T)ρl(ps, T)
ρv(ps, T)cl + ρl(ps, T)cv

.

7.3 Roe linearization

7.3.1 Definition of the Roe matrix

The Roe linearization is a technique introduced by P.Roe [21] to linearize accurately the
systems of conservation laws under the form:

∂tU + ∂xf(U) = 0, (7.7)

74

7.3. Roe linearization

We denote A(U) = ∇Uf(U) as the Jacobian matrix of the flow, which is diagonalizable
in R in a complete base of real eigenvectors.
We can write (7.7) under a non-conservative form

∂tU + A(U)∂xU = 0

Note. We may notice that this form is correct for the regular solutions The Roe
linearization is based on the following definition

Definition 7.3.1.1 A matrix A(U, V) which verfies

1. A(U, V) is diagonalizable in R in a complete base of real eigenvectors,

2. For each (U, V) we have f(U)− f(V) = A(U, V)(U − V),

3. For each U we have A(U,U) = A(U),

Is a Roe matrix associated to the system 7.7.

To calculate the flow between two neighbors i and j, the original idea of Roe in [21]
was to linearize the problem (2.9) locally between the two states Ui and Uj. Roe is then
looking for a linear interpolation of the flow F under the form

F̃ (U) = F (Ui) + ARoe(Ui, Uj)(Ui − Uj).

To obtain it, it is necessary to build a “Roe” matrix ARoe(Ui, Uj) which verifies

F (Ui)− F (Uj) = ARoe(Ui, Uj)(Ui − Uj). (7.8)

Although such a matrix always exists, it is not always easy to build it. That is the case
for the model (2.9) where we need an approximated Roe matrix. For the calculation of
the Roe matrix of the four-equation model, one must solve the equation (7.8) associated
to the flow F . Since this calculation is difficult, the designers of Flica4 have overlooked
the contribution of the gap velocity ~ur in the flow F . This choice is adapted to the flows
where the relative velocity ~ur is negligible with respect to the average velocity s~um.

7.3.2 The Roe matrix in Flica4

The flow F (equation 2.10) can be divided into two contributions, the first one related to
the average flow and the second one related to the relative movement:

F = Fm + Fr,

75

Chapter 7 – Appendix

with

Fm(U) = t


ρm

t~um

ρmcv
t~um

ρm~um ⊗ ~um + pId
ρmHm

t~um

 (7.9)

Fr(U) = t


0

ρmcvcl
t~ur

ρmcvcl~ur ⊗ ~ur
ρmcvcl(Hv −Hl)t~ur

 , (7.10)

and

cv = αvρv
αvρv + αlρl

, cl = αlρl
αvρv + αlρl

ρm = αvρv + αlρl

~um = αvρv~uv + αlρl~ul
αvρv + αlρl

Hm = αvρvHv + αlρlHl

αvρv + αlρl
= Em + p

ρm
.

The software Flica4 overlooks the contribution associated to the relative component
Fr of the convective flow F and uses the Roe matrix AmRoe(Ui, Uj) associated to the average
component Fm. By definition, this Roe matrix must:

• Be diagonalizable

• Verifies

Fm(Ui)− Fm(Uj) = AmRoe(Ui, Uj)(Ui − Uj)

• Verifies AmRoe(U,U) = ∇Fm(U), which is, in a one-dimensional space:

AmRoe(U,U) =


0 0 1 0

−umcv um cv 0
χ+ (1

2κ− 1)u2
m ξ (2− κ)um κ

(χ+ 1
2κu

2
m −H)um ξum H − κu2

m (κ+ 1)um


With χ, ξ and κ defined by the relations mentioned in [6].

