ÜBUNGEN ZUR LINEAREN ALGEBRA II

Blatt 12*, 27.06.2008

Aufgabe 12.1. Sei $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & -1 & 1 \\ 0 & -1 & 2 & -1 \\ 0 & 1 & -1 & 3 \end{pmatrix} \in M_4(\mathbb{R})$. Finde die obere Dreiecksmatrix mit

positiven Diagonalkoeffizienten $S \in M_4(\mathbb{R})$, die die Gleichung ${}^tSS = A$ erfüllt.

Aufgabe 12.2. Seien V,W endlichdimensionale euklidische Vektorräume und sei $F:V\to W$ ein Homomorphismus.

(a) Beweise: Für jeden Teilraum $U \subset W$ gilt

$$F^{\mathrm{ad}}(U^{\perp}) = \left(F^{-1}(U)\right)^{\perp}.$$

(b) Sei V = W. Ist F selbstadjungiert, so gilt $F(U)^{\perp} = (F^{-1}(U))^{\perp}$ für alle Teilräume $U \subset V$. Gilt die Umkehrung auch?

Aufgabe 12.3. Sei V ein endlichdimensionaler unitärer Vektorraum und sei

$$\Omega = \{ f \in \operatorname{End}(V) \mid f^{\operatorname{ad}} = -f \} \subset \operatorname{End}(V).$$

(a) Sei $f \in \Omega$. Zeige, dass $id_V + f$ und $id_V - f$ Automorphismen von V sind, und dass $u(f) = (id_V + f)(id_V - f)^{-1}$

unitär ist.

(b) Sei $\Theta = \{g \in \operatorname{End}(V) \mid g \text{ unitär und } -1 \text{ ist kein Eigenwert von } g \} \subset \operatorname{End}(V)$. Beweise, dass $f \mapsto u(f)$ eine Bijektion $\Omega \to \Theta$ definiert.

Aufgabe 12.4. Seien $A \in M_n(\mathbb{C})$ und $x \in \mathbb{C}^n$ sodass $(x, A(x), \dots, A^{n-1}(x))$ linear unabhängig ist. Sei $y \in \mathbb{C}^n$ und $\widetilde{A}_{x,y} = A + x \cdot {}^t y \in M_n(\mathbb{C})$ (hier ist $x \cdot {}^t y$ das Produkt einer $(n \times 1)$ -Matrix mit einer $(1 \times n)$ -Matrix).

- (a) Bestimme das charakteristische Polynom von $\widetilde{A}_{x,y}$ in Abhängigkeit vom charakteristischen Polynom von A und von y.
- (b) Sei $P \in \mathbb{C}[t]$ ein unitäres Polynom vom Grad n. Zeige, dass es $y \in \mathbb{C}^n$ gibt, sodass P das charakteristische Polynom von $\widetilde{A}_{x,y}$ ist.

Aufgabe 12.5. Sei K ein Körper. Man betrachtet die K-Vektorräume $K^{\mathbb{N}}=\{f:\mathbb{N}\to K\}$ und

$$K^{(\mathbb{N})} = \{ f : \mathbb{N} \to K \, | \, f(n) \neq 0 \text{ für h\"ochstens endlich viele } n \in \mathbb{N} \}.$$

- (a) Konstruiere einen Isomorphismus zwischen den dualen Raum $(K^{(\mathbb{N})})^*$ und $K^{\mathbb{N}}$.
- (b) Beweise, dass es keinen K-Vektorraum W gibt, sodass W^* isomorph zu $K^{(\mathbb{N})}$ ist. Hinweis: Aufgabe 5.5 aus der Linearen Algebra I.

^{*}Abgabe: Dienstag 08.07.2008 vor der Vorlesung.