7. Spaces of Continuous Maps

1. Let C(X,Y) be the set of all continuous maps of a
topological space X into a topological space Y. The set of all maps
¢ € C(X,Y) such that ¢(A1) = B1,...,¢(An) = Bn’ where A1,...,An and
B1""'Bn are given subsets of X and Y, respectively, is denoted by
C(X,A1,...,An;Y,B1,...,Bn). It may be interpreted as the set of all
continuous maps (X,A1,...,An) -+ (Y,B1,...,Bn).

We equip C(X,Y) with the compact-open topology: by definition,

this is the topology with the prebase consisting of all sets C(C(X,A;Y,B)

with A compact and B open. Together with C(X,¥Y), all the sets

C(X,A1,...,An;Y,B1,..
If Y is a point, then C(X,Y) reduces to a point. If X

.,Bn) become topological spaces.

is discrete and consists of the points RyreeerX s then C(X,Y) |is
canonically homeomorphic to the product Y x ... x ¥ of n copies of
the space Y¥; this homeomorphism is given by ¢ -+ (¢(x1),...,¢(xn)).

To each pair of continuous maps f: X' + X and g: ¥ » Y'
there corresponds a mapping C(X,Y¥) - C(X',¥'), given by the rule
¢ » g o ¢ o £. This mapping is continuous, and we shall denote it by
C(flgj .

2. f Y 4is a Hausdorff space, then so is C(X,Y).

Indeed, if ¢,y € C(X,Y) and ¢ # ¢, then there is x € X
such that ¢(x) # ¢(x). Let U and V be disjoint neighborhoods of
the points ¢(x) and y(x). Then C(X,x;Y,U) and C(X,x;Y,V) are
disjoint neighborhoods of the points ¢ and .

3. If X 4is compact and Y is metrizable, then C(C(X,Y)

is metrizable. Moreover, if Y is equipped with a metric, then

dist(¢,v) = SUp, v dist(¢(x),y(x)) defines a metric on C(C(X,Y),
compatible with its topology.

PROOF. Given ¢ € C(X,Y), the set ¢(X) can be covered by

a finite number of balls U,[,...,Us of an arbitrarily small radius €
s

(see 1.7.11). It is clear that W = ni=1 C(X,¢—1(Ui);Y,Ui) is a

neighborhood of the point ¢, contained in the ball of radius 2e
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centered at ¢. Therefore, every ball in C((X,Y) contains a neighbor-
hood of its center.

On the other hand, if A = X is compact and B © Y 1is open,
with ¢(A) <« B, then C(X,A;Y,B) contains the ball with radius
Dist (¢ (A) ,Y ~ B) centered at ¢ (see 1.7.15). Therefore, every
neighborhood of ¢ belonging to the prebase considered in 1 contains a
ball centered at ¢.

4. For any topological spaces X and Y1""'Yn’ the space

C(X,Y1 X ea. X Yn) is canonically homeomorphic to the product
C(X,Yq) x «on x C(X,Y ).

This canonical homeomorphism takes each ¢ € C(X,Y1 X 4.0 X Yn
into (pr1 ° ¢),...,prn ° ¢) € C(X,Y1) X ee. X C(X,Yn) [cE. 2.4].

5. Let p be a closed partition of the compact Hausdorff

space X, and let Y be an arbitrary topological space. Then
C(pr,idyY) : C(X/p,¥) + C(X,Y) 4is an embedding.

It suffices to show that given a compact subset A of X/p
and an open subset B of Y, the set C(pr,idY) [C(X/p,A;Y,B)] 1is
open in C(pr,idY¥) [C(X/p,¥)]. Since X/p 1is Hausdorff (see 3.9),

A is closed. It follows that pr_1(A) is closed, and hence compact.
Consequently, C(X,pr_1(A);Y,B) is open in C(X,Y), and it remains to
note that

Clpr,id¥) [C(X/p,A;¥,B)] = C(X,pr | (A);¥,B) n C(pr,id¥) [C(X/p;¥)].

The Mappings X x Y - Z and X > C(Y,2)

6. Suppose that X, Y and Z are topological spaces, and

¢: X x Y - 2 is continuous. Then the formula [¢V(x)](y) = p(x,y)

defines a continuous mapping ¢V: X » C(Y,2).

Let ¢: X » C(Y,2) be a continuous mapping, and suppose that

Y is Hausdorff and locally compact. Then the formula wA(x,y) =

= [Y(x)](y) defines a continuous mapping ph: X x ¥ » 2.

