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Nomenclature

Phase variables

Symbol Signification Unity
Dk density kg.m™3
Qap void fraction 1
V. velocity vector m.st
ek internal energy J kg™t
Ey = e, + |ui?/2  total energy Jkg™!
hi. = ex + P/py specific enthalpy J kg™t
Hy = hy + |ux]?/2  specific total enthalpy J kgt
Ok viscosity tensor kg.m=t.s72
Mk sat specific enthalpy at saturation J kgt
T friction force vector

Mixture variables
Symbol Signification Unity
p=> arpr density kg.m=3
V= Za’“Tp’“V?’“ velocity vector m.st
V; = ‘7; — ‘_/} relative velocity m.s~!
C = % vapor mass concentration 1
e = % internal energy J kg™t
E=CE,+ (1-C)E;, total energy Jkg™!
h = M specific enthalpy J kgt
P pressure Pa



Other variables

Symbol Signification Unity

J gravity vector m.s2

10} porosity 1

F; interface friction 1

Dy, hydraulic diameter m

Dy, heating diameter m

L = hysat — hisat  latent heat of vaporization J kg™t

X vaporization flow 1

P thermal flow at the wall kgm 2572

Bdeb enthalpie débitante 7777777 J kg™t



Introduction

A 4 equation model is used by the Laboratoire de Modélisation et simulation & I’Echelle Com-
posant (LMEC) in the computing code FLICA4 [1]. It is formulated in a three-dimensional and
homogenized context in order to avoid having to distinguish between the fluid and the solid struc-
tures that constitute the component of interest(reactor core, steam generator, ...).

This model is solved using the numerical method of Roe on a co-located mesh [3]. This "hyper-
bolic" method works very well for the high-Mach-number flows (M > 0.1). However, its analysis
in the case of a low-Mach-number flow (M << 1), proves that unless we introduce some modifi-
cations the solution doesn’t converge when the Mach-number tends to zero. For this reason we
apply a "pressure correction".

Although the use of this "pressure correction" is necessary to reach the required precision, it
produces some oscillations in space. These spatial oscillations are sometimes critical and may
lead to unstable resolutions or even divergence in some cases. The purpose of this project is to
study another numerical method to avoid the problems we have with the Roe scheme.

This internship was held in the CEA in saclay (Commissariat & I'Energie Atomique et aux éner-
gies renouvelables) precisely in the LMEC.

In a first step an "elliptic" numerical method is studied. It is used in the computing code
CATHARE [2] to solve a two-phase 6 equation model. Then we adapt this method as an alter-
native to the Roe scheme in order to solve the 4 equation model.

In the first chapter of this report we explain how do we establish the 4 equation model starting
from the 6 equation model. In the second chapter we detail the spatial and temporal discretization
of the 4 equations. In the third chapter we describe and compare the two solving methods that
we tested. In the last chapter are presented the different numerical tests in 1D.



|Chapter I

Establishment of the porous 4 equations model

I.1 Porous 6 equations model

The local Navier-stokes equations for a two-phase flow lead, under certain simplifying assumptions

[5], to a porous 6 equations system composed of :

Mass equations for the liquid and vapor phases

8 vMv = by

0=+ V(paup,Vi) = oL, (L1)
daypy = SN

o=~ + V(daup Vi) = —¢l, (1.2)

Momentum equations for the liquid and vapor phases

a(azmﬁ) = =

¢ T +V.(pupViOV) + V. (¢cup DV) + ¢V P = V(7)) + ¢ PV oy — ¢ Fi+¢mi+doupg (1.3)

(v U‘Z) ¥ ¥ D1/ 7. q
<&8pt_) +V. (¢, Vo @V,)+V (¢aupy DVy) +¢ VP = V.(0,) + 9PV ay + O Fi+ 7+ dovpug

(1.4)

¢

Total energy equations for the liquid and the vapor phases

8(oqplEl) — 8(04;)

o T + V.(pcup H,V}) + P 5 + V.(peupDH) = V.(q) + pcupgVi + ¢Q; + ¢T'F (L5)
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—i—V.(gzﬁozvvavVv)—i-(bP@+V.(¢ozvvaHv) = V.(qv)—l—qﬁa@pvﬁ%—i-(éQv—l—(bFf (1.6)

O(awpy Ey)

¢ ot

I.2 Porous 4 equations model

The porous 4 equations model is a deduction of the 6 equations model (see section and is

composed of:

Mixture mass conservation equation;

- Vapor mass balance equation;

Mixture momentum conservation equation;

Mixture internal energy balance equation.

To this system will be added two algebraic equations. One that describes the relative velocity
and the other the thermodynamic disequilibrium. The relative velocity is obtained using a table
or through a drift model. To determine the thermodynamic disequilibrium we assume that one
the phases is at at saturation state(here the vapor phase is considered to be at saturation).

I[.2.1 Mixture mass conservation equation

The operators that occur in the liquid mass equation([.2) and the vapor mass equation ([I.1)
are all linear. Thus, by summing these two balance equations, we easily obtain a mixture mass

conservation equation:
dp —
(Zﬁa + V(gpr) =0 (17)

I.2.2 Vapor mass balance equation

Let us begin by recalling the definition of the mixture relative velocity :
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This will allow us to rewrite the vapor mass balance equation ([.1)) where only the the mixture

variables should appear:

d(pC)

¢8t

+V.(¢pCV) + V.(¢p(C(1 — C)V,) = T, (1.10)

I.2.3 Mixture momentum conservation equation

The mixture momentum conservation equation is obtained by summing the liquid momentum
equation ([.3]) and the vapor momentum equation ([I.4]).

The terms that describe the inter-facial exchange in the two equations cancel each other.
Besides, we neglect without justification (as in CATHARE and FLICA4) the dispersive terms in
each phase(In [5] we propose another approach).

