COHOMOLOGY OF GROUPS : EXERCISES

Sheet 1, 4 April 2007

Prerequisites on simplicial sets (and the solution to some of the exercises below!) can be found in Waldhausen's notes "Algebraische Topologie", chapter 9, available at http://www.math.uni-bonn.de/people/schwede/Lehre/Lehre-index.html.

Definition. Let *C* be a small category, i.e., the class of objects of *C* is a set. Define the nerve of *C* to be the simplicial set *NC* corepresented by Δ in the category of small categories and functors. More explicitly, recall that Δ is the category with set of objects $\{[n] \mid n \in \mathbb{Z}, n \ge 0\}$. Here [n] is the ordered set $\{0, 1, \ldots, n\}$ viewed as a category (we have exactly one morphism $k \to \ell$ if $k \le \ell$, and no morphism otherwise). The morphisms from [n] to [m] in Δ are the functors. The nerve of *C* is given by the contravariant functor

$$NC : \Delta \to \text{Sets}$$

 $[n] \mapsto \text{Functors}([n], C).$

The geometric realization |NC| of NC is called the *classifying space* of C, and is denoted BC.

Exercise 1.1. If C is small category and $n \ge 0$ is an integer, give an explicit description of an *n*-simplex in N_nC . Using this description, express the face map $d_i: N_nC \to N_{n-1}C$ and the degeneracy map $s_i: N_nC \to N_{n+1}C$, for $0 \le i \le n$.

Exercise 1.2. Let $[n] \in \Delta$ be viewed as a small category, as mentioned above. Prove that B[n] is homeomorphic to the standard *n*-simplex $\nabla^n \subset \mathbb{R}^{n+1}$.

Exercise 1.3. Let C and D be small categories, F and G be functors $C \to D$, and let $\eta: F \to G$ be a natural transformation. Show that BF and BG are freely homotopic as maps $BC \to BD$.

Hint: construct the homotopy $H : \nabla_1 \times BC \to BD$ between BF and BG as the realization of the nerve of a functor $[1] \times C \to D$.

Exercise 1.4. Let G be a group and X be a connected simplicial object in free G-sets, i.e. a contravariant functor $X : \Delta \to G$ -Sets such for all $n \ge 0$ the G-action on X_n is free. Prove that the natural map $|X|/G \to |X/G|$ is a homeomorphism. Prove that G acts properly on |X|, i.e., every $x \in |X|$ has a neighborhood V such that $V \cap gV = \emptyset$ for all $g \in G - \{1\}$. Deduce that $|X| \to |X/G|$ is a covering with group of deck transformations isomorphic to G.