In the general case, when we have two states Ui 6= Uj, the Roe matrix AmRoe(Ui, Uj) is

76

7.3. Roe linearization

written under the form

AmRoe(Ui, Uj) =


0 0 1 0
−ũc̃ ũ c̃ 0

χ̃+ (1
2 κ̃− 1)ũ2 ξ̃ (2− κ̃)ũ κ̃

(χ̃+ 1
2 κ̃ũ

2 − H̃)ũ ξ̃ũ H̃ − κ̃ũ2 (κ̃+ 1)ũ

 (7.11)

with

ũ =
√
ρmiumi +√ρmjumj√

ρmi +√ρmj

H̃ =
√
ρmiHmi +√ρmjHmj√

ρmi +√ρmj

c̃ =
√
ρmicvi +√ρmjcvj√
ρmi +√ρmj

.

The exact calculation of χ̃, ξ̃ and κ̃ is much more complex. We are going to define the
following parameters

ρ̃m = √
ρmiρmj

T̃ =
√
ρmiTi +√ρmjTj√
ρmi +√ρmj

p̃ = ρ̃H̃ − 1
2 ρ̃ũ

2 − ρ̃(c̃ev(T̃) + (1− c̃)el(T̃))

ρ̃v = p̃− p∞v
(γv − 1)ev(T̃)

ρ̃l = p̃− p∞l
(γv − 1)el(T̃)

α̃v = c̃ρ̃

ρ̃v
, α̃l = 1− α̃v

And we will first use the following approximations derived from the equations ([6])

χ̃ ≈
α̃v ρ̃vc0

v+α̃lρ̃lc
0
l

ρ̃l
− el(T̃)(α̃vc0

v

ev(T̃) + α̃lc
0
l

el(T̃))
α̃v

p̃−p∞v
+ α̃l

p̃−p∞l

ξ̃ ≈
(α̃vρ̃vc0

v + α̃lρ̃lc
0
l) ρ̃l−ρ̃v

ρ̃v ρ̃l
− (ev(T̃)− el(T̃))(α̃vc0

v

ev
)

α̃v

p̃−p∞v
+ α̃l

p̃−p∞l

κ̃ ≈
α̃vc0

v

ev(T̃) + α̃lc
0
l

el(T̃)
α̃v

p̃−p∞v
+ α̃l

p̃−p∞l

.

77

Chapter 7 – Appendix

7.3.3 Spectrum of the Roe matrix

In a one-dimensional space, the Roe matrix AmRoe(Ui, Uj) (equation 7.11) has four eigen-
values

λ1 = ũ− ã, λ2 = ũ, λ3 = ũ, λ4 = ũ+ ã,

where ã is the sound velocity of the two-phase mixture, given by

ã2 = κ̃(H̃ − 1
2 ũ

2) + χ̃+ c̃ξ̃.

The four eigenvectors associated on the left and on the right are

~̃r1 =


1
c̃

ũ− ã
H̃ − ũã

 , ~̃l1 = 1
2ã2


χ̃+ 1

2 κ̃ũ
2 + ãũ

ξ̃

−(κ̃ũ+ ã)
κ̃

 ,

~̃r4 =


1
c̃

ũ+ ã

H̃ + ũã

 , ~̃l4 = 1
2ã2


χ̃+ 1

2 κ̃ũ
2 − ãũ

ξ̃

−(κ̃ũ− ã)
κ̃

 ,

~̃r2 =


0
1
0
− ξ̃
κ̃

 , ~̃l2 =


−c̃
1
0
0

 ,

~̃r3 =


1
c̃

ũ
1
2 ũ

2 − c̃ξ̃ − χ̃

 , ~̃l3 = − 1
ã2


χ̃+ 1

2 κ̃ũ
2 − ã2

ξ̃

−κ̃ũ
κ̃

 .

7.3.4 Calculation of the “upwinding”

For the Roe scheme ([21]), the upwind matrix Dij (equation 3.9) should be equal to
|ARoe(Ui, Uj)|, the absolute value of the Roe matrix associated to the normal flow F~nij

=
Fm
~nij

+ F r
~nij

. However, since this one is tough to calculate, the designers of Flica4 have
rather chosen

Dij = |AmRoe(Ui, Uj)| =
∑
k

|λk|~̃lk ⊗ ~̃rk, (7.12)

78

7.3. Roe linearization

where AmRoe(Ui, Uj) is the Roe matrix of mixture (equation 7.11) associated to the flow of
mixture Fm

~nij
whose spectrum (λk, ~̃lk, ~̃rk) is given at section 7.3.3.

