ÜBUNGEN ZUR LINEAREN ALGEBRA I

Blatt 13*, 18.01.2008

Aufgabe 13.1. Entscheide, ob die folgenden Matrizen invertierbar sind, und berechne gegebenenfalls deren Inverse:

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \in M_4(\mathbb{Q}), \quad B = \begin{pmatrix} 1 & 0 & \xi & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & \xi \\ 1 & 0 & 0 & 1 \end{pmatrix} \in M_4(\mathbb{C}), \quad C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \in M_3(\mathbb{F}_{11}),$$

wobei $\xi = e^{\frac{2\pi i}{3}} = \frac{1}{2}(-1 + i\sqrt{3}) \in \mathbb{C}.$

Aufgabe 13.2. Sei K ein Körper, $m, n \ge 1$ und $A \in K^{m,n}$, mit $\operatorname{Rang}(A) = r$. Beweise: es existieren $B \in K^{m,r}$ und $C \in K^{r,n}$ mit $\operatorname{Rang}(B) = \operatorname{Rang}(C) = r$ und $A = B \cdot C$.

Aufgabe 13.3. Sei $n \geq 2$, und für $A \in M_n(K)$ sei tA die zu A transponierte Matrix. Sei $E_n(K)$ die Untergruppe von $GL_n(K)$, die von elementaren Matrizen erzeugt wird. Für $d \in K$, sei $D_n(d) = \operatorname{diag}(1, \ldots, 1, d) \in M_n(K)$.

- (a) Zeige: für $A, B \in M_n(K)$ gilt ${}^t(A \cdot B) = {}^tB \cdot {}^tA$.
- (b) Nehmen wir an, dass man jede Matrix $A \in GL_n(K)$ als Produkt $A = S \cdot D_n(d)$ mit $S \in E_n(K)$ und $d \in K^{\times}$ zerlegen kann. Zeige: jede Matrix $A \in GL_n(K)$ kann man als Produkt $A = D_n(d) \cdot T$ mit $T \in E_n(K)$ und $d \in K^{\times}$ zerlegen.

Aufgabe 13.4. Sei $n \geq 2$ und $B \in M_n(K)$. Sei

$$C(B) = \{ A \in M_n(K) \mid AB = BA \} \subset M_n(K).$$

- (a) Zeige, dass C(B) eine Unteralgebra von $M_n(K)$ ist.
- (b) Seien $a_1, \ldots, a_n \in K$ gegeben. Berechne die Dimension von C(B) als K-Vektorraum im Fall $B = \text{diag}(a_1, \ldots, a_n)$.

Aufgabe 13.5. Sei $n \geq 1$, und seien

$$T_n^+(K) = \{(a_{ij}) \in M_n(K) \mid a_{ij} = 0 \text{ falls } i > j\},$$

 $T_n^-(K) = \{(a_{ij}) \in M_n(K) \mid a_{ij} = 0 \text{ falls } i < j\}.$

- (a) Zeige, dass $T_n^+(K)$ und $T_n^-(K)$ Unteralgebren von $M_n(K)$ sind.
- (b) Beweise, dass $T_n^+(K)$ und $T_n^-(K)$ als K-Algebran isomorph sind.

Definition. Die Algebra $T_n^+(K)$ (bzw. $T_n^-(K)$) heißt die Algebra der $n \times n$ oberen Dreiecksmatrizen (bzw. der $n \times n$ unteren Dreiecksmatrizen) mit Koeffizienten in K.

^{*}Abgabe: Dienstag 29.01.2008, vor der Vorlesung.