COHOMOLOGY OF GROUPS : EXERCISES

Sheet 5, 4 June 2007

Exercise 5.1. Let G be a group, H be a subgroup of finite index, and let \mathbb{Z} have trivial G-action. Give a formula for the transfer $\operatorname{tr}_{H}^{G}: H_{1}(G;\mathbb{Z}) \to H_{1}(H;\mathbb{Z})$ as a homomorphism $G_{\operatorname{ab}} \to H_{\operatorname{ab}}$ on the abelianizations of G and H.

Exercise 5.2. Write a detailled proof of the Cartan-Eilenberg double coset formula, using the hints given in the lecture.

Exercise 5.3. Let S_3 be the group of permutations of a set with three elements. Let \mathbb{Z} have the trivial S_3 -action. Compute

$$H^*(\mathcal{S}_3;\mathbb{Z})$$

using subgroups and invariants.

Exercise 5.4. Prove that if $\{G_i\}_{i \in I}$ is a directed system of groups, then for any $\mathbb{Z}[G]$ -module M the natural map

$$\operatorname{colim}_{I} H_*(G_i;M) \to H_*(\operatorname{colim}_{I} G_i;M)$$

is an isomorphism.

Exercise 5.5. Let G be a group and H be a subgroup of finite index. Prove the transfer formula for the cup-product in cohomology given in the lecture, namely

$$\operatorname{tr}_{H}^{G}\left(\left(\operatorname{res}_{H}^{G} u\right) \cup v\right) = u \cup \left(\operatorname{tr}_{H}^{G} v\right).$$

Exercise 5.6. Let $n \in \mathbb{N}$ be an even natural number and C_n be the cyclic group of order n. Compute $H^*(C_n; \mathbb{F}_2)$ and $H_*(C_n; \mathbb{F}_2)$ as \mathbb{F}_2 -algebras, with the cup and Pontrjagin products, respectively.