The choice of this approximation of the Roe matrix is adapted to flows which have
quite the same velocity where the relative velocity ~ur is negligible with respect to the
average velocity~um. The calculation of the "upwinding" is done within Flica4, using the
equation 7.12 and therefore the spectral decomposition of AmRoe(Ui, Uj) (appendix 7.3.3)
. It is then limited in case the two phases have equal velocities. In our model, we use
the technique of polynomial interpolation which does not need the calculation of the
eigenvectors ofAmRoe(Ui, Uj), but only its eigenvalues. We hope that this choice will allow
us to use the exact Roe matrix Dij = |ARoe(Ui, Uj)| later for the calculation of the
"upwinding" and then to deal with the non negligible velocity gaps better, especially
those from countercurrent flows.

7.3.5 Pressure correction

We are going to adopt a multidimensional approach because the pressure corrections can
bring a significant improvement of the accuracy of the scheme. Once the approached Roe
matrix is calculated, the original Roe flow through a face with a normal ~nij can be written

F̃ (Ui, Uj, ~nij) = F (Ui) + F (Uj)
2 ~nij− |AmRoe(Ui, Uj, ~nij)|

Ui−Uj

2 , (7.13)

and denoting ũn = ~̃u · ~nij the normal velocity to the face ij

|AmRoe(Ui, Uj, ~nij)| =

∣∣∣∣∣∣∣∣∣∣∣∣


0 0 t~nij 0
−ũnc̃ ũn c̃t~nij 0

(χ̃+ 1
2 κ̃|~̃u|

2)~nij − ũn~̃u ξ̃~nij ~̃u⊗ ~nij + ũnId − κ̃~nij ⊗ ~̃u κ̃~nij

(χ̃+ 1
2 κ̃ũ

2 − H̃)ũn ξ̃ũn H̃ t~nij − κ̃ũnt~̃u (κ̃+ 1)ũn



∣∣∣∣∣∣∣∣∣∣∣∣
However, the Roe scheme, even if it is stable, may create accuracy problem when it

comes to low Mach number. Indeed, the pressure at the interface for the flow (7.13) is
equal to

p̃ =
1 + ũ

ã

2 pi +
1− ũ

ã

2 pj −
ã

2(ρmi~umi − ρmj~umj) · ~nij +O(||ρmi~umi − ρmj~umj||2).

When the Mach number ũ
ã
is nearly zero, the contribution of the "upwinding" ã2(ρmi~umi−

ρmj~umj) · ~nij stays relevant because |~̃u| � ã and the numerical diffusion is too high. The
designers of Flica4 have then introduced “pressure corrections” to increase the accuracy.

79

Chapter 7 – Appendix

The updated flow may be written

F̃ (Ui, Uj, ~nij) = F (Ui) + F (Uj)
2 ~nij −Dij

Ui − Uj
2 + ã(ρmi~umi − ρmj~umj) · ~nij

2


0
0
~nij

0

 ,

which is the same thing than adding a new contribution Dp
ij to the "upwinding" Dij

with

Dp
ij = ã

2


0 0 0 0
0 0 0 0
0 0 ~nij ⊗ ~nij 0
0 0 0 0

 .

If we want the scheme to stay stable with this pressure correction, we should just
accept a CFL below 0.5 instead of 1.

