EXERCISES FOR TOPOLOGY III, WS05/06

Sheet 4, November 10th 2005

Solutions due on Thursday, 17th of November.

Exercise 4.1. Let π_{n} be the permutation of the set $\{0,1, \ldots, n\}$ given by $\pi_{n}(i)=$ $n-1$, and let $\varepsilon_{n} \in\{ \pm 1\}$ be its signature. Let $\pi: \Delta^{n} \rightarrow \Delta^{n}$ be the affine map that sends the vertex e_{i} to $e_{\pi_{n}(i)}$. Consider the homomorphism $\theta_{n}: S_{n}(X ; R) \rightarrow$ $S_{n}(X ; R)$ defined on a simplex $\sigma: \Delta^{n} \rightarrow X$ by $\sigma \mapsto \varepsilon_{n} \sigma \circ \pi_{n}$, and extended linearly. (a) Show that $\left\{\theta_{n}\right\}_{n}$ is a morphism of chain complexes.
(b) Construct an explicit chain homotopy $h_{*}: S_{*}(X ; R) \rightarrow S_{*+1}(X ; R)$ between θ_{*} and the identity.
(c) Use the Theorem of Acyclic Models to show that θ_{*} is chain homotopic to the identity.
Exercise 4.2. Determine, by explicit computation with the definition of the cupproduct, the cohomology algebra $H^{*}\left(S^{1} \times S^{1} ; \mathbb{Z}\right)$ of the torus.

Here are some suggestions. First find explicit cycles that generate the homology of the torus. Consider the cycles $\sigma=A B$ and $\tau=A D$ in $S_{1}\left(S^{1} \times S^{1} ; \mathbb{Z}\right)$ and the cycle $z=A B C-A D C$ in $S_{2}\left(S^{1} \times S^{1} ; \mathbb{Z}\right)$, as pictured below.

(The torus is the quotient of this square obtained by identifying $A B$ with $D C$ and $A D$ with $B C$.) Show that

$$
H_{n}\left(S^{1} \times S^{1} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}\{\bar{\sigma}\} \oplus \mathbb{Z}\{\bar{\tau}\} & \text { if } n=1 \\ \mathbb{Z}\{\bar{z}\} & \text { if } n=2 \\ 0 & \text { if } n \geqslant 3\end{cases}
$$

Dualize, and compute the cup product $\bar{\sigma}^{*} \cup \bar{\tau}^{*}$, where $\left\{\bar{\sigma}^{*}, \bar{\tau}^{*}\right\}$ is the basis of $H^{1}\left(S^{1} \times S^{1} ; \mathbb{Z}\right)$ dual to $\{\bar{\sigma}, \bar{\tau}\}$.

Exercise 4.3. Let $m \geqslant 2$ be an integer. Compute the cohomology algebra

$$
H^{*}(M(\mathbb{Z} / m, 1) ; \mathbb{Z} / m)
$$

of the Moore space $M(\mathbb{Z} / m, 1)$ by a method similar to the one proposed in the previous exercise.

