COHOMOLOGY OF GROUPS : EXERCISES

Sheet 5, 4 June 2007

Exercise 5.1. Let G be a group, H be a subgroup of finite index, and let \mathbb{Z} have trivial G-action. Give a formula for the transfer $\operatorname{tr}_{H}^{G}: H_{1}(G ; \mathbb{Z}) \rightarrow H_{1}(H ; \mathbb{Z})$ as a homomorphism $G_{\mathrm{ab}} \rightarrow H_{\mathrm{ab}}$ on the abelianizations of G and H.

Exercise 5.2. Write a detailled proof of the Cartan-Eilenberg double coset formula, using the hints given in the lecture.

Exercise 5.3. Let \mathcal{S}_{3} be the group of permutations of a set with three elements. Let \mathbb{Z} have the trivial \mathcal{S}_{3}-action. Compute

$$
H^{*}\left(\mathcal{S}_{3} ; \mathbb{Z}\right)
$$

using subgroups and invariants.
Exercise 5.4. Prove that if $\left\{G_{i}\right\}_{i \in I}$ is a directed system of groups, then for any $\mathbb{Z}[G]$-module M the natural map

$$
\underset{I}{\operatorname{colim}_{I}} H_{*}\left(G_{i} ; M\right) \rightarrow H_{*}\left(\underset{I}{\operatorname{colim}} G_{i} ; M\right)
$$

is an isomorphism.
Exercise 5.5. Let G be a group and H be a subgroup of finite index. Prove the transfer formula for the cup-product in cohomology given in the lecture, namely

$$
\operatorname{tr}_{H}^{G}\left(\left(\operatorname{res}_{H}^{G} u\right) \cup v\right)=u \cup\left(\operatorname{tr}_{H}^{G} v\right) .
$$

Exercise 5.6. Let $n \in \mathbb{N}$ be an even natural number and C_{n} be the cyclic group of order n. Compute $H^{*}\left(C_{n} ; \mathbb{F}_{2}\right)$ and $H_{*}\left(C_{n} ; \mathbb{F}_{2}\right)$ as \mathbb{F}_{2}-algebras, with the cup and Pontrjagin products, respectively.