7.4 Handling of the steady states

To show the importance of the upwinding of the stiff source terms, we will consider the
following system of 1D stead balance laws

∂xF (U) = S(U, x), (7.14)

where S is a vector whose all the components are positive, which is especially the case
of the drift model of CoreFlows. The solution U is then such that all the components
of F (U) are increasing. This generally leads to the monotony of U and the absence of
vibrations in the solution. This property of monotony of the components of U is not always
preserved at the discrete level and parasitic vibrations may appear, especially when S has
discontinuity points. Let’s consider the following classic upwind scheme:

Fi+ 1
2

= Fi + Fi+1

2 + signe(Ā)Fi − Fi+1

2 , (7.15)

where Ā is an approximation of the jacobian diagonalizable matrix A, whose calculation
is not always exact. In this case,Ā is the Roe matrix associated to the normal flow Fn

appearing in the equation (3.1) such that

Fn = Fm
n + F r

n

where
Fm

n is the flow of mixture [(appendix 7.3]

80

7.4. Handling of the steady states

F r
n is the flow related to the relative movement
However, since Ā is hard to calculate, the designers of Flica4 have chosen:

Ā = AmRoe

This choice is adapted to flows where the relative velocity ur is negligible with respect
to the average velocity um

7.4.1 Characterization of the steady state

The steady state associated to the system 3.1 is defined by the following equation :

∂xF (U stat(x, t)) = S(U, x). (7.16)

For the steady problem (7.16) to have a unique solution, we suppose that the matrix
A is invertible and especially signe(Ā) ∗ signe(Ā) = Id.

If the source term S is positive, i.e all it components are positive, the equation (7.16)
involves that all the components of F (U)stat are increasing, and then should not oscillate.
If a component of S is equal to zero, then the associate component of F (U) should be
constant.

We want to approach the solutions of (7.16) numerically and still keep the monotony of
the flows at the discrete level. For that purpose, the discretized steady state must satisfy
the following equation

Fi+1 − Fi
4x

= Si+ 1
2
, (7.17)

where Si+ 1
2
corresponds to S(U, x, t) and ensures the conservation of the steady states if

Si+ 1
2
≥ 0

The steady state of (3.12) is characterized by:

Fi+ 1
2
− Fi− 1

2

4x
= Si, (7.18)

From (7.15), (7.17) and (7.18) we can deduct the relation between Si and Si+ 1
2
.

By replacing (7.15) in (7.18), we obtain :

Id − signe(Ā)
2

Fi+1 − Fi
4x

+ Id + signe(Ā)
2

Fi − Fi−1

4x
= Si.

And from (7.17)

Id − signe(Ā)
2 Si+ 1

2
+ Id + signe(Ā)

2 Si− 1
2

= Si. (7.19)

81

Chapter 7 – Appendix

Yet, we have signe(Ā) ∗ signe(Ā) = Id and by multiplying (7.19) by Id−signe(Ā)
2 , we

obtain:
Id − signe(Ā)

2 Si+ 1
2

= Id − signe(Ā)
2 Si. (7.20)

By multiplying (7.19) by Id+signe(Ā)
2 and by replacing i by i+ 1, we obtain

Id + signe(Ā)
2 Si+ 1

2
= Id + signe(Ā)

2 Si+1. (7.21)

From (7.20) and (7.21), we can deduct:

Si+ 1
2

= Id + signe(Ā)
2 Si+1 + Id − signe(Ā)

2 Si. (7.22)

7.4.2 Upwind scheme with a centered source term

The classic upwind scheme with the centered source term is written

dUi
dt (t) +

Fi+ 1
2
− Fi− 1

2

4x
= S(Ui).

The steady state verifies
Fi+ 1

2
− Fi− 1

2

4x
= S(Ui).

Applying the same method than previously 7.4.1, we obtain

Fi+1 − Fi
4x

= S(Ui) + S(Ui+1)
2 + signe(Ā)S(Ui+1)− S(Ui)

2 . (7.23)

(7.23) is a consistent discretization of the equation at the steady state but does not
keep the properties of monotony of the solution when one or several components of S are
negative or have a fixed sign. If S is almost constant, we are not far from a monotone
solution. However, for stiff source terms, the scheme can strongly breach the monotony
because we cannot control the sign of S(Ui)+S(Ui+1)

2 + signe(Ā)S(Ui+1)−S(Ui)
2 .

