Foks & Rokhlin Beginner's Course in Topslepj P. 46-43

7. Spaces of Continuous Maps

1. Let $\mathcal{C}(X,Y)$ be the set of all continuous maps of a topological space X into a topological space Y. The set of all maps $\phi \in \mathcal{C}(X,Y)$ such that $\phi(A_1) \subset B_1, \ldots, \phi(A_n) \subset B_n$, where A_1, \ldots, A_n and A_1, \ldots, A_n are given subsets of X and Y, respectively, is denoted by $\mathcal{C}(X,A_1,\ldots,A_n;Y,B_1,\ldots,B_n)$. It may be interpreted as the set of all continuous maps $(X,A_1,\ldots,A_n) \to (Y,B_1,\ldots,B_n)$.

We equip C(X,Y) with the <u>compact-open topology</u>: by definition, this is the topology with the prebase consisting of all sets C(X,A;Y,B) with A compact and B open. Together with C(X,Y), all the sets $C(X,A_1,\ldots,A_n;Y,B_1,\ldots,B_n)$ become topological spaces.

If Y is a point, then C(X,Y) reduces to a point. If X is discrete and consists of the points x_1, \ldots, x_n , then C(X,Y) is canonically homeomorphic to the product $Y \times \ldots \times Y$ of n copies of the space Y; this homeomorphism is given by $\phi \to (\phi(x_1), \ldots, \phi(x_n))$.

To each pair of continuous maps $f\colon X'\to X$ and $g\colon Y\to Y'$ there corresponds a mapping $\mathcal{C}(X,Y)\to\mathcal{C}(X',Y')$, given by the rule $\phi\mapsto g\circ \phi\circ f$. This mapping is continuous, and we shall denote it by $\mathcal{C}(f,g)$.

2. If Y is a Hausdorff space, then so is C(X,Y).

Indeed, if $\phi,\psi\in\mathcal{C}(X,Y)$ and $\phi\neq\psi$, then there is $x\in X$ such that $\phi(x)\neq\psi(x)$. Let U and V be disjoint neighborhoods of the points $\phi(x)$ and $\psi(x)$. Then $\mathcal{C}(X,x;Y,U)$ and $\mathcal{C}(X,x;Y,V)$ are disjoint neighborhoods of the points ϕ and ψ .

3. If X is compact and Y is metrizable, then $\mathcal{C}(X,Y)$ is metrizable. Moreover, if Y is equipped with a metric, then $\operatorname{dist}(\phi,\psi) = \sup_{\mathbf{x} \in X} \operatorname{dist}(\phi(\mathbf{x}),\psi(\mathbf{x}))$ defines a metric on $\mathcal{C}(X,Y)$, compatible with its topology.

PROOF. Given $\phi \in \mathcal{C}(X,Y)$, the set $\phi(X)$ can be covered by a finite number of balls U_1,\ldots,U_S of an arbitrarily small radius ε (see 1.7.11). It is clear that $W = \bigcap_{i=1}^S \mathcal{C}(X,\phi^{-1}(U_i);Y,U_i)$ is a neighborhood of the point ϕ , contained in the ball of radius 2ε

centered at ϕ . Therefore, every ball in $\mathcal{C}(X,Y)$ contains a neighborhood of its center.

On the other hand, if $A \subset X$ is compact and $B \subset Y$ is open, with $\varphi(A) \subset B$, then C(X,A;Y,B) contains the ball with radius $Dist(\varphi(A),Y \setminus B)$ centered at φ (see 1.7.15). Therefore, every neighborhood of φ belonging to the prebase considered in 1 contains a ball centered at φ .

4. For any topological spaces X and Y₁,...,Y_n, the space $C(X,Y_1 \times \ldots \times Y_n)$ is canonically homeomorphic to the product $C(X,Y_1) \times \ldots \times C(X,Y_n)$.

