EXERCISES FOR TOPOLOGY III, WS05/06

Sheet 5, November 17th 2005

Solutions due on Thursday, 24th of November.

Exercise 5.1. Let R be a commutative and unital ring, and M, N be R-modules. Describe how the algebras $T(M \oplus N), P(M \oplus N)$ and $E(M \oplus N)$ are related to $T(M)$ and $T(N), P(M)$ and $P(N)$, and $E(M)$ and $E(N)$, respectively.

Exercise 5.2. Consider the polynomial algebra $P(x)$ over \mathbb{Z}. Define on $P(x)$ a coproduct $\psi: P(x) \rightarrow P(x) \otimes P(x)$ by setting $\psi(x)=1 \otimes x+x \otimes 1$, and extending it to be a map of \mathbb{Z}-algebras. Describe the algebra $\Gamma(x)$, which as \mathbb{Z}-module is the dual $(P(x))^{\#}$ of $P(x)$, with product induced by the coproduct of $P(x)$. Also describe the coproduct of $\Gamma(x)$ induced by the product of $P(x)$.
Exercise 5.3. Consider a product of spheres $X=S^{n_{1}} \times \cdots \times S^{n_{k}}$ with $n_{i} \geqslant 1$. Describe the algebra $H^{*}(X ; \mathbb{Z})$.

Exercise 5.4. Let $\left(X, x_{0}\right)$ and $\left(Z, y_{0}\right)$ be based spaces, and let $X \vee Y$ be their wedge, i.e. $X \vee Y=(X \sqcup Y) /\left(x_{0}=y_{0}\right)$. Show that there is an isomorphism of (non-unital) R-algebras

$$
\tilde{H}^{*}(X ; R) \oplus \tilde{H}^{*}(Y ; R) \cong \tilde{H}^{*}(X \vee Y ; R),
$$

where the product on the left is component-wise.
Exercise 5.5. Show that if $m, n \geqslant 1$, then the spaces $S^{m} \times S^{n}$ and $S^{m} \vee S^{n} \vee S^{m+n}$ are not homotopy equivalent.

Exercise 5.6. Let M_{g} be an orientable surface of genus g. Compute the cohomology algebra $H^{*}\left(M_{g} ; \mathbb{Z}\right)$.

Hint: M_{g} is the connected sum of S^{2} with g tori $T_{i}=S^{1} \times S^{1}, i=1, \ldots, g$, i. e.

$$
M_{g}=\left[\left(S^{2} \backslash\left(D_{1}^{\circ} \sqcup \cdots \sqcup D_{g}^{\circ}\right)\right) \sqcup\left(T_{1} \backslash \bar{D}_{1}^{\circ}\right) \sqcup \cdots \sqcup\left(T_{g} \backslash \bar{D}_{g}^{\circ}\right)\right] / \sim
$$

Here D_{1}, \ldots, D_{g} are g two-dimensional disks disjointly embedded in S^{2}, \bar{D}_{i} is a disk embedded in T_{i}, and the superscript $(-)^{\circ}$ denotes the interior. The relation \sim identifies ∂D_{i} with $\partial \bar{D}_{i}$ for $1 \leqslant i \leqslant g$. Assume $g \geqslant 1$. The space $X=S^{2} \backslash\left(D_{1}^{\circ} \sqcup\right.$ $\left.\cdots \sqcup D_{g}^{\circ}\right) \subset M_{g}$ is homotopy equivalent to $\bigvee_{g-1} S^{1}$. The quotient of M_{g} by X is homeomorphic to $\bigvee_{g} T$. Use the cofibration up to homotopy

$$
\bigvee_{g-1} S^{1} \rightarrow M_{g} \rightarrow \bigvee_{g} T
$$

and the induced long exact sequence in cohomology to solve the exercise.