7.4.3 Fully upwind scheme with an upwind source term

The discrete system (7.24) comes naturally from the analysis of the Riemann problem
with a source term for a hyperbolic system

dUi
dt (t) +

Fi+ 1
2
− Fi− 1

2

4x
= 1

2
(
Si+ 1

2
+ Si− 1

2

)
, (7.24)

82

7.4. Handling of the steady states

where
Si− 1

2
= S(Ui−1)+S(Ui)

2 + signe(Ā)S(Ui−1)−S(Ui)
2

Si+ 1
2

= S(Ui)+S(Ui+1)
2 + signe(Ā)S(Ui)−S(Ui+1)

2

S(Ui) = S(Ui, xi, t).

In this case, the source term and the scheme are both upwind.
We obtain a discretization of the source term which is not trivial. That implies the up-
winding at the interface of the neighbors. The first term of the equality (7.24) may be
different from S(Ui) if the source term is stiff. The discrete steady solution of (7.24) solves

F stat
i+ 1

2
− F stat

i− 1
2

4x
= 1

2
(
Si+ 1

2
+ Si− 1

2

)
. (7.25)

Applying the same method than in the section 7.4.1, we rewrite (7.25) by using (7.15)
as follows :

Id − signe(Ā)
2

Fi+1 − Fi
4x

+ Id + signe(Ā)
2

Fi − Fi−1

4x
=

Id − signe(Ā)
2

S(Ui) + S(Ui+1)
2 + Id + signe(Ā)

2
S(Ui−1) + S(Ui)

2 .

By multiplying (7.26) by Id−signe(Ā)
2 , we obtain

Id − signe(Ā)
2

Fi+1 − Fi
4x

= Id − signe(Ā)
2

S(Ui) + S(Ui+1)
2 . (7.26)

By multiplying (7.26) by Id+signe(Ā)
2 , and replacing i by i+ 1, we obtain

Id + signe(Ā)
2

Fi+1 − Fi
4x

= Id + signe(Ā)
2

S(Ui) + S(Ui+1)
2 . (7.27)

From (7.26) and (7.27) we can deduct

Fi+1 − Fi
4x

= S(Ui) + S(Ui+1)
2 , (7.28)

7.28 is a uniform discretization of the steady equation (7.16) which verifies the same
properties of monotony. We can then conclude that the upwinding of the source term
involves the non-oscillation of the steady state.

83

Bibliography

[1] M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow., volume 22 of Direction
des études et recherches d’électricité de France. Eyrolles, Paris, 1975.

[2] J. M. Masella, I. Faille and T. Gallouët, "On an Approximate Godunov Scheme",
Intl. J. ComputationalFluid Dynamics, 1999, Vol. 12, pp. 133-149.

[3] D.A. Drew and S.L. Passman. Theory of Multicomponent Fluids., volume 135 of
Applied Mathematical Sciences. Springer, New York, 1998

[4] J.M Delhaye, M. Giot, and M.L. Riethmuller. Thermohydraulics of Two-Phase Sys-
tems for Industrial Design and Nuclear Engineering, volume 5 of A Von Karman
Iinstitute Book. Mc Graw Hill Book Compagny, Hemisphere Publishing Corpora-
tion, 1981.

[5] K. Halaoua. Quelques Solveurs pour les opérateurs de convection et leur application
à la mécanique des fluides diphasiques. PhD thesis, ENS Cachan, 1998

[6] T. Sid Abdelkader.Maquettage et test du code de thermohydraulique diphasique
FLICA4, Rapport de PFE, SUP’ Galilée -Université Paris 13, 2015

[7] Angelo Murrone. Modèles bi-fluides à six et sept équations pour les écoulements
diphasiques a ‘faible nombre de Mach. Earth Sciences. Université de Provence -
Aix-Marseille I, 2003. French

[8] Projet “Ce sont Des Mathématiques Appliquées à la THermohydraulique”: http:
//cdmath.jimdo.com/

