EXERCISES FOR TOPOLOGY III, WS05/06

Sheet 13, January 262006

Solutions due on Monday, 6th of February.
In this sheet we will do computations involving the classifying space $B O(n)$ of the orthogonal group $O(n)$. We recall (or admit) the following facts.
(a) $O(1) \cong \mathbb{Z} / 2, B O(1) \cong \mathbb{R} P^{\infty}$, and the inclusion $O(1)^{n} \rightarrow O(n)$ of diagonal matrices induces a continuous map $d:(B O(1))^{n} \rightarrow B O(n)$.
(b) The map d induces an injection of cohomology rings

$$
d^{*}: H^{*}\left(B O(n) ; \mathbb{F}_{2}\right) \hookrightarrow H^{*}\left(B O(1)^{n} ; \mathbb{F}_{2}\right)
$$

with image the subalgebra of $H^{*}\left(B O(1)^{n} ; \mathbb{F}_{2}\right)=P\left(u_{1}, \ldots, u_{n}\right)$ generated by the symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$. These are defined by the equation

$$
\prod_{i=1}^{n}\left(1+u_{i}\right)=\sum_{i=0}^{n} \sigma_{i}, \quad \text { with } \quad\left|\sigma_{i}\right|=i
$$

(hence $\sigma_{0}=1, \sigma_{1}=u_{1}+\cdots+u_{n}, \ldots, \sigma_{n}=u_{1} \ldots u_{n}$).
Exercise 13.1. Prove that the subalgebra of $P\left(u_{1}, \ldots, u_{n}\right)$ generated by the symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$ is free, so that

$$
H^{*}\left(B O(n) ; \mathbb{F}_{2}\right)=P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

with $\left|w_{i}\right|=i$ and $d^{*}\left(w_{i}\right)=\sigma_{i}$ (the class w_{i} is called the i-th Stiefel-Whitney class).
Exercise 13.2. Prove the Wu-formula for the Stiefel-Whitney classes :

$$
S q^{j} w_{i}=\sum_{k=0}^{j}\binom{i-k-1}{j-k} w_{i+j-k} w_{k} \quad(0 \leqslant j \leqslant i) .
$$

Here by convention $w_{0}=1$ and $\binom{-1}{0}=1$.
Exercise 13.3. The space $B O=\bigcup_{n} B O(n)$ has an H-space structure induced by the direct sum of matrices. Indeed, the map $O(m) \times O(n) \rightarrow O(m+n),(A, B) \mapsto$ $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ induces a map $B O(m) \times B O(n) \rightarrow B O(m+n)$. Taking the union over m and n we obtain an H-space structure $\mu: B O \times B O \rightarrow B O$. Show that $H^{*}\left(B O ; \mathbb{F}_{2}\right)=P\left(w_{1}, w_{2}, w_{3}, \ldots\right)$, and that the coproduct $\psi=\mu^{*}$ on $H^{*}\left(B O ; \mathbb{F}_{2}\right)$ is given by

$$
\psi\left(w_{k}\right)=\sum_{i=0}^{k} w_{i} \otimes w_{k-i} .
$$

Exercise 13.4. Admitting that $H_{*}\left(B O ; \mathbb{F}_{2}\right)$ is of finite type, show that there is an isomorphism of algebras

$$
H_{*}\left(B O ; \mathbb{F}_{2}\right) \cong P\left(x_{1}, x_{2}, x_{3} \ldots\right)
$$

(with the Pontrjagin product), where x_{i} is dual to w_{1}^{i} with respect to the basis of $H^{*}\left(B O ; \mathbb{F}_{2}\right)$ consisting of monomials in the Stiefel-Whitney classes.

