COHOMOLOGY OF GROUPS : EXERCISES

Sheet 7, 9 July 2007

Exercise 7.1. Let $p \ge 3$ be a prime, let $C_p = \langle t | t^p = 1 \rangle$ and $C_{p^2} = \langle s | s^{p^2} = 1 \rangle$ be cyclic groups of order p and p^2 . We let C_p act on C_{p^2} by $t(s) = s^{1+p}$. Let $E = C_{p^2} \rtimes C_p$ be the corresponding extension

$$1 \to C_{p^2} \to E \to C_p \to 1.$$

Compute $H^*(E; \mathbb{F}_p)$ as an algebra.

Hint: Consider the LHS spectral sequence associated to this extension. Show that it has a non-trivial d_2 differential by computing $H^2(E; \mathbb{F}_p)$ and comparing it with $E_2^{0,2} \oplus E_2^{1,1} \oplus E_2^{2,0}$. To compute $H^2(E; \mathbb{F}_p)$, you can for example use an explicit resolution, or first compute $H^i(E; \mathbb{Z})$ for i = 2, 3 with the LHS spectral sequence and apply universal coefficients. Show that it collapses at the E_3 -term. Show that there are no multiplicative extensions.

Exercise 7.2. Compute $H^*(D_8; \mathbb{F}_2)$ as an \mathbb{F}_2 -algebra. *Hint:* Prove that there is an isomorphism $D_8 \cong C_2 \wr C_2$.