[9] Toolbox du projet CDMATH : https://github.com/PROJECT-CDMATH/CDMATH

[10] Petsc 3.4.5 - Parallel storage and manipulation of large sparse matrices : http:
//www.mcs.anl.gov/petsc/

[11] A. S. Shieh, V. H. Ransom, R. Krishnamurthy, Validation of numerical techniques
in RELAP5/MOD3, RELAP5/MOD3 code manual volume 6, October 1994

[12] http://www.casl.gov/COBRA-TF.shtml

[13] http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/
Fluid+Dynamics+Products/ANSYS+CFX

85

http://cdmath.jimdo.com/
http://cdmath.jimdo.com/
https://github.com/PROJECT-CDMATH/CDMATH
http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/petsc/
http://www.casl.gov/COBRA-TF.shtml
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX

[14] J. J. jeong, H. Y. Yoon, I. K. Park, H. K. Cho, J. Kim, A semi-implicit numerical
scheme for transient two-phase flows, Nuclear Engineering and Design 236 (2008)
3403-3412

[15] I. Toumi, A. Bergeron, D. Gallo, E. Royer, D. Caruge, "FLICA-4: a three-
dimensional two-phase flow computer code with advanced numerical methods for
nuclear applications," Nuclear Engineering and Design, Volume 200, Issues 1-2, Au-
gust 2000, Pages 139-155.

[16] Ph. Fillion, I.Toumi. Flica-4 V.1 Calcul des flux diffusifs dans le cas d’une géométrie
non-structurée, Rapport CEA, DMT 95/335

[17] S. Dellacherie, The Bichteler-Dellacherie Theorem, https://almostsure.
wordpress.com/2011/03/28/the-bichteler-dellacherie-theorem/

[18] D. Bestion, "The Physical Closure Laws in The CATHARE Code, Nuclear Engi-
neering and Design," vol. 124, pp. 229-245, 1990.

[19] N. Méchitoua, M. Boucker, J. Laviéville, J.-M. Hérard, S. Pigny, and G. Serre. An
Unstructured Finite Volume Solver for Two-Phase Water/Vapour Flows Modelling
Based on an Elliptic Oriented Fractional Step Method. In NURETH 10, Interna-
tional Meeting on Nuclear Reactor Thermal-Hydraulics, Seoul, South Korea, 2003.

[20] Propriétés thermophysiques des systèmes fluides, http://webbook.nist.gov/
chemistry/fluid/

[21] Ph. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,
J. Comput. Phys., 43, 357, 1981

[22] “Upwind methods for hyperbolic conservation laws with source terms”, A.
Bermudez, E. Vazquez, Comp. Fluids, vol 23, issue 8, pp. 1049-1071,1994

[23] M. Ndjinga, T.-P.-K. Nguyen, C. Chalons, Numerical simulation of an incompress-
ible two-fluid model, Springer Proc. Math. & Stat., Vol. 78, Finite Volumes for
Complex Applications FVCA7, 2014

[24] T.-H. Dao, M. Ndjinga, F. Magoules, Comparaison of Upwind and Centered Schemes
for Low Mach Number Flows, Finite Volumes for Complex Applications VI - Prob-
lems & Perspectives, Springer Proceedings in Mathematics 4, 2011

[25] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Uni-
versity Press, 2002

[26] The open-source integration platform for numerical simulation www.
salome-platform.org

86

https://almostsure.wordpress.com/2011/03/28/the-bichteler-dellacherie-theorem/
https://almostsure.wordpress.com/2011/03/28/the-bichteler-dellacherie-theorem/
http://webbook.nist.gov/chemistry/fluid/
http://webbook.nist.gov/chemistry/fluid/
www.salome-platform.org
www.salome-platform.org

[27] The open-source, parallel data analysis and visualization application www.
paraview.org

[28] The Visualization ToolKit www.vtk.org

[29] The open-source integration platform for numerical simulation, : www.eclipse.org

[30] The open-source integration platform for numerical simulation, : www.codeblocks.
org

