ÜBUNGEN ZUR LINEAREN ALGEBRA II

Blatt 3*, 18.04.2008

Aufgabe 3.1. Bestimme die Eigenwerte und Eigenvektoren der Abbildung $f: \mathbb{K}^3 \to \mathbb{K}^3$, deren Matrix bezüglich der kanonischen Basis durch

(a)
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 5 \\ 0 & -1 & -2 \end{pmatrix}$

gegeben ist, für $\mathbb{K} = \mathbb{R}$ und für $\mathbb{K} = \mathbb{C}$.

Definition. Ein Polynom $f \in K[t]$ heißt irreduzibel, falls f = gh in K[t] impliziert, dass goder h Grad Null haben. Mit anderen Worten: f is irreduzibel falls es nicht als Produkