EXERCISES FOR TOPOLOGY III, WS05/06

Sheet 6, November 24th 2005

Solutions due on Thursday, 1st of November.

Show that the homomorphism of \mathbb{F}_2 -algebras

Exercise 6.1. Compute the cohomology algebra $H^*(\mathbb{C}P^n;\mathbb{Z})$ for $n \ge 1$.

Exercise 6.2. A division *R*-algebra structure on an *R*-module *A* is an *R*-bilinear homomorphism $\mu : A \times A \to A$ (not necessarily unital, associative, nor commutative), such that for any $a \in A \setminus \{0\}$ the homomorphisms $\mu(a, -)$ and $\mu(-, a) : A \to A$ are surjective.

Show that if \mathbb{R}^n is a division \mathbb{R} -algebra, then n is a power of 2. Hint: assume that $n \ge 2$ and that we have a division \mathbb{R} -algebra structure on \mathbb{R}^n given by $\mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$. We then have a map $S^{n-1} \times S^{n-1} \to S^{n-1}$ given by $(x, y) \mapsto \mu(x, y)/|\mu(x, y)|$. This induces a map $f : \mathbb{R}P^{n-1} \times \mathbb{R}P^{n-1} \to \mathbb{R}P^{n-1}$.

$$(\times)^{-1} \circ f^* : H^*(\mathbb{R}P^{n-1};\mathbb{F}_2) \to H^*(\mathbb{R}P^{n-1};\mathbb{F}_2) \otimes H^*(\mathbb{R}P^{n-1};\mathbb{F}_2)$$

satisfies $\alpha \mapsto \alpha \otimes 1 + 1 \otimes \alpha$, where α is the generator of $H^1(\mathbb{R}P^{n-1};\mathbb{F}_2)$. Deduce from $\alpha^n = 0$ that n is a power of 2.

Exercise 6.3. Show that if a space X is the union of n open contractible subspaces, then all n-fold cup products $\alpha_1 \cup \cdots \cup \alpha_n$ with $|\alpha_i| \ge 1$ are 0 in $H^*(X; R)$. Hint: Induction on n, using the relative cup product.

Exercise 6.4. Using the cup product, show that if $m, n \ge 1$ then any map $S^{m+n} \to S^m \times S^n$ induces the zero homomorphism $H_{m+n}(S^{m+n};\mathbb{Z}) \to H_{m+n}(S^m \times S^n;\mathbb{Z})$.

Exercise 6.5. Find a connected space X so that for any field F, the cross product

$$H^*(X;F) \otimes H^*(X;F) \xrightarrow{\times} H^*(X \times X;F)$$

is not an isomorphism