As a result, the mixture momentum equation is written as:

6N L9 (007 @ V) + V0001~ OV Vo) 4 0VP = V) + o7+ 095 (L11)

which is equivalent(non-conservative form) to:

ov L - .o _
¢p(a +VV.V)+V.(6pC(1 —C)V, @ V,) + dVP = V.(G) + ¢ + ¢pd (1.12)
In this project we make the choice of neglecting the diffusion term. Then the momentum equation
(I.12]) becomes:
o L )
qbp(a +VV.V)+ V. (ppC(1 =W, ®@V,) + ¢V P = ¢7 + ¢pg (I.13)

I[.2.4 Mixture internal energy balance equation

The mixture internal energy equation is obtained following the same approach as for the momen-
tum equation ([.12)), using the liquid internal energy equation ([.5) and the vapor internal energy
equation (L.6). This gives us:
apE — - -
0= T VA(0pHV) +V.(¢pC(1 = C)(H, — H)Vr) = ¢pgV + ¢Q +V.(q) (1.14)
In this project we choose to neglect ¢ which represent the heat flux induced by the thermal
conductivity and the turbulent mixing. As a result equation (I.14)) becomes:

OpE , } )
O=E= + V. (¢pHV) + V.(6pC(1 = C)(H, — H)V;) = épgV + 6Q (L15)
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Using the relation H = E + %, the equation 1) is equivalent to:

¢a§—tE + V.(¢pEV) + V.(¢PV) + V.(ppC(1 — C)(H, — H)V,) = ¢ppgV + ¢Q (1.16)

Next we multiply the mixture momentum equation 1' by V. We get the kinetic energy

evolution:

O(2pV? 1o 7 S VAT 4 o % %
6B G (90 VPV) + V. (pCL O, & VIV + 6V P = 677 4 0pg¥ (117

According to the relation £ = e + %‘72, we obtain the mixture internal energy equation as a
difference between the kinetic energy evolution (I.17)) and the total energy equation ([I.16]):

0 . . . L L
62049 (6peV) 4 PY(6V) + V(6001 O)(H, — HYV:) — V.(6pC(1 — )V, @ Vo)V
=0Q — o7V
We neglect without justification the terms V.(¢pC(1 — C)V, @ V,)V and ¢7V.
Finally, the mixture internal energy equation is given by:
d(pe) - o L
0L V. (bpel) + PV.(6V) + V.(6pC(1 = C)(Hy — H)V:) = 6Q (1.18)

I.2.5 Closure laws
Thermodynamic disequilibrium

The 4 equations that we have seen in the last section need to be completed by state laws. When
the vapor phase is at thermodynamic disequilibrium the vapor enthalpy is a function of vapor
density and pressure:

hv = hv(pva P)

Besides, In FLICA4 we assume one of the phases to be at saturation. In this case the vapor
density and the pressure are no longer independents. Then we have:

Pov = pv,sat(P) = hv = hv,sat<P)

Relative velocity

-

%—‘ZZ‘Z(V&,C»P)
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The computation of the relative velocity will be detailed later.

These laws replace:
e A vapor momentum equation;

e A vapor energy equation.

I.2.6 Source terms of the balance equations

In this section we introduce the source terms that occur in the balance equations and involve
specific physical modeling [1].

- Vapor mass equation

In the vapor mass equation ([.10)), the source term I', represents the cumulative effects due to
vaporization through contact with the heating wall I',,, and the mass exchange at the interface

between phases I',:
I'yv=Tu, +1T (1.19)

- Momentum equation

e Friction forces

The source term 7 represent the friction(or charge loss) forces exerted on the mixture by
the wall(regular charge loss) 7, as well as eventual obstructions(singular charge loss) 7y:

T =Ty +Ts (1.20)

— Regular charge loss

It is modeled by :

—<ﬁ>p&u7n7n (1.21)

Where A, is a diagonal tensor:

) Jo 0 0
Ap=1 0 f7 0
0 0 f:

The coefficients on the diagonal are a priori not equal depending on each space di-

rection. They model the charge loss distribution in the flow and are obtained using
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specific correlations. To simplify the calculations we assume the three coefficients to
be constants.

— singular charge loss

It is modeled by :

VN1 (122)

Where K is a given charge loss coeflicient.

It is important to notice that naturally the tensor K is anti-symmetric with extra
diagonal elements that model the rotating effects because of the mixture grids. We
chose a diagonal tensor only to simplify the calculations. And for the same reason, we
consider the singular charge loss model to be homogeneous:

p=r

- Internal energy equation

e Energy sources

The source term () represent the energy source injected in the fluid. It is written as a
"power density" and/or an "implicit thermal flux" between the heating wall and the fluid.
To simplify the calculations we consider only the former type of energy(power density which
is given by the user).

[.2.7 Specific coorelations
Vapor mass sources

e Correlation on overheating

The source term of vaporization at the wall is given by:

Loy = 1.23
L D, (1.23)

The vaporization flux is calculated as follow:

— when nucleate boiling is saturated T,,; —7; < 1074 : y =1

— when nucleate boiling is under-saturated T,, — Tsoy > ATger : X = %_’AATTS;“

— when nucleate boiling is not reached T,, — Tyq; < ATyqr : x =0



Chapter 1. Establishment of the porous 4 equations model 7

e Correlation on mass exchange between phases

The mass exchange between phases depends on an exchange volume density ®;, at the
interface between phases and on the phase change energy:

(I)lv
I}, = 1.24
S - (1:24)

To simplify the calculations we chose a simple mass exchange model between phases:

o {CD if  hsat(P) <h <hy(P) && C<1
v —

0 otherwise

Where @ is assumed constant in time and space and fixed by the user.

The phase change can appear only when the mixture enthalpy h is between the liquid
enthalpy at saturation and the vapor enthalpy at saturation(two-phase region).

Relative velocity

The relative velocity allows us to efficiently make use of the difference between liquid and vapor

velocities while only one momentum equation is used.

In this project, we tested two different correlations on the relative velocity:

e A first one, quite simple, where vapor velocity and liquid velocity are proportionals(slip
model):
v, = Wi, v>0

In this case, the relative velocity can be written as:

VoV, -Vt ¢ (1.25)

1+C(y—-1)

To simplify the calculations v is assumed constant and given by the user.

In this case the relative velocity can be written as :

(Co— 1)V + Vi iim
Vr p—
1-C+Cy(C —a)

Cy is a distribution parameter that adjusts the mixture velocity. V; j;, is the vapor velocity
limit. Cy and V, i, depend on the topology of the flow:
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— in a bubbling flow:

(Co)bubbie = (Cinf + (1 = Ciny) %) (1 _ e—lsa)

. 1/4
(V;u,lim)bubble - C(l ((pvp#) (1 - Oé>7/4
l

— in an annular-film flow:

B 1+75(1 — )
- JVa+10-3
(14 By/5)
(CO)annular -
(a+ B,/t)

(1 =a)® g Du(py = p)
a+B,fe\ 0015y

— and to ensure continuity between the two flows:

(‘/v,lim)

(CO ) annular (CO ) bubble

Co =
((Co)ggnular + (Co)ggbble)l/E’O

(Vaotim ) bubbte (Vo tim ) bubble
/8
((%,lim)gnnular + (‘/U;lim>§ulles> /

o denotes the surface tension (in N.M~1).

