## COHOMOLOGY OF GROUPS : EXERCISES

Sheet 1, 4 April 2007

Prerequisites on simplicial sets (and the solution to some of the exercises below!) can be found in Waldhausen's notes "Algebraische Topologie", chapter 9, available at http://www.math.uni-bonn.de/people/schwede/Lehre/Lehre-index.html.

Definition. Let $C$ be a small category, i.e., the class of objects of $C$ is a set. Define the nerve of $C$ to be the simplicial set $N C$ corepresented by $\Delta$ in the category of small categories and functors. More explicitly, recall that $\Delta$ is the category with set of objects $\{[n] \mid n \in \mathbb{Z}, n \geqslant 0\}$. Here $[n]$ is the ordered set $\{0,1, \ldots, n\}$ viewed as a category (we have exactly one morphism $k \rightarrow \ell$ if $k \leqslant \ell$, and no morphism otherwise). The morphisms from $[n]$ to $[m]$ in $\Delta$ are the functors. The nerve of $C$ is given by the contravariant functor

$$
\begin{aligned}
N C: \Delta & \rightarrow \text { Sets } \\
\quad[n] & \mapsto \text { Functors }([n], C) .
\end{aligned}
$$

The geometric realization $|N C|$ of $N C$ is called the classifying space of $C$, and is denoted $B C$.

Exercise 1.1. If $C$ is small category and $n \geqslant 0$ is an integer, give an explicit description of an $n$-simplex in $N_{n} C$. Using this description, express the face map $d_{i}: N_{n} C \rightarrow N_{n-1} C$ and the degeneracy map $s_{i}: N_{n} C \rightarrow N_{n+1} C$, for $0 \leqslant i \leqslant n$.

Exercise 1.2. Let $[n] \in \Delta$ be viewed as a small category, as mentioned above. Prove that $B[n]$ is homeomorphic to the standard $n$-simplex $\nabla^{n} \subset \mathbb{R}^{n+1}$.
Exercise 1.3. Let $C$ and $D$ be small categories, $F$ and $G$ be functors $C \rightarrow D$, and let $\eta: F \rightarrow G$ be a natural transformation. Show that $B F$ and $B G$ are freely homotopic as maps $B C \rightarrow B D$.

Hint: construct the homotopy $H: \nabla_{1} \times B C \rightarrow B D$ between $B F$ and $B G$ as the realization of the nerve of a functor $[1] \times C \rightarrow D$.

Exercise 1.4. Let $G$ be a group and $X$ be a connected simplicial object in free $G$-sets, i.e. a contravariant functor $X: \Delta \rightarrow G$-Sets such for all $n \geqslant 0$ the $G$-action on $X_{n}$ is free. Prove that the natural map $|X| / G \rightarrow|X / G|$ is a homeomorphism. Prove that $G$ acts properly on $|X|$, i.e., every $x \in|X|$ has a neighborhood $V$ such that $V \cap g V=\emptyset$ for all $g \in G-\{1\}$. Deduce that $|X| \rightarrow|X / G|$ is a covering with group of deck transformations isomorphic to $G$.

