COHOMOLOGY OF GROUPS : EXERCISES

Sheet 3, 26 April 2007

Exercise 3.1. Compute $H^{2}(\mathbb{Z} / 2, \mathbb{Z} / 4)$ for any action of $\mathbb{Z} / 2$ on $\mathbb{Z} / 4$. Is the result compatible with your solution of Exercise 2.7 ?

Exercise 3.2. Let (G, N, ϕ) be an abstract kernel, and C be the center of N with G-action induced by ϕ. Prove that the group $H^{2}(G, C)$ acts freely and transitively on the set of isomorphism classes of extentions $\mathcal{E}(G, N, \phi)$ (see the hints given in the lecture).

Exercise 3.3. Let G be a group different then $\mathbb{Z} / 2$, and C be a G-module. Prove that any element α of $H^{3}(G, C)$ can be represented as the obstruction to realizing an abstract kernel (G, N, ϕ).

Hint: Let F be the (non-commutative) free group generated by the set

$$
\{[x, y] \mid x, y \in G-\{1\}\}
$$

and take $N=C \times F$ (it has center C). Define $f: G \times G \rightarrow N=C \times F$ by $f(x, y)=(1,1)$ if $x=1$ or $y=1$, and $f(x, y)=(1,[x, y])$ otherwise. Let $k: G^{3} \rightarrow C$ be a 3 -cocycle in $\operatorname{hom}_{\mathbb{Z} G}\left(\bar{F}_{G}, C\right)$ representing α. Define a function $L: G \rightarrow \operatorname{Aut}(N)$ by

$$
L(x)(c,[y, z])=\left(c+k(x, y, z), f(x, y) f(x y, z) f(x, z y)^{-1}\right),
$$

and show that it satisfies $L(x) L(y)=\tau(f(x, y)) L(x y)$. In particular L induces a homomorphism $\phi: G \rightarrow \operatorname{Out}(N)$. Show that the obstruction to realizing (G, N, ϕ) is α. (If you are interested in a proof for the case $G=\mathbb{Z} / 2$, see "S. Eilenberg and S. Mac Lane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel. Ann. of Math. (2) 48, 1947, 326-341").

Exercise 3.4. We saw in the lecture that $H^{2}(G, C)$ is a functor in two variables. How is this functoriality transposed in the (non-canonical) interpretation of $H^{2}(G, C)$ as extentions ?

Exercise 3.5. Classify all extentions $1 \rightarrow \mathbb{Z} / 4 \rightarrow E \rightarrow \mathbb{Z} / 4 \rightarrow 1$ up to isomorphism, and give an explicit representative for each isomorphism class.

Exercise 3.6. Classify all extentions $1 \rightarrow Q_{8} \rightarrow E \rightarrow \mathbb{Z} / 2 \rightarrow 1$ up to isomorphisms, and give an explicit representative for each isomorphism class.

Hint: Recall that Q_{8} admits the presentation $\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a b^{-1}=a^{3}\right\rangle$, and show that $\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$ and $\operatorname{Out}\left(Q_{8}\right) \cong S_{3}$, where S_{n} denotes the group of permutations of a set with n elements.