V:U,lim -

Ciny and Cj are adjustable parameters that depend on the geometry of the problem. They

are given by:

e for a tube bundle flow: Cj,y =1.32 and C;=4.5
e for a rectangular cross section flow Cj,;y = 1.35 and ()= V2

e for a circular cross section flow Cj,y =12 and ()= V2

[.2.8 Summary

In section ([.2)) we have seen how to pass , from the 6 equations porous model obtained thanks
to different assumptions, to the 4 equations porous model which is used in FLICA4 [5]. Let (M)
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denote this model.

( Op B
05 + V- (6pV) =0

200 ¥ (6p0V) 4V (o - O)F) = o,

(M)
op <87

(1.26)
s + 7V7) +V- (qﬁpC’(l — 0)77« ® V:) +¢VP =¢7+¢pqd

\ ¢a(;f) +V - (0peV) + PV (V) + - (6pC(1 = C) (H, — H)V,) = 6Q

This system has seven unknowns: density p, pressure P, concentration C', internal energy e (or
enthalpy h) and the velocity vector 7 in each space direction. These mixture physical quantities

are linked by seven coupled equations:

e an equation of state:
E(P,p,houe)=0; (1.27)

a mixture mass conservation equation;

e a vapor mass balance equation;

a mixture internal energy conservation equation;

e a mixture momentum conservation equation in each space direction.

In the next section (see chapitre [lI) we give details of the spatial and temporal discretization
of each equation of the model (M).
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Spatio-temporal discretization of the 4 equations

model

II.1 Staggered grid

The discretization of the velocity field and the other variables (pressure,density,...) is made on
staggered cells.

Unlike the co-located discretization type where all the variables are defined at the same ge-
ometric positions, each variable is defined on its own grid and a different control volume is
associated to each variable.

We call "pressure grid" the grid where are defined all the scalar variables (pressure, density, en-
thalpy, ...).

The pressure cell and the velocity cells are shifted by half a cell on each space direction as in
figure (see figure|ll.1]) where the scalar variables are given on the center of the pressure cell while

the velocity components on the center of its surface.

e

| - —¢ -

I:I V*grid
I:l v’ grid
I:I P grid

Fi1c. II.1 : Left side: co-located cells // Right side: staggered cells
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Actually the staggered cells(very common in the Navier-stokes equations studies) are very
useful despite that they are more difficult to use than the co-located cells.
Indeed, since the pressure cell and the velocity cell are shifted it makes it easier to compute the
divergence of the velocity field on the pressure nodes and to avoid the oscillations that we(almost

always) get with co-located cells for the low Mach number flows.

The following notations allow a better comprehension of the equations discretization detailed
in the next sections. Let us denote by:

e M, : the pressure cell (cell corresponding to scalar variables);

e M, : the velocity first component cell (M, and M, are shifted by half a cell in the direction

of €,);

e M, : the velocity second component cell (M. and M, are shifted by half a cell in the

direction of €,);

e M, : the velocity third component cell (M, and M,, are shifted by half a cell in the direction

of €,);
e o : the common interface between two neighboring cells M and M%;
VK, YV ME we denote by:

o M CLI its neighboring cell in the direction of €,;

e MM its neighboring cell in the direction of €,;

o M CLZ its neighboring cell in the direction of €;

e ML the neighboring cell of M** in the direction of €;;

e ML the neighboring cell of ML® in the direction of €;;

e M}E% the neighboring cell of MK in the direction of (+e¢,);
e M the neighboring cell of MX in the direction of (—Ex);
e MY the neighboring cell of MX in the direction of (+¢,);
e M ¥ the neighboring cell of MX in the direction of (—e,);
o ME# the neighboring cell of MX in the direction of (+_éz);
e M %* the neighboring cell of MX in the direction of (—e,);

o MI*L2Y the neighboring cell of M}® in the direction of (+e,);
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e M_ L2 the neighboring cell of M * in the direction of (+e,);
e M ~L2¥ the neighboring cell of M in the direction of (—e,);

ex the set of faces of MX;

1, the outward normal vector to the surface o;

e S, crossing surface of o (product of its surface by porosity).
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I1.2 Discretization of the mixture mass equation

The temporal discretization of the mixture mass equation that we try to solve is based on
a "semi-implicit" scheme. More precisely, the mass and density fluxes are approximated on the
interface using an upwind semi-implicit scheme where the velocity is being implicit while the

scalar variables are explicit.

(see chapter where variables are implicit only on their own cell. In this way the size of the

matrix to inverse will be smaller and the resolution easier.

The spatial discretization of the convection term in the mixture mass equation is done by
approximating the density on the cell faces by using an upwind semi-implicit scheme, similarly in
the three directions.

The finite volumes discretization of the mixture mass equation involves its integration in time

between t,, and ¢,,.; and in space on an elementary control volume M CK (or V Mgf)

tn+1 ap -
/ / (0= + V.(¢pV))dQdt =0 (IL.1)
MCI( tn at
By using the divergence theorem the equation (II.1)) becomes:
tn+1 ap tn+1 .
/ / o— dQdt + / / ppVdS.mdt =0 (I1.2)
ME Jt, ot dME Ji,
or in discrete form:
Vo (O3 = phse) + At Y Sq(pP)Vy i, = 0 (IL.3)
‘ oCeK
n+1 n
Py — Pk 1
= — - Frt =0 I1.4
At + VMK EZ 7 ( )
¢ OCeEr

Z171 represents the flux approximation on the interface o at time #, ;.

To establish the discrete mass equation, all we need now is to approximate the flux .Z! on
the 6 faces of a given cell MX. To ensure the stability of the numerical scheme, we use an upwind

approximation of the convection term:

FIH = S, (pP)r VI i, (IL5)
Here (pP)" represents the mixture density on the interface o between a given cell MX and a

neighboring cell M!.
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g

) Pux if Vitlhg, >0
p}}/[cL otherwise

As a result, the discrete form of the mixture mass equation (1.4} can be written as:

P Vi) =0 (1L6)
Taking into account the state equation ( [I.27)), the equation (II.6) becomes:
FY Py B Vo) = 0 (IL7)

Finally we compute the derivatives of F* ([1.7)) with respect to each of its variables:

( n+1
OF! 1 6pMK
n+1 — At n+1
8PMK 8PMK
n+1

F! 1 0K

6hn+1 At 3hn+1

c

F! S
Ea = sign(fl,. 64) (p )
\ TEEK

Where:
ee{e, e, e}

V, ¢ {VW,V v, Vagse, Vi, Vg, V _}
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II.3 Discretization of the vapor mass equation

The spatial and temporal discretization of the vapor mass balance equation is done exactly

the same way as for the mixture mass equation.

