ÜBUNGEN ZUR DIFFERENTIALFORMEN UND MANNIGFALTIGKEITEN

Blatt 9*, 11.06.2010

Aufgabe 9.1. Sei M eine Mannigfaltigkeit der Dimension n, und sei (U, ϕ) eine Karte von M. Sei $B = \{\frac{\partial}{\partial \phi_i}\}_{i=1}^n$ die entsprechende Basis von $\mathfrak{X}(U)$ als $C^{\infty}(U)$ -Modul.

- (a) Erkläre, warum $\left[\frac{\partial}{\partial \phi_i}, \frac{\partial}{\partial \phi_j}\right] = 0$ in $\mathfrak{X}(U)$ für alle i, j.
- (b) Seien $X, Y \in \mathfrak{X}(U)$. Verwende die Formel aus Aufgabe 8.2(a), um die Koordinaten von [X,Y] bezüglich der Basis B auszudrücken, in Abhängigkeit von den Koordinaten von X und Y bezüglich B.

Aufgabe 9.2. Sei $f: V \to W$ eine \mathbb{R} -linearer Abbildung. Beweise, dass $f^* = A^*(f): A^*(W) \to A^*(V)$ mit dem Produkt \wedge verträglich ist.

Aufgabe 9.3. Sei V ein \mathbb{R} -Vektorraum, sei $\omega \in A^p(V)$ und seien $v_1, \ldots, v_p \in V$. Sei $A = (a_{ij}) \in M_p(\mathbb{R})$, und sei $w_i = \sum_{j=1}^p a_{ij}v_j$. Beweise, dass $\omega(w_1, \ldots, w_p) = \det(A)\omega(v_1, \ldots, v_p)$.

Aufgabe 9.4. Sei V ein \mathbb{R} -Vektorraum der Dimension n, und sei $f:V\to V$ ein linearer Endomorphismus von V. Sei $P_f(t)=\det(f-t)\in\mathbb{R}[t]$ das charakteristische Polynom von f. Beweise, dass die folgende Formel gilt:

$$P_f(t) = \sum_{i=0}^{n} (-1)^i \operatorname{Spur}(A^{n-i}(f)) t^i.$$

Zeige zuerst, dass diese Formel für diagonale, und dann für diagonalisierbare Matrizen gilt. Benutze dann, dass die diagonalisierbare Matrizen in $M_n(\mathbb{C})$ eine dichte Teilmenge bilden.

Aufgabe 9.5. Sei V ein \mathbb{R} -Vektorraum, und $p, q \geq 1$. Definiere $\bar{\wedge} : A^p(V) \times A^q(V) \to A^{p+q}(V)$ durch

$$\omega_1 \bar{\wedge} \omega_2(v_1, \dots, v_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in \Sigma_{p+q}} \operatorname{sign}(\sigma) \omega_1(v_{\sigma(1)}, \dots, v_{\sigma(p)}) \omega_2(v_{\sigma(p+1)}, \dots, v_{\sigma(p+q)})$$

für alle $(v_1, \ldots, v_{p+q}) \in V^{p+q}$. Beweise, dass $\omega_1 \bar{\wedge} \omega_2 = \omega_1 \wedge \omega_2$.

^{*}Abgabe: Montag 21.06.2010 vor der Vorlesung. Die Aufgabe 9.5 wird nicht bewertet. http://www.math.uni-muenster.de/u/ausoni/manifolds-SS10.html