To prove the first assertion, pick a point x, € X, a compact

0
set B c Y, and an open set C < Z. Then it is enough to exhibit a

neighborhood U of X such that ¢V(U) c C(y,B;%Z,C). For each point
y € B fix neighborhoods Uy and Vy of X

(U x V) € C, and then extract a finite cover V_ ,...,V of B
y Y Y ¥
s

y€B" It is clear that U = ni=1 in is a

and y such that

from the collection {Vy}
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neighborhood of x, and that ¢(U x B) < ui_; ¢(U, x vV, ) cC. It
remains to remark that the inclusion (U x B) « C lis eqéivalent to
¢V (U) < C(Y,B;Z,C).

To prove the second assertion, pick a point (xo,yo) € X x ¥
and a neighborhood W of the point wA(xo,yol. Now let us find a
neighborhood V of Yo with compact closure ClV satisfying

ClVv c [w(xo)]_1tw) (see 1.7.22), and then a neighborhood U of X,

satisfying ¢ (U) < c(y,ClVv;Z,W) . Obviously, U x V is a neighborhood
of the point (xo,yo) and wA(U x V) © W.

7. The mapping C(X x Y,Z) - C(X,C(Y,2)) defined by the rule

o ¥ ¢V (see 6) is continuous for any topological spaces X, ¥ and 2.

If X is Hausdorff and Y is Hausdorff and locally compact, then this

mapping is a homeomorphism, and its inverse is given by the rule ¢ » Pt

The continuity of the mapping ¢ ¥ ¢V results from the fact
that the preimage of c(x,A;C(¥,2),C(¥,B;Z,C)) under this mapping is
just C(X x ¥,A X B;%Z,C). Assume that X 1is Hausdorff and Y 1is
Hausdorff and locally compact. Consider a point ¢0 € C(x,C(¥;2)), a
compact subset Q of X x ¥, a neighborhood W of the set wS(Q),
and a point gq € Q. Now find a neighborhood U _x V of g such that
wa(Uq x Cqu) c W. Since Q is compact, its Emages pr1(Q) and

prz(Q) in X and Y are also compact (see 1.7.8). Moreover, they
are Hausdorff spaces together with X and Y, and hence normal
(see 1.7.5). Consequently, there exist open subsets Ué of pr1(Q)
and Vé of prz(Q) such that

] ]
pr1(q) € Uq, Clpr1(Q)Uq = Uq'
and

Ve Cl !
and it is plain that the intersection (Ul x V') N Q is open in Q.
Being compact, Q can be covered by a finite number of such

intersections, say U' x V' ,...,U' x V! . Now set
94 94 dg s

:C(y,2),C(Y,Cl

s
T= n C(X,Cl 1Z2,W)).

u' V!

It is clear that T is a neighborhood of Vo and that the image of T
under the mapping VY = wA is contained in C(X x Y,Q;Z,W). We conclude
that Y =~ ¢A is continuous. It is readily see that the mappings

v A .
o = ¢ and ¢ » ¥ are inverses of one another.
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A Surprising Application

8. Let f: X - X' be a factorial map. If the space Y is
Hausdorff and locally compact, then the map £ X idy: X x ¥ » X" x Y
is factorial.

One can assume that X' = X/zer(f) and that £ 1is the
projection X =+ X/zer(f). Consider the projection
pr: X x ¥ » (X x Y)/(zer(£f) x zer (idY)) . The mapping

prV: X + C(Y, (X x Y)/(zer(f) x zer (id Y)) is constant on the elements

of the partition zer(f), and hence it induces continuous mappings

factpr¥ : X' » C(Y, (X x Y)/(zer(f) x zer(idY))
and

(fact pr¥)N: X' x Y + (X x Y)/(zer(f) x zer(idy)).

It it clear that the second of these mappings is the inverse of the
injective factor of £ x idY¥: X X ¥ =~ X' x Y. Thus the injective

factor of f x idY: X x ¥ - X' x Y is a homeomorphism.

9. Let f: X -~ X' and g: Y >~ Y' be factorial maps. If X'

and Y are Hausdorff and locally compact, then the map

f xg: X xY+X'"xY' is factorial.

In fact, one can express f x g as the composition
Xxyu__yxleMxixyl

and recall that a composition of factorial maps is again factorial.

8. The Case of Pointed Spaces

1. 1In the sequel, the class of topological spaces equipped
with a simple additional structure - a distinguished point (i.e.,
topological pairs (X,xO), where X is a point) will play an

important role; we call these spaces pointed spaces, and call the

distinguished point a base point. The constructions described in the

previous subsections must be naturally modified when applied to such
spaces. For some of these construction, the modification entails
merely the addition of a base point to the resulting space: for example,

the quotient space of pointed space (X,x;) has the natural base point