We integrate the vapor mass equation between the time instants ¢, and ¢,; on the cell MX:

it 9pC » »
/ / (9757 + V.(6pCV) + V.(épC(1 = C)V;) = 6T,) dQdlt = 0 (IL8)
ME Je,
(POt — (PO)ye 1 SRR .
= ~ + Vo UEZK [+ 4] = (T)yse = 0 (IL.9)

Where:

Ty =8, [(pC) PV,

(e

G = So[(p,Cr(1 = C)PI (Vi) iy
o 7" and ¥"*! are the approximations of the fluxes on the interface o at time ¢, 1;
. (\_/;)ZH is the relative velocity which is given (see } by:

; ; VAT -1 41
— Using the slip model: (V)2 = o Ve +

: . > Co=1) V3" ' 4V, 1im
— Using the Ishii model: (V)" = (1_0071100(071_(;})

o C" (pC)* and (p,.C.(1 — C,))™ are defined only at the cells center. On the faces they are

approximated using the following upwind scheme:

on o if VnJrl'—'U >0
cp={ et o (IL.10)
C.:L”L otherwise
OV if VI, >0
(pC)y = (o );f’CK i (IL11)
(pC)",. otherwise
C(l—C)ye it (V)2+ii, >0
(e Col1 = P = § P Ot (Vo (1L12)
(pC(1 — C’))’/L/{CL otherwise
As a result, the discrete form of the vapor mass equation ([1.9)) can be written as:
(0", Ol Ve (Vi)gde, ) = 0 (11.13)
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Taking into account the state equation ( [[.27)), the equation (II.13)) becomes:

F2(Pn+1 hn+1 Cn+1 VTH—I ) =0 (II].4)

//ZCK7 ///ch =///cK7 oCER

Finally we compute the derivatives of £’ (II1.14)) with respect to each of its variables:

/ Cn+1 8pn+l
—

oF? ME
n+1 — At n+1
0PM§ 8PM£<
n+1 — n+1
oh J\/ItK At Oh MtK
{
n+1
o2 _ Pk
BCZF}( AL
F? _ . — So _ _ na(VT)Z-H
( ovEl T SlQN(ng.éjVAlg [pC — (0. C(1 = C))p avIEL ]
where :
. . LoVt y—1
e Using the slip model: Sy = 1500
e Using the Ishii model: (UM (Co—1)
g © TovntT 1-C2+Co (Cz—an)

€e{e, ey 6.}

V, ¢ {va, Vi ey Varges Vit Vagis VMJLZ}
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II.4 Discretization of the mixture internal energy balance
equation

The spatial and temporal discretization of the mixture internal energy balance equation is

done exactly the same way as for the mixture mass equation.

tnt1 a . . .
/ / (9555 + V.(6peV) + PY.(6V) + V.(6pC(1 = OV (H, — H)V,) = $Q dQdt = 0 (IL15)
ME Jt,
(pe)yix — (pe)hx 1
DA T 2T PR A = Qg = 0 (I.16)
¢ oCeg
where:

T = S,[(pe) iV i,

g

gl =S, Vi,

AT =S, [(prCr(1 = Cp) (Hy — H)P1a (Vo) i,
o Zntl @ntl and S are the approximations of the fluxes on the interface o at time ¢, 1;

o [(pe)P]” et [(p.C\(1 — C,)(H, — H;))P]" are defined only at the cells center. On the faces

[

they are approximated using the following upwind scheme:

[(pe)D]" (Pe)ﬁfch if V:,n“.ﬁa >0
(pe)”,. otherwise

c

(pC(1 — C)(H, — H))" i if (V)24 i, >0
(pC(1 = C)(H, — H;))",. otherwise

c

[(prC(1 = Co)(H, — H1))"]5 = {
Hence, the discrete form of the mixture internal energy equation (I1.16)) can be written as:

OCEK) [AS1S7¢

Taking into account the state equation ( [I.27)), the equation (II1.17)) becomes:

Fo(p" s € Vo (Vi)gde, ) = 0 (IL.17)

F3(PYiE b Vil )y =0 (I1.18)

MED T ME T ocek

Finally we compute the derivatives of I (I1.18)) with respect to each of its variables:
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oFs 1 0(pe)yx iy

—3PZFK1 = A7 —aP”“ + sign(i,.€) /[CKV Mo
ors 1 0pe)"Jx S, OPR . .
onL T AL oL sioniie )y x O o

8F3 L S n " 8(VT)Z+1
where :

e Using the slip model: Vo)™ _ -1

av”+1 T 1+Cr(v-1)
e Using the Ishii model: 2 s (Co—1)
& av"+1 I1=C3+Co (C5 —a3)

ee e, e, €.

V, {VMK Vi Varges Vot Vagis, VMELZ}
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II1.5 Discretization of the mixture momentum conservation

equation

The temporal discretization of the momentum equation written under its non-conservative
form uses, as for the mixture mass equation, a "semi-implicit" scheme: for a given velocity cell,
only velocity field at the cell’s center and the pressure field at its faces are implicit. The other
variables should be explicit.

The spatial discretization is done as follows:

e Unless otherwise indicated, to evaluate the scalar variables on the faces we use the average
of its values at the centers.

e To ensure stability, an upwind scheme is used to compute the gradient of the velocity squared

in the convection term.

Because we have ¢p7 . V7 =V. (¢p7 ® 7) — 7V . (¢p7), the mixture momentum
equation (I.13]) can be written as:

paa—‘t/ +V.(¢pV @ V) = VV.(¢pV) + V.(¢pC(1 — OVW. @ V) + ¢VP = o7 + ¢pg  (IL19)

Later in this section we will give more details about the spatial and temporal discretization
of the equation projected in the direction €,. The discretization in the directions €, and
€., is obtained by analogy.

The projection of equation in the direction e, gives:

T

oV
op 5

y - L. oP
+V(@pVIV) = VEV.(6pV) + V.(6pC(1 = OWIVe) + ¢ = o7° + ¢pg” - (11.20)

The finite volumes discretization involves the integration of the equation (I1.19) in time be-

tween ¢, and t,4, and in space on an elementary control volume M (or Vyx)

tnt1 avaz 5 = — 3P
| @0+ VapV ) = VIV + 90001 = O+ 655 — 6" — dpg) dt = ¢
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(Ve = (Ve 1
= " u u ynJrl — (V= n+1gn+1 %nJrl
pMif( At +VMK GZ[ o ( )Mf o + o ]
U TEER
Sy P, = Sags Pid) = (7534 — (g7 i =0 (1121)
where :
FI = Sep (V) VI, (I1.22)
Gl — S VI i, (11.23)
A =Sy (0, (1 = GV (Vo) (11.24)

o Zntl @ntl and ™! are the approximations of the fluxes at the interface o at time ¢, .