[31] Parallel storage and manipulation of large sparse matrices www.mcs.anl.gov/petsc

[32] Simplified Wrapper and Interface Generator : http://www.swig.org

[33] HDF5 - Data model and file format of large volume : http://www.hdfgroup.org/
HDF5

[34] DOXYGEN - Generate documentation from source code : http://www.doxygen.
org

[35] CMAKE - Open-source build test and package software : http://www.cmake.org

[36] https://fr.wikibooks.org/wiki/Programmation_Qt/Qt_Designer

87

www.paraview.org
www.paraview.org
www.vtk.org
www.eclipse.org
www.codeblocks.org
www.codeblocks.org
www.mcs.anl.gov/petsc
http://www.swig.org
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.doxygen.org
http://www.doxygen.org
http://www.cmake.org
 https://fr.wikibooks.org/wiki/Programmation_Qt/Qt_Designer

List of Figures

1.1 The ten CEA centers in France . 2
1.2 Cea-Saclay center, view of the sky . 3
1.3 CEA’s organizational chart . 4
1.4 Working principle of a pressurized water reactor PWR 6
1.5 Diagram of a PWR900 vessel . 6

3.1 Comparison of numerical schemes: stationary pressure Uentree = 1m/s . . . 22
3.2 Calculation of the gradients for the viscous flows 23

4.1 Inheritance diagram of CoreFlows . 36
4.2 Development environment CoreFlows’s GUI 38
4.3 SWIG’s generating mechanism . 39
4.4 Example of CoreFlows’s use on Python 40
4.5 CoreFlows’s home page . 41
4.6 CoreFlows’s GUI 1/4 . 42
4.7 CoreFlows’s GUI 2/4 . 43
4.8 CoreFlows’s GUI 3/4 . 44
4.9 CoreFlows’s GUI 4/4 . 45

5.1 Driven Cavity : structed mesh . 52
5.2 Driven Cavity : unstructed mesh . 52
5.3 Driven Cavity : Upwind scheme - structed mesh 53
5.4 Driven Cavity : Upwind scheme - unstructed mesh 53
5.5 Driven Cavity : LowMach-explicite scheme - structed mesh 54
5.6 Driven Cavity : LowMach-implicite scheme - structed mesh 54
5.7 Driven Cavity : Staggered scheme - structed mesh 55
5.8 Driven Cavity : Staggered scheme - unstructed mesh 55
5.9 Riemann problem: T1 = 563K et T2 = 623K à t = 0s 56
5.10 Riemann problem: LowMach scheme . 57
5.11 Riemann problem: Staggered scheme . 58
5.12 Riemann problem: Upwind scheme . 58
5.13 Initial configuration of channel . 59
5.14 Single phase - Velocity Uy, LowMach Scheme 60
5.15 - Single phase - Velocity Uy, LowMach-well-balanced Scheme 60
5.16 - Single phase - Velocity Uy, Staggered Scheme 61

89

5.17 - Single phase - Velocity Uy, Staggered-well-balanced Scheme 61
5.18 - Single phase - Velocity Uy, Upwind Scheme 62
5.19 - Single phase - Velocity Uy, Upwind-well-balanced Scheme 62
5.20 Initial configuration of channel . 63
5.21 Inclined channel - Single phase - Velocity Uy, Upwind-well-balanced Scheme 63
5.22 Velocity Uy, Low Mach Scheme . 64
5.23 Velocity Uy, Upwind-well-balanced Scheme 64
5.24 Temperature, velocity’s streamlines Uy – Upwind-well-balanced Scheme . . 65
5.25 Concentration, velocity’s streamlines Uy – Upwind-well-balanced Scheme . 65
5.26 Inclined channel : Velocity Uy, Upwind-well-balanced Scheme 66
5.27 Inclined channel : Concentration, velocity’s streamlines Uy – Upwind-well-

balanced Scheme . 66

90

Contents

Abstract i

Acknowledgement iii

Nomenclature v

1 General introduction 1
1.1 Internship Context . 1

1.1.1 CEA . 1
1.1.2 Saclay Center . 2
1.1.3 Modeling Laboratory on a Components Scale 4

1.2 Problem Statement . 5

2 The mathematical model 9
2.1 Eulerian single-phase balance equations . 9
2.2 Averaged balance equations . 10
2.3 Obtaining the equations of the drift model 12

