EXERCISES FOR TOPOLOGY III, WS05/06

Sheet 5, November 17th 2005

Solutions due on Thursday, 24th of November.

Exercise 5.1. Let R be a commutative and unital ring, and M, N be R-modules. Describe how the algebras $T(M \oplus N)$, $P(M \oplus N)$ and $E(M \oplus N)$ are related to T(M) and T(N), P(M) and P(N), and E(M) and E(N), respectively.

Exercise 5.2. Consider the polynomial algebra P(x) over \mathbb{Z} . Define on P(x) a coproduct $\psi: P(x) \to P(x) \otimes P(x)$ by setting $\psi(x) = 1 \otimes x + x \otimes 1$, and extending it to be a map of \mathbb{Z} -algebras. Describe the algebra $\Gamma(x)$, which as \mathbb{Z} -module is the dual $(P(x))^{\#}$ of P(x), with product induced by the coproduct of P(x). Also describe the coproduct of $\Gamma(x)$ induced by the product of P(x).

Exercise 5.3. Consider a product of spheres $X = S^{n_1} \times \cdots \times S^{n_k}$ with $n_i \ge 1$. Describe the algebra $H^*(X; \mathbb{Z})$.

Exercise 5.4. Let (X, x_0) and (Z, y_0) be based spaces, and let $X \vee Y$ be their wedge, i.e. $X \vee Y = (X \sqcup Y)/(x_0 = y_0)$. Show that there is an isomorphism of (non-unital) *R*-algebras

$$\tilde{H}^*(X;R) \oplus \tilde{H}^*(Y;R) \cong \tilde{H}^*(X \lor Y;R),$$

where the product on the left is component-wise.

Exercise 5.5. Show that if $m, n \ge 1$, then the spaces $S^m \times S^n$ and $S^m \vee S^n \vee S^{m+n}$ are not homotopy equivalent.

Exercise 5.6. Let M_g be an orientable surface of genus g. Compute the cohomology algebra $H^*(M_g; \mathbb{Z})$.

Hint: M_g is the connected sum of S^2 with g tori $T_i = S^1 \times S^1$, $i = 1, \ldots, g$, i. e.

$$M_g = \left[\left(S^2 \smallsetminus (D_1^{\circ} \sqcup \cdots \sqcup D_g^{\circ}) \right) \sqcup (T_1 \smallsetminus \bar{D}_1^{\circ}) \sqcup \cdots \sqcup (T_g \smallsetminus \bar{D}_g^{\circ}) \right] / \sim$$

Here D_1, \ldots, D_g are g two-dimensional disks disjointly embedded in S^2 , \overline{D}_i is a disk embedded in T_i , and the superscript $(-)^\circ$ denotes the interior. The relation \sim identifies ∂D_i with $\partial \overline{D}_i$ for $1 \leq i \leq g$. Assume $g \geq 1$. The space $X = S^2 \setminus (D_1^\circ \sqcup \cdots \sqcup D_g^\circ) \subset M_g$ is homotopy equivalent to $\bigvee_{g=1} S^1$. The quotient of M_g by X is homeomorphic to $\bigvee_g T$. Use the cofibration up to homotopy

$$\bigvee_{g-1} S^1 \to M_g \to \bigvee_g T$$

and the induced long exact sequence in cohomology to solve the exercise.