Approximation of velocity field at the interfaces of MX:

Interface o,:

— - x VMI{( ‘I— VMJLI . Vﬁé{ + V]\ZJLI
VU+x'nU+:c = Va+z - #'naﬂc = f
Vol fla, = Vil = =g ey, = e

+1 :eY/n+1 =
[(Vx)n+1]D _ (Vx)g\L/lf if V0n+a: Mgy, >0
T (Vm)gﬁm otherwise
z\n+1l ¢ Y /ndl =
[(Vm)n-i-l]D _ (V )qu( if Vg,z Ng_, > 0
o (V)" _r. otherwise
M;L‘ O Mf MK Oy MHJ
ﬁo‘_ HG+X
-— —_

FiG. I1.2 : velocity at the interface o, of MX

(11.25)

(11.26)

(11.27)

(11.28)
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Interface o,:
- Varx + VM:Lx . Vi + V]z,uz
Vory Moy =V = — e, =5 (I1.29)
T 1:¢1/n =
[(Vz)n-l-l]D _ (V )%K if VU‘*‘—’;l'nU"'y >0 (H 30)
7ty (V)1 41y otherwise '
Ia;,
F1G. II.3 : velocity at the interface o, de M
- V _:L +V +_‘—La: % Ly T vy 4Lz

Vil =y =Ml M g M T M (I1.31)

v 2 2

n+l ¢ y/n+l =
V:L‘ n+11D __ (vx)Mf lf ‘/‘7'77;_'2_/ 'na—y > O II 32
(V)17 = o . (I1.32)
(V*)", 1, otherwise
I g
FiG. 11.4 : velocity at the interface o_, de MX
Relative velocity at the interfaces of MX:
e Using the slip model:
— —_ ]_ —

(V,)rtt = S S 7 (I1.33)

140 -1) 7
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e Using the Ishii model:
(CO - 1)Vn+1 =+ ‘/v lim

(Vs =5 o Ga = o) (IL.34)
_ (O —
[(Vx)n+1]D (V )7](/?;1} lf (V )Zi_l ﬁo+z >0 [(Vx)nJrl]D (V )KZ}% lf (V )n—i—l Neg_, o> 0
"t (Vf)zﬁm otherwise rom (er)gﬁm otherwise
(IL35)

ME

(V= ., otherwise

[(Vm)n—i—l

T—y

Ve
[( r )U+y (wa:)n otherwise

MY

wi1yp _ { (VEyni if (V)ut Ly, >0 o { (Voyptd it (Vo)rtlii, >0

M,
(11.36)

Approximation of the scalar variables at the interfaces of MX:

o o

f— —

M+Ly Ma—t—ny
a
e |8

Lx
:{ L‘F“K @
g_
Pl |
M ® MY

F1G. IL.5 : Scalar variables at the interfaces of MK

V0 Y

n —
n _.n n J—
pa_l - pMcK pa+z pM+LI

PuK prr“C n+1 pL§+p7ﬂl/1+Lz e Trn4l =
e . Dt g Pkl 50
Po = m +p" 1Y = i +p™
+y Pty TPy 4Ly -y Prug v Pt —Lay :
M = Me 0therw1se Me Me otherwise

2 2
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We use the same method to determine (p,C,(1 — C,))%:

(prCr(l - OT))Z_Z = (prcr(l - CT))X@K (prCr<1 - Cr))g+z = (prcr(l - Cr))?/[j“”

¢ (PrCr=C) e (prCr1=C))" 1, ,

1K : n =
Mt - d if ( r)ai_yl'nmry >0
(prCr(1—Co))m,, = B, .
prCr(1-Cr))" +(prCr(1-Cr))" x
\ mfty . L otherwise
( (p’V'C’I'(l_CT'))n +(p7'c7'(1_07‘))n x =
M 2 Mt if (V)rtlg, >0
Yy y
(prcr(l - CT))Z—y = <
(Prcr(lfcr));/[,[‘y+(pTCT(1ch))7u+szy .
c c otherwise

\ 2
NB: At the interfaces 0, and o_,, we easily get the same result as at the interfaces o, and

o_, if we replace y by z.
Friction forces

We recall (see|[.20]) that:

(P = (o)t + (T

Then according to ([.21)) and ([.22)) we have:

T\N —1 n z z\N z\n
(To)hix = mpz\q((fw)(v Vel (V)

\n —K* n \Nn \n
VI = o e

The discretization of the mixture momentum equation in the direction €, ([1.21]) can be written

as:

FY P Pl (V) ) = 0 (11.37)

By analogy, on obtain the discretization in the directions €, and e.:

FO(Prd P, (VY)5) = 0 (I138)
FO(P P, (VA = 0 (IL.39)

The derivative of F* ([1.37) are given by:

OF*
oF g
oy Me
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oF*
aPTH — SMCJrLz

Mc-',-Lac

OF*  Plyx oVl
— “Cu T T\N 1 - - . o
oV = A +Sepy(VF)y + 1) sign(iis.€) —W%ﬁ
O(V,)utt ovr+t
oVt oVl

So((prCr(1 = Cp))g)(V*)g sign(iis.€)

According to ([1.31]), the equation ([1.40)) becomes:

OF*  Plyx 1 o
avn-l—l = A; + 5 SUpa((‘/ )0' + 1) Szgn(nd'é)

28, (01— vy 2

pas WSZQTL(’FL}@)

where:

X X n+1 _
e Using the slip model: 8;@3—1 - 1+C:2L(’1Y*1)

(v )ntt (Co—1)

e Using the Ishii model: év;’“ = 1=Cn+Co (Cr—an)

By analogy, we determine the derivatives of F*® and F°.

