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Outline
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Clawpack Software

• Open-source software package for general hyperbolic
problems:

• High-resolution (2nd-order) Godunov methods;
• Finite volume discretization on logically rectangular grids;
• Grid mappings for various geometries;
• Block-structured adaptive mesh refinement;
• Wave-propagation (possibly non-conservative) update from

Riemann Solutions;
• Available @ www.clawpack.org.
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The GeoClaw Software Project

• Subset of Clawpack for hyperbolic problems in geophysics:

• free-surface flows (tsunamis, flooding, landslides etc.)
• volcanic plume dynamics, ash clouds, pyroclastic flows etc.
• seismic wave propagation
• subsurface flow problems (mixed-type equations)

• Adaptive mesh refinement (AMR) schemes tailored to
free-surface flows with inundation;

• Positive-depth preserving Riemann solvers;
• General inundation Riemann solver ability;
• Well-balanced Riemann solvers (to varying degree) for

depth-averaged flows;
• Various user tools for geophysical data:

• e.g., dynamic processing of unaligned topography DEMs;
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GeoClaw Example: Honshu-Tohoku 2011 tsunami
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GeoClaw Example: inundation of Hilo, Hawaii

Using 5 levels of refinement with ratios 8, 4, 16, 32.

Resolution ≈ 160 km on Level 1 and ≈ 10m on Level 5.

Total refinement factor: 214 = 16, 384 in each direction.
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GeoClaw Example: inundation of Hilo, Hawaii
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GeoClaw Example: Malpasset Dam, France 1959
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GeoClaw Example: Malpasset Dam, France 1959
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Hazardous Earth-Surface Flows

Flows characterized by a variable granular-fluid mixture:

• tsunami propagation and inundation;
• hurricane generated storm-surge inundation;
• overland/fluvial flooding, dam and levee breaches etc.;
• sediment erosion, deposition and transport;
• landslides, mudslides, lahars and debris flows;
• dry granular (or snow) avalanches.
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Hazardous Earth-Surface Flows

Common mathematical features and computational challenges:

• flow is shallow relative to length-scales;
• often modeled with nonconservative hyperbolic systems;
• flow moves over complex topography (singular sources);
• domain is of varying bounded extent (wet/dry problem);
• dynamics are a small perturbation to a steady state;
• feature evolving multiple spatial scales.
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Hazardous Earth-Surface Flows

Depth-averaged models: flow between a fixed bottom
b(x, y) with a free surface η(x, y, t):

• Shallow assumption and B.C.s give two-dimensional
systems:

qt +A(q)qx +B(q)qy = ψ(q),

q = (h, hu, hv, . . . , )T
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Landslides and Debris Flows

Modeling fluidized-granular flow requires a stress model
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Landslides and Debris Flows

Indonesian Debris Flow Movie Ritigraben Switzerland
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Landslides and Debris Flows

A true Debris flow is best described as a two or three-phase
flow
• two-phase models treat the fluid and suspended fines as

one phase
• shallow assumption usually holds (depth-averaging works)
• fluid-fluid stress (pressure, viscosity)
• solid-solid stress (Coulomb-Mohr friction, collisional)
• solid-fluid stress (pressure, drag)
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Landslides and Debris Flows

Common categories of debris-flow models
• 3D models:

• mixture models: single continuum rheology (usually
non-Newtonian)

• two-phase models: (usually too expensive for large-scale
problems.

• Depth-averaged models:
• Savage-Hutter models: dry-granular flows (Mohr-Coulomb

friction).
• Depth-averaged mixture models: single continuum

rheology.
• Depth-averaged multi-phase models: complex stress

models for each phase
• Quasi-two phase models: only most important contribution

from fluid phase are modeled.
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Landslides and Debris Flows

Our debris-flow model (physical fidelity⇐⇒ model tractability)
• quasi-two-phase:

• mass (depth), momentum and volume fractions for solid
phase are retained.

• specific discharge is neglected. (fluid drag on solid is
ignored).

