ÜBUNGEN ZUR DIFFERENTIALFORMEN UND MANNIGFALTIGKEITEN

Blatt 8^* , 04.06.2010

Aufgabe 8.1. Sei M eine C^{∞} Mannigfaltigkeit. Beweise, dass TM Hausdorff und zweit-abzählbar ist.

Aufgabe 8.2. Sei M eine Mannigfaltigkeit, seien $X,Y \in \mathfrak{X}(M)$ zwei C^{∞} Vektorfelder auf M und $f,g \in C^{\infty}(M)$ zwei C^{∞} Funktionen $M \to \mathbb{R}$. Beweise die folgenden Identitäten.

- (a) [fX, gY] = fg[X, Y] + fX(g)Y gY(f)X.
- (b) [X, Y] = -[Y, X].

Aufgabe 8.3. Sei M eine Mannigfaltigkeit und seien $X,Y,Z\in\mathfrak{X}(M)$. Beweise die *Jacobi-Identität*

$$[[X,Y],Z] + [[Y,Z],X]] + [[Z,X],Y] = 0.$$

Aufgabe 8.4. Sei M eine C^{∞} Mannigfaltigkeit. Eine Derivation von $C^{\infty}(M)$ ist eine \mathbb{R} -lineare Abbildung $\delta: C^{\infty}(M) \to C^{\infty}(M)$ mit $\delta(fg) = f\delta(g) + g\delta(f)$ für alle $f,g \in C^{\infty}(M)$. Sei $\mathrm{Der}(C^{\infty}(M))$ die Menge aller Derivationen von $C^{\infty}(M)$. Beweise, dass $\mathfrak{X}(M) \to \mathrm{Der}(C^{\infty}(M))$, $X \mapsto \{f \mapsto X(f)\}$ ein \mathbb{R} -linearer Isomorphismus ist.

^{*}Abgabe: Montag 14.06.2010 vor der Vorlesung.