2.3.1 The drift model of FLICA 4 . 13
2.3.2 The Drift model in CoreFlows 15

3 Numerical method 19
3.1 Finite volume formulation of FLICA 4 20

3.1.1 Convective flows . 20
3.1.2 Viscous flows . 21
3.1.3 Discretization of the source terms 24

3.2 Finite volume formulation of CoreFlows 24
3.2.1 Convective flows . 24
3.2.2 Viscous flow FV . 26
3.2.3 Processing of the source terms . 26

4 Application : CoreFlows 29
4.1 Presentation of CoreFlows . 29
4.2 The physical models . 30

4.2.1 Scalar models . 30
4.3 The Navier-Stokes equations . 31

91

4.4 Two phase flow models . 32
4.5 The numerical methods . 34
4.6 IT development . 35

4.6.1 Software architecture . 35
4.6.2 Software engineering . 36
4.6.3 Documentation : Doxygen . 40

4.7 Examples of CoreFlows’s use . 42
4.7.1 Graphical user interface ’GUI’ . 42
4.7.2 Scripts Python . 46

5 Numerical Results 51
5.1 The Driven Cavity . 51
5.2 Flow led by the conduction . 55
5.3 Recirculation between parallel channels . 59

5.3.1 Single phase case . 60
5.3.2 Two-phase case . 64

6 Conclusion 69

7 Appendix 71
7.1 Time-discretization . 71

7.1.1 Explicit scheme . 71
7.1.2 Implicit scheme . 71

7.2 Boundary conditions . 73
7.3 Roe linearization . 74

7.3.1 Definition of the Roe matrix . 74
7.3.2 The Roe matrix in Flica4 . 75
7.3.3 Spectrum of the Roe matrix . 78
7.3.4 Calculation of the “upwinding” . 78
7.3.5 Pressure correction . 79

7.4 Handling of the steady states . 80
7.4.1 Characterization of the steady state 81
7.4.2 Upwind scheme with a centered source term 82
7.4.3 Fully upwind scheme with an upwind source term 82

Bibliography 85

List of Figures 90

92

	Abstract
	Acknowledgement
	Nomenclature
	General introduction
	Internship Context
	CEA
	Saclay Center
	Modeling Laboratory on a Components Scale

	Problem Statement

	The mathematical model
	Eulerian single-phase balance equations
	Averaged balance equations
	Obtaining the equations of the drift model
	The drift model of FLICA 4
	The Drift model in CoreFlows

	Numerical method
	Finite volume formulation of FLICA 4
	Convective flows
	Viscous flows
	Discretization of the source terms

	Finite volume formulation of CoreFlows
	Convective flows
	Viscous flow FV
	Processing of the source terms

	Application : CoreFlows
	Presentation of CoreFlows
	The physical models
	Scalar models

	The Navier-Stokes equations
	Two phase flow models
	The numerical methods
	IT development
	Software architecture
	Software engineering
	Documentation : Doxygen

	Examples of CoreFlows's use
	Graphical user interface 'GUI'
	Scripts Python

	Numerical Results
	The Driven Cavity
	Flow led by the conduction
	Recirculation between parallel channels
	Single phase case
	Two-phase case

	Conclusion
	Appendix
	Time-discretization
	Explicit scheme
	Implicit scheme

	Boundary conditions
	Roe linearization
	Definition of the Roe matrix
	 The Roe matrix in Flica4
	Spectrum of the Roe matrix
	Calculation of the “upwinding”
	Pressure correction

	Handling of the steady states
	Characterization of the steady state
	Upwind scheme with a centered source term
	Fully upwind scheme with an upwind source term

	Bibliography
	List of Figures