(I1.40)

(IL.41)
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Resolution of the 4 equations model

III.1 Construction of the system to solve

Let (S) denote the non linear system we ought to solve at each physical time step:

/

| FO(P,V) =

To solve this system, we use the Newton-Raphson method:

oF;
[—]k.Axl?—H — _Fik
; (9a:j J

where :
e % : residual of the discrete equation i at the iteration k;

o Axf“ = xf“ — % : increment of the variable z; at the iteration ;
oF;

o 8gg_]k: derivative of the equation ¢ with respect to the variable j at the iteration k.
J

Let U denote the unknown vector defined by:

U= (Ph,C V" VYV = (P,.., Py, hi,...hy,Ci,...Cy

c

T T Yy Y z z \t
VG VRV LV VL VR
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At each iteration of Newton-Raphson, we determine U at the instant ¢,,,1 by solving the linear
equation A(UF)AU*! = S(U™, U*):

OFr 9Fl  9F! Q9Fr 9Fl  9F?
oP oh aC  9veE vy 9V*

OF2 OF? OQF%? 9F? 09F%? OF3

9P ®h OoC dvE vy V= AU, gl — _p1
2 2
9F3 9F3  9F3 9F3  9F3  9F3 AU, S =—F
8P Oh OoC dvE vy V= AU, 93 — _ 3
= AU = Gt _pi (111.3)
OF* 9F* 9F* O9F* 9F* O9F* 4 -
9P Oh OoC dvE vy V= AU g5 — _ B
6 _ 6
9F5 9F5 QF5 9F% 9F% QF5 AUs St =—F

oP Oh oCc  9ve  9Vy  9V~=

OF% 9F% Q9FS 9F% 9F% 9F®
oP oh oC oV  9Vy  9V*

Lets notice that each coefficient of the jacobian A(U¥), whose size is equal to (3N, + N, +
N, + N,)? is a bloc whose size is equal to:

e (N, * N,) for each aa_zgi such as i € {1,2,3} and § € {P, h,C};
e (N.x N,) for each %—b; such as i € {1,2,3} and (Ne, §) € {(Ng, V®), (N, V¥), (N, V*) };

e (N, x N,) for each 88—? such as i € {4,5,6} and (N, §) € {(Ng, V®), (N, V¥), (N, V*) };

(N, * N,.) for each %_ﬁ; such as § € {P,h,C} and (N, i) € {(N,,4), (Ny,5), (N.,6)}.

The same applies to the components of AU and S(U™, U¥) which are vectors of size:
e N, for each (AU*); and S; such as j € {1,2,3};

e N, for each (AU*); and S; such as (j, N.) € {(4, N,), (5, N,), (6, N,)}.

To solve the system (III.3)) we use and compare two different methods:
* the full Jacobian method (see [[11.2]).
* the "pressure-based solver" method (see [I11.3)).

The two methods are used by CATHARE to solve the 6 equations model. The full Jacobian
method is used to deal with the 1D problems since the size of the matrix("not too big") allows
it. However in the 2D and 3D problems CATHARE uses the pressure-based method.
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II1.2 The "full Jacobian" method

This method involves the inversion of the matrix in ([II.3)) when its size is reasonable. Actually
in this case it is very useful since it is simple to implement and because it allows the possibility
of "impliciting" all the variables in the discretization step which leads to a better resolution.

Despite the efficiency of the full Jacobian method to treat the "small sized" problems, its use is
bounded by a limit on the jacobian matrix size. Beyond this limit, the pressure-based method

becomes more efficient.

II1.3 The "pressure-based solver" method

The "semi-implicit" scheme we used to discretize the 4 equations (see chapter allows to
simplify significantly the terms of the matrix that occur in the momentum equations F*, F?®
and F°. This will enable the expression of the velocity increments as functions of the pressure
increments (see section and then to eliminate them. In section (III.3.2) we will see how
to eliminate all the scalar variables (but the pressure increments) and then to obtain a linear
equation where only the pressure increments should occur.

IT1.3.1 Elimination of the velocity increments

The purpose of this step is to write the velocity increments as a function of the pressure
increments. To do so we consider only the momentum equations which corresponds to this
‘partial’ linear system:

oF* 9F* O9F* 9F* 9F* 9r4 AU,
oP Oh BC AVT VY  IV= AU, )

A S
QF5  9F5  9F5  9F%  9FS  9FS Us — | g5 (I11.4)
oP 6h BC AVT VY 9V= AU :

4 6

A S

OF8 9FS% Q9FS 9F% 9FS 9FS Us

oP oh oc  ove  9Vyv  9V= AUG

According to (I1.37)),(I1.38) and (I1.39)), the functions F**, F® and F® don’t depend on h and

C' at time step t"*!. Thus their derivatives with respect to these variables are equals to zero as

well as:
e the derivative of F* with respect to V¥ and V?;
e the derivative of F”® with respect to V* and V?;

e the derivative of F'% with respect to V* and V.
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In this case, the system ([II.4)) becomes:

where:

o' _

OF? _
or

OF*®
oP

5
OFF o

9Pyy0

oFS o
MY,

Py0

o

OF4 OF4
opP 00 Ve
9 g 0 0
opP
6
g 00 0
AFt
My, O
OPy 10
OF: OF4
MmE M
0Py K aPMC+ Lo
0
5
8FMg 0
GPMcly
5 5
or° K oF? K
8PMCK aPMj—Ly
0
6
8FMQJ 0
9P, 1=
OF6 OF6
M M
OP), K aPMC+ Lz
0

QFS
0 V=

5
oF°

oP,, Nc

OF©

oP,, Ne

AU,
AU,
AUs
AU,
AUs
AUs

ort
ove

OF®
ovy

OF*®
ov=

5«4
= S 5
56
BFJ‘\Z 0 0
oveEy,
MY .
0 BFM K
x
8VM K
0
5
8FM8 0
ovY
M9 s
0 BFM K
8VAy4 P
0
6
<9FM3 0
vz,
MY, .
0 8FM K
z
8VM K
0

(I1L.5)

4

plVe
ove
M=

FG
Mz

My *#
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By developing the equation ([IL5) in a cell M/ we obtain the following equation system:
( F:{K 8F4 8FMK A
9Py, (AP)MK + oP,, (AP)M+Lz + BVJC (AV® )M&f = SM§
0 ;K 8F5 OF? i 5
3P, 1 (AP)MK + 35 +Ly (AP)M+Ly + OV;»IIK (Avy)MK = SMéK (I11.6)
oF ;K OF OF, 6
\ 8PM (AP)MK + 3PM+LZ (AP)M+LZ + 8VZ (AV )Mff = SM,l{f
( . 3F§,K 4
(AV )Mf = 5F4 [S apM; (AP)MCK - ang_Lz (AP)M+LT]
6‘/;11{(
Y 1 5 8F1?/15< A F]?L{( A
Ny (AVY) i = o [Sapre — 3PMg<( P)yx — apM:rLy( P) o] (111.7)
av}f{wle
; 1 5 8F§15 6F£IK
(AV )quf = aF}‘\i/[ [SMK - P,k (AP)MCK oP, (AP)M+LZ]
L BVI\Z4K