• volume-fractions are retained.
• fluid pressure is evolved and is coupled with solid-volume

fraction and momentum.
• stress model:

• Coulomb friction for solid-solid stress: (mediated by
pore-fluid pressure)

• fluid effect on solid phase is through pressure
• pore-fluid pressure is strongly coupled to solid-volume

fraction
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Landslides and Debris Flows

1D model on a fixed incline:
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Landslides and Debris Flows

System for q = (h, hu, hm, p)T .

ht + (hu)x = D
(ρ− ρf )

ρ
,

(hu)t + (hu2 + 1
2κg

yh2)x +
(1− κ)

ρ
px = gxh+ uD

(ρ− ρf )

ρ
− τ

ρ
,

(hm)t + (hum)x = −Dm
ρf
ρ
,

pt − γρgyuhx + γρgy(hu)x + upx− = ζD − 3

hα(1 + κ)
u tan(ψ)

where,

D =
k

hµ
(ρfg

yh− p).
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These equations are a hyperbolic system of the form:

qt + f(q)x +W (q)qx = ψ(q, x)
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Landslides and Debris Flows

qt +A(q)qx = ψ(q, x)

Eigenstructure of A(q), q = (h, hu, hm, p)T :

r1,2,3,4 =


1

u−
√
gyhε

m
γρgy

 ,


0
0
1
0

 ,


(κ− 1)
u(κ− 1)

0
κρgy

 ,


1
u+
√
gyhε

m
γρgy

 ,
λ1,2,3,4 = u−

√
gyhε, u, u, u+

√
gyhε

Always a full set of eigenvectors:

|r1,2,3,4| = 2ρgy
√
gxhε

where,

ε = γ + (1− γ)κ, 3/4 < γ < 1⇒ ε > 0

.
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Landslides and Debris Flows: a few numerical issues

Mobilization: qt + f(q)x +W (q)qx = ψ(q, x)

• failure occurs when the driving forces slightly exceed the
shear strength at any one point: a small perturbation to a
balanced steady state: f(q)x +W (q)qx ≈ ψ(q, x)

• failure: an equilibrium is perturbed...what happens next?
1 rapid temporary instability: (shear contraction→ increased

pore pressure→ decreased shear strength→ landslide.)
2 quick stabilization: (shear dilation→ decreased pore

pressure→ shear strength reestablished→ localized
slump.)

3 anything intermediate...e.g., stick-slip.

• modeling the outcome at least requires well-balanced
methods...if it can be done at all.
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Landslides and Debris Flows: a few numerical issues

Well balancing: qt + f(q)x +W (q)qx = ψ(q, x)

• f-wave approach: ∆f +W (Q̄)∆Q−Ψ =
∑
βprp

• steady-state wave approach:
• qt + f(q)x +W (q)qx = ψ(q, x)
• qt +A(q)qx = ψ1(q, x) + ψ2(q, x)
• q̃t + Ã(q̃)q̃x = 0; q̃t = ψ2(q, x)

• R̃( ˆ̃Q)−1∆Q̃ = β̃

• steady-state solution: Ã(q̃)q̃x = 0;

• R̃( ˆ̃Q)−1(Q̃r − Q̃l) = (0, . . . , β̃0, . . . , 0)T .
• Q̃r − Q̃l = β̃0r̃0( ˆ̃Q).

• A( ˆ̃Q)(Q̃r − Q̃l) = λ0(Q̃r − Q̃l) = 0
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Riemann problem with source: qt + A(q)qx = ψ(q, x)

• Balanced steady-states arise: A(q)qx ≈ ψ(q, x).
• Role of source term must be treated carefully in the

Riemann problem.
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Riemann problem with source: qt + A(q)qx = ψ(q, x)

• We solve augmented homogeneous system:
Wt +A(W)Wx = 0.

• steady states: stationary steady state wave only:
A(W)Wx = 0
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Riemann problem with source: qt + A(q)qx = ψ(q, x)

• We solve augmented homogeneous system:
Wt +A(W)Wx = 0.

• near or non steady states: moving waves are deviation to
steady state
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The Riemann problem at the shoreline.

motionless steady state at the shoreline: no waves.
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The Riemann problem at the shoreline.

flow at the shoreline: velocity insufficient for inundation.
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The Riemann problem at the shoreline.
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The Riemann problem at the shoreline.

flow at the shoreline: inundation.
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USGS experimental debris-flow flume

Flow Dynamics Movie
Mobilization Movie
Flow Dynamics and Segregation
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Testing mobilization
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Testing flow dynamics

Model test:
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Testing flow dynamics
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Testing flow dynamics
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Future Directions and Conclusions

• Future Directions
• incorporation of particle size segregation
• entrainment
• arbitrary topography
• vertical acceleration corrections?

• Thank you for your attention.
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