This canonical homeomorphism takes each $\phi \in C(X,Y_1 \times \ldots \times Y_n)$ into $(pr_1 \circ \phi, \ldots, pr_n \circ \phi) \in C(X,Y_1) \times \ldots \times C(X,Y_n)$ [cf. 2.4].

5. Let p be a closed partition of the compact Hausdorff space X, and let Y be an arbitrary topological space. Then $C(pr,id\ Y): C(X/p,Y) \rightarrow C(X,Y)$ is an embedding.

It suffices to show that given a compact subset A of X/p and an open subset B of Y, the set C(pr,idY)[C(X/p,A;Y,B)] is open in C(pr,idY)[C(X/p,Y)]. Since X/p is Hausdorff (see 3.9), A is closed. It follows that $pr^{-1}(A)$ is closed, and hence compact. Consequently, $C(X,pr^{-1}(A);Y,B)$ is open in C(X,Y), and it remains to note that

 $C(pr, id Y) [C(X/p, A; Y, B)] = C(X, pr^{-1}(A); Y, B) \cap C(pr, id Y) [C(X/p; Y)].$

The Mappings $X \times Y \rightarrow Z$ and $X \rightarrow C(Y,Z)$

6. Suppose that X, Y and Z are topological spaces, and $\phi: X \times Y \to Z$ is continuous. Then the formula $[\phi^{V}(x)](y) = \phi(x,y)$ defines a continuous mapping $\phi^{V}: X \to C(Y,Z)$.

Let ψ : $X \to C(Y,Z)$ be a continuous mapping, and suppose that Y is Hausdorff and locally compact. Then the formula $\psi^{\wedge}(x,y) = [\psi(x)](y)$ defines a continuous mapping ψ^{\wedge} : $X \times Y \to Z$.

To prove the first assertion, pick a point $x_0 \in X$, a compact set $B \subset Y$, and an open set $C \subset Z$. Then it is enough to exhibit a neighborhood U of x_0 such that $\phi^V(U) \subset C(Y,B;Z,C)$. For each point $Y \in B$ fix neighborhoods U and V of x_0 and Y such that $\phi(U_Y \times V_Y) \subset C$, and then extract a finite cover V_{Y_1}, \dots, V_{Y_S} of B from the collection $\{V_Y\}_{Y \in B}$. It is clear that $U = \bigcap_{i=1}^S U_{Y_i}$ is a

neighborhood of x_0 and that $\phi(U \times B) \subset \bigcup_{i=1}^S \phi(U_i \times V_i) \subset C$. It remains to remark that the inclusion $\phi(U \times B) \subset C$ is equivalent to $\phi^V(U) \subset C(Y,B;Z,C)$.

To prove the second assertion, pick a point $(x_0, y_0) \in X \times Y$ and a neighborhood W of the point $\psi^{\wedge}(x_0, y_0)$. Now let us find a neighborhood V of y_0 with compact closure Cl V satisfying $Cl \ V \subset [\psi(x_0)]^{-1}(W)$ (see 1.7.22), and then a neighborhood U of x_0 satisfying $\psi(U) \subset C(Y, Cl \ V; Z, W)$. Obviously, U × V is a neighborhood of the point (x_0, y_0) and $\psi^{\wedge}(U \times V) \subset W$.

7. The mapping $C(X \times Y, Z) \rightarrow C(X, C(Y, Z))$ defined by the rule $\phi \mapsto \phi^V$ (see 6) is continuous for any topological spaces X, Y and Z. If X is Hausdorff and Y is Hausdorff and locally compact, then this mapping is a homeomorphism, and its inverse is given by the rule $\psi \mapsto \psi^{\Lambda}$.

