COHOMOLOGY OF GROUPS : EXERCISES

Sheet 4, 14 Mai 2007

Exercise 4.1. Let $n \ge 2$ be an integer, let $G = C_{p^n} = \langle t | t^{p^n} = 1 \rangle$ be the cyclic group of order p^n , and let H < G be the subgroup generated by t^p , so that $H \cong C_{p^{n-1}}$. Compute

$$\operatorname{cor}_{H}^{G}: H_{*}(H, M) \to H_{*}(G, M) \text{ and } \operatorname{tr}_{H}^{G}: H_{*}(G, M) \to H_{*}(H, M)$$

for $M = \mathbb{F}_p$ or $M = \mathbb{Z}$ with the trivial *G*-action. Compute

$$\operatorname{tr}_{H}^{G}: H^{*}(H, M) \to H^{*}(G, M) \text{ and } \operatorname{res}_{H}^{G}: H^{*}(G, M) \to H^{*}(H, M)$$

for the same values of G, H and M.

Exercise 4.2. Let G be a finite group, H be a subgroup of G, and let K be any group. Let \mathbb{F} be a field with trivial action of G and K, and consider the Künneth isomorphism

$$\kappa: H^*(G; \mathbb{F}) \otimes_{\mathbb{F}} H^*(K; \mathbb{F}) \xrightarrow{\cong} H^*(G \times K; \mathbb{F}).$$

Show that $\operatorname{res}_{H \times K}^{G \times K} \kappa = \kappa(\operatorname{res}_{H}^{G} \otimes \operatorname{id})$, and $\operatorname{tr}_{H \times K}^{G \times K} \kappa = \kappa(\operatorname{tr}_{H}^{G} \otimes \operatorname{id})$. Repeat the exercise in homology, for $\operatorname{cor}_{H \times K}^{G \times K}$ and $\operatorname{tr}_{H \times K}^{G \times K}$ (in homology, the hypothesis that G be finite can be supressed, but of course we need $[G : H] < \infty$ for the transfer to be defined).

Exercise 4.3. Repeat exercise 4.1 for $G = C_p^n$ and H a subgroup of order p^{n-1} .

Exercise 4.4. Let G be a group, $x \in G$, and let $\tau_x : G \to G$ be defined by $g \mapsto xgx^{-1}$. Show that $B\tau_x$, as a self map of BG, is homotopic to the identity.

Exercise 4.5. Let G be a group, M be a $\mathbb{Z}G$ -module, and take $x \in G$. Show that the homomorphism $c: H_*(G; M) \to H_*(G; M)$ induced by $\tau_x: G \to G$ and $M \to M, m \mapsto xm$, is equal to the identity.

Exercise 4.6. Let $K \subset L$ be a finite Galois extension of fields with Galois group G. Show that

$$H^{n}(G;L) \cong H_{n}(G;L) \cong \begin{cases} K & \text{if } n = 0, \\ 0 & \text{if } n \neq 0. \end{cases}$$

Hint: use the normal basis theorem.