By analogy we determine the velocity increments (AV?®), 1., (AVY),,

functions of the pressure increments:

\

( OF*
_ 1 4 My L
ave
M,
1 5 aFJirLy
(AVy) ~Ly = %[SMJM - m<AP)MC_Ly
aViIU‘Ly
° L
1 z
(AVZ)M,;LZ = MG—[S?M 9P {,LZ (AP)M Lz =
avE -

—ry and (AV?),,-r- as

(111.8)

This step enabled the writing of the velocity increments(AUy, AUs and AUs) at each face of

the mesh as functions of the pressure increments. This will be useful in the next step (see section

[11.3.2) to establish a linear pressure equation (such as only pressure increments are unknown).
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I11.3.2 Triangulation

In this step we aim to eliminate the scalar variables increments. To do so we use the three scalar
variables equations (mass, concentration and energy), which corresponds to the following system:

Fl  9Fl 9Fl  9F!  9Frl  9F! AU,
8P &h  OoC 8VE dvVy  dV=

AU, o
OF2 9F? 9F? QF% Q9F? QF? AU; — | g2 (II1.9)
8P Hh  0C 8VE dvy  dv= AU :

4 8,3

OF3 9F3 9F3  9F3  9F3  9F3 AU;
8P Hh  0C dvVE dvy  dv=E AU

As we did previously, some simplifications take place (thanks to (II.7) and (I1.18))) since F*
and F* don’t depend on C at t,,,. Thus, the system ([I1.9) becomes:

OF1  9F1 0 OFl  9Fl  9F! AU,
P  Oh ave  avVy  aV= AU.
2 g1
AF2 9F2 9F2 9F%2  9F2  9F? AUs — | g2 (HI 10)
8P 6h BC AVT VY 9V= AU :
4 g3
OF3  9F3 0 OF3  9F3  9F3 AUs
0P  Oh ave  avVy  aV= AU

At this stage applying the operations (L') +— (L') x 88—22 — (L3) x 88—121 and then (L?) <+ (L?3)

on the system ({[II1.10)) results in:

AU,
AU.
1,1 1,4 1,5 1,6 2 1 _ QldF?2 _ @20F!
J 0 0o J J J AU D=8 5 S B
AF3  9F3 0 AF3  9F3  9F3 31 _ g3 (III 11)
oP  oh ave  dvy  av= AU | :
OF2  9F2 QF2 QF2 Q9F2? 9F? 4 92
9P " 9h 8C 9VT 9Vy V= AU
AUg

where :

ME (ahMéK 0Py’ Oy OPyx

. _ (an@CK OF s OFys OF
ME " Y Ohpyie OVE Oy OVE

s OFYc OF )« OF i OF Yk
MK

Ty -
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e _ OFYs OF e OF i OF e
ME " N Ohpgs OV Ohyyx OV

We develop the first row of the system ([IL.11) in a cell MK, we get the following equation:

(J') aix (AP) a4+ (JY) arx (AV®) i + (J174)MJL“(AVQC)MJ”
FI g (AV g+ () g (AVY) oo (IL12)
(I aas (AV ) args + (J0) e (AV) pyre = Diye

It is at this stage where we make use of the velocity increments we calculated in the last step

(see ([I1.7) and (II1.8)). Their integration in the equation (III.12]) gives us:

A(AP)yx+B(AP) 10+ C(AP) 10+ D(AP) 11y FE(AP) 14 +F(AP) o 1:4G(AP) ) 1 =S

(I11.13)
where : \ .
oF OF* _
M,,i( Lz
A= (T g — (T gl — (1), o
- M gFT Mg " Rt
7 —Lx
ove ove
M Mm—Lz
5 OF®
OF s L
(J1’5) x 8PMCK (J1’5) . BPMCK
M3 55 My ™Y 9F5
My M;Ly
€T
6VM£< BV]E;Ly
6 OF®
aFM{U( My Lz
—(J1’6)MK 8P1(\3/15 _ (J1’6)M—Lz EUZMéK
w 8FM5 8FM7LZ
x
aVM,{f aV;VCFLZ
4 5 6
8FM§ BFMg( 8FM§
]B _ (J1,4) . aPMg-Lx ]D) _ <J1,5> 8P]MC+Ly ]F _ (J176) (9PM:,-LZ
M, 8F4 P M, 8F5 - M, aFG K
ME ME ME
x Y z
BVM§ oV K ov K
4 5 6
BFIM,,ILI 8FMU*LZJ aFlwaz
OP L opP —Ly P L
1,4 M. 1,5 M, 1,6 M
C — (J )M—Lac 8F4 E — (J >M Ly 8F5 G — (J )MJLZ 3F6
M b My v Py
ove L. ijjﬁLy ovz _ ..



Chapter III. Resolution of the 4 equations model 32

(J1’4)M£{S;1\41{( (J174)Mu_LwS;4\L:Lx (JLS)Mif(S]EQI{( (J1’5)M1J—Ly55 U_Ly

M
S=Dix —|
MK 4 4 5 5
c (9ka1{< aF]bIJLZ 6FM£( aFM;Ly
x 1] — —y
ove K av&; L vy K 8VM; Ly
1,6 6 1,6 6
(J )M{ESMg (J )M,;LZSM;LZ
6 6
8F1v15 aFMu—,LZ
ovz VZ
Ml o MLz

As a solution of this equation, the pressure increments will be used to compute the velocity
increments thanks to ([II.7]) and (IIL.8]).

I11.3.3 Incréments d’enthalpie et de concentration

To compute the enthalpy increments all we need is to develop the second row of the system

(TIT.110):

I3 x (AP a7 Ah O AV® ) AV®
o AVY OFyyy AVY 11114
+W( ) + W( Jatv (I11.14)
OF? « OF
+ e (AV*) i + = (AV?) 22 = Diyxc

In the equation ([[I1.14]), the pressure increments and the velocity increments are supposed to
be known (see sectionflI1.3.2)). Then only the enthalpy increments are unknown and they can be

computed as follows:

Ah L e OB P OF AV? Oy AV?
(Ah)p 8F35.<[ ME m( Jux — W< Jarg = W( )as; e
Oy ic i “
OF? « OF i
- (AVY)yyx — ——(AVY), 1y
a(vy)MéK( v )Mv a(vy)M;Ly< V )Mv
(I11.15)
OF? « OF i
M AV — ——e  (AVF),, 1.
8(Vz)M5( )Mw 8(Vz)M5LZ( )Mw ]

The same method applies for the concentration increments that can be computed using the
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following relationship:

1 , 8FJ\2/ICK 8F§46K
(AC) yx = W[DMCK - m(ﬁp)z@ " Bl (Ah) yx
C, ¢
————(AV" ) yyx — ———(AV") ;Lo
O (AVY) O (AVY) (11.16)
OV MOy M |
- (AV* ) yyx — ————(AV?),, -
a(VZ)Mg ( )Mw G(VZ)M;LZ ( )Mw ]

I11.3.4 Consistency

Before applying the "pressure-based method" it is necessary to ensure its consistency. To do so

we consider the simplified moment equation in one dimension :

V]\T/Llif;l — Vﬁ§+i K(VD)nH (VML (VD);G? (VM)’IJG—%) + (V)L ((VM)n—i-l _ (VM)n—i-l)] —0

At Ax MEEe MEE ME MR ME
(11L.17)
with: . .
(g = 2 Ty, Dt ¥ T
: 9 M 9
Ve if (VM) >0
(Vo) =
VAT,}I otherwise
Vidif (VM) > 0
(VD>L+;LI =
V]@;,Lz otherwise
We assume that (VM)’](;ﬁ > 0 and (VM)’XJ? The equation [[11.17| becomes:
Vn+l —_Vn (Vn+1)2 _ (Vn7 I)Z
M Mg M M) (IIL.18)

At 2Ax
Vik = Vi ORED = Vi Vi) = OVw)®

- T A 5Ax + 5Ax
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= Using a Taylor expansion such that CFL = % we have :

oV 4 oV xV) _ov B
E <1+CFLW> —f- |:T - Va +@(Am) —I—@(At) = 0

Then the consistency given by the truncation error e = %—‘t/ CFL |—¥| + O(Ax) + O(At) is

obtained when CFL = 0.

I11.3.5 Key variables

In this step we determine the converged EI key variables of the porous 4 equations model (I.26]):

e the pressure field P using the pressure increments;
e the enthalpy field h using the enthalpy increments;
e the concentration field C' using the concentration increments;

e the velocity field 7 using the velocity increments.

Once the variables P, h, C' and 7 are known, we easily compute the rest of the variables of
the model:

e the density field and the internal energy field using the equations of state(|.27));

e the phase variables using the mixture variables.

!Convergence if AUFF! = YF+1 —U* < ¢ where € is the user’s desired convergence criterion
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Numerical test

To check out the efficiency of the numerical method described in chapters [[I] and [TI] we realize
different 1-D tests:

The physical quantities that we use in these tests matches the functioning of the Pressurized
Water Reactors or PWR.
We consider a 4.2 m length channel heated by a thermal flux () constant in time and space and

a stiffened gas fluid (|4]) on which we impose the following conditions :
e Zero inlet gas concentration C; = 0
e Constant inlet enthalpies hy; = 1.310° J/kg and h,; = 2.610° J/kg
e Constant outlet pressure P, = 155 bars
e Positive inlet velocities u;; > 0 and wu,; > 0

The table below gives the details of the realized tests.

Test Chanel simple | Low inlet velocity | Porosity | Charge loss | Channel complete
Q (W) 108 7.5 x 108 0 0 108
u; (m.s™1) 1 0.01 1 1 1
g (m.s72) —9.81 —-9.81 0 0 —9.81
¢ [1; 15 1] [1;151] [1,05,1] | [1;1;1] [1;0.5; 1]
K 0 0 0 5 5

To realize each of the tests we make use of the "Full Jacobian" and "pressure-base" methods.

We also compare the Ishii and the slip models of the relative velocity. The analytic solutions are

given in section see section
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IV.1 Analytic solutions
According to [4], the analytic solutions are given by:
W) =t [ Qdy (v.1)
0
( pi(h>(2), Py) if B°(2) < b
o) i pj (hy—h{ . s 00 s
p(h™(2), Po) = { ottt fhw(zz)ng_pls) if hf < h>(z) < hS (IV.2)
L 2o(h(2), Ry) if h2(z) = h(Ry)
(0 if h>(z) < h;
o i (h>(z)—h} ; s 00 s
a(h(2), Po) = { stk if b < h (=) < by (IV.3)
1 if h°(2) > h3(P)
u™(z) = __ D such that D; = u; p(h;, p0) (IV.4)
p(1=(2). p0) e |
: ()
P>(z) =P, *(y), P : IV.
=reo [ o0 Ry |G| (v.5)

The quantities hj = hj(P) , hi = hi(Fo) , p; = pj(Py) and p} = p5(Fy) are computed using the

stiffened gas’s state laws(see [4]).
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Channel simple
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Fic. IV.1 : Channel simple/slip model

At the stationary state and according to the mass equation we have:

dp dppV
ot 0 oxr 0
= ¢ppV = cst

2.0 25 3.0 35 4.0

z (m)

Yet p varies little in space(then considered as a constant) then we have

oV = cst
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And since ¢ = [1,0.5,1] (constant piecewise function) .

piecwise function(see figure [[V.2)).
Porosity is divided by 2 in the middle ¢,,;q = % then the velocity is multiplied by 2:
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Fi1c. IV.2 : Porosity/slip model
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Then the velocity is also a constant



Chapter IV. Numerical test 39

Charge loss

To compute the pressure drop due to the charge loss we recall the expression of the singular
charge loss:

T 2Az
At the stationary state the mass equation implies that the velocity is constant in space. So

pVIVI1,—..

Ts

according to the moment equation we can write:

At v = xg: A%Cg—]; =Ts = %PWV’ = %—f = %PV’V’

—K -5
= Po— Py, = ——pV|V|Az = —= x (0.002 x 716.53 x 1 x 1) x (4.2/100) = 18.655
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tgg}g — condition initiale|| Loal — condition Initiale ||
@ U, r 4 .
S ool — omaH  [] ¥ — CDMATH-F|
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200016} 13
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Fic. IV.3 : Charge loss/slip model
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Channel complete
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Conclusions

In this project we elaborated and implemented the "pressure-based solver" and the "full-jacobian
method"(see chapters |lI| and based on a staggered grid to solve a two-phase 4 equation
model(see chapter [I[)). Different tests have been realized to verify the efficiency of the method in

question. The results seem quite promising(see chapter .

In my internship I had the chance to discover what working in a reputable research center like
CEA looks like. There I was able to put into practice many things that I had learned in class
especially the numerical analysis and computing science courses and of course I learned many
things that make me love more and more working in the applied mathematics field.
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