The continuity of the mapping $\phi \mapsto \phi^V$ results from the fact that the preimage of C(X,A;C(Y,Z),C(Y,B;Z,C)) under this mapping is just $C(X\times Y,A\times B;Z,C)$. Assume that X is Hausdorff and Y is Hausdorff and locally compact. Consider a point $\psi_0\in C(X,C(Y;Z))$, a compact subset Q of $X\times Y$, a neighborhood W of the set $\psi_0^{\Lambda}(Q)$, and a point $q\in Q$. Now find a neighborhood $U_q\times V_q$ of q such that $\psi_0^{\Lambda}(U_q\times Cl\,V_q)\subset W$. Since Q is compact, its images $\operatorname{pr}_1(Q)$ and $\operatorname{pr}_2(Q)$ in X and Y are also compact (see 1.7.8). Moreover, they are Hausdorff spaces together with X and Y, and hence normal (see 1.7.5). Consequently, there exist open subsets U_q^{Γ} of $\operatorname{pr}_1(Q)$ and V_q^{Γ} of $\operatorname{pr}_2(Q)$ such that

$$\operatorname{pr}_{1}(q) \in \operatorname{U}_{q}', \operatorname{Cl}_{\operatorname{pr}_{1}(Q)}\operatorname{U}_{q}' \subset \operatorname{U}_{q}'$$

and

$$\operatorname{pr}_{2}(q) \in V_{q'}^{\prime}, \operatorname{Cl}_{\operatorname{pr}_{2}(Q)}V_{q}^{\prime} \subset V_{q'}^{\prime}$$

and it is plain that the intersection $(U_q' \times V_q') \cap Q$ is open in Q. Being compact, Q can be covered by a finite number of such intersections, say $U_q' \times V_q' \dots U_q' \times V_q'$. Now set

$$T = \int_{i=1}^{s} C(X,Cl_{pr_{1}(Q)}U'_{q_{i}};C(Y,Z),C(Y,Cl_{pr_{2}(Q)}V'_{q_{i}};Z,W)).$$

It is clear that T is a neighborhood of ψ_0 and that the image of T under the mapping $\psi \to \psi^{\wedge}$ is contained in $C(X \times Y,Q;Z,W)$. We conclude that $\psi \mapsto \psi^{\wedge}$ is continuous. It is readily see that the mappings $\phi \mapsto \phi^{\vee}$ and $\psi \mapsto \psi^{\wedge}$ are inverses of one another.

A Surprising Application

8. Let $f: X \to X'$ be a factorial map. If the space Y is Hausdorff and locally compact, then the map $f \times id Y: X \times Y \to X' \times Y$ is factorial.

One can assume that X' = X/zer(f) and that f is the projection $X \to X/zer(f)$. Consider the projection pr: $X \times Y \to (X \times Y)/(zer(f) \times zer(id Y))$. The mapping $pr^{V}: X \to C(Y, (X \times Y)/(zer(f) \times zer(id Y))$ is constant on the elements of the partition zer(f), and hence it induces continuous mappings

fact pr $^{\vee}$: X' \rightarrow C(Y,(X \times Y)/(zer(f) \times zer(id Y))

and

 $(fact pr^{\vee})^{\wedge}: X' \times Y \rightarrow (X \times Y)/(zer(f) \times zer(id Y)).$

It it clear that the second of these mappings is the inverse of the injective factor of $f \times idY: X \times Y \to X' \times Y$. Thus the injective factor of $f \times idY: X \times Y \to X' \times Y$ is a homeomorphism.

9. Let $f: X \to X'$ and $g: Y \to Y'$ be factorial maps. If X' and Y are Hausdorff and locally compact, then the map $f \times g: X \times Y \to X' \times Y'$ is factorial.

In fact, one can express $f \times g$ as the composition

$$x \times y \xrightarrow{f \times id} x' \times y \xrightarrow{id \times g} x' \times y'$$

and recall that a composition of factorial maps is again factorial.

8. The Case of Pointed Spaces

1. In the sequel, the class of topological spaces equipped with a simple additional structure - a distinguished point (i.e., topological pairs (x,x_0) , where x_0 is a point) will play an important role; we call these spaces pointed spaces, and call the distinguished point a base point. The constructions described in the previous subsections must be naturally modified when applied to such spaces. For some of these construction, the modification entails merely the addition of a base point to the resulting space: for example, the quotient space of pointed space (x,x_0) has the natural base point