ÜBUNGEN ZUR DIFFERENTIALFORMEN UND MANNIGFALTIGKEITEN

Blatt 6*, 14.05.2010

Aufgabe 6.1. Sei $U \subset \mathbb{R}^n$ eine offene Teilmenge, sei $f: U \to \mathbb{R}^k$ eine C^{∞} Abbildung mit konstantem Rang, und sei $x \in f(U)$. Sei $N \subset \mathbb{R}^n$ die Untermannigfaltigkeit, die als $N = f^{-1}(\{x\})$ definiert ist. Beweise, dass $T_pN = \text{Kern}(Df(p))$ für alle $p \in N$.

Aufgabe 6.2. Für jede Mannigfaltigkeit M aus der folgenden Liste, und für $p \in M$ gegeben, bestimme T_pM .

- (a) S^n , $p \in S^n$.
- (b) Das Hyperboloid $H = \{x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 x_4^2 = 1\}, p \in H.$
- (c) SO(n), $p = I_n$.

Aufgabe 6.3. Sei $v: \mathbb{R}^3 \to \mathbb{R}^6$ die C^{∞} Abbildung, die durch

$$v(x, y, z) = (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}xz, \sqrt{2}yz)$$

definiert ist. Beweise, dass v eine Einbettung $\bar{v}: \mathbb{R}P^2 \to \mathbb{R}^6$ induziert.

Bemerkung: Die Abbildung \bar{v} heißt die Veronese Einbettung. Die Formel wird der Abbildung $\mathbb{R}^3 \setminus \{0\} \to M_3(\mathbb{R})$ entnommen, die x auf der orthogonalen Projektion von \mathbb{R}^3 auf $x^{\perp} \subset \mathbb{R}^3$ abbildet.

Aufgabe 6.4. Sei $S^3 = \{(x,y) \in \mathbb{C}^2 | |x|^2 + |y|^2 = 1\}$, und sei $\eta : S^3 \to \mathbb{C}P^1 \cong S^2$ die Abbildung, die durch $\eta(x,y) = \pi(x,y)$ gegeben ist, wobei $\pi : \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}P^1$ die kanonische Projektion ist. Beweise die folgenden Aussagen.

- (a) Die Abbildung η ist eine surjektive C^{∞} Submersion.
- (b) Für jedes $q \in S^2$ ist $\eta^{-1}(q)$ eine Untermannigfaltigkeit von S^3 , die mit S^1 diffeomorph ist.

Die Abbildung $\eta:S^3\to S^2$ heißt die Hopf Abbildung.

Aufgabe 6.5. Sei M eine C^{∞} Mannigfaltigkeit der Dimension n. Sei $D_p(M) = \{(U, \phi) \mid p \in U\}$ die Menge der Karten von M um p. Definiere

$$T_p'M = \{v : D_p(M) \to \mathbb{R}^n \mid v(V, \psi) = d(\psi \circ \phi^{-1})(\phi(p))(v(U, \phi))$$
 für alle $(U, \phi), (V, \psi) \in D_pM\}$.

Beweise, dass $T_p'(M)$ die Struktur eines \mathbb{R} -Vektorraums besitzt, und dass ein kanonischer Isomorphismus $T_pM\cong T_p'M$ existiert.

^{*}Abgabe: Montag 31.05.2010 vor der Vorlesung. Die Aufgabe 6.5 wird nicht bewertet. http://www.math.uni-muenster.de/u/ausoni/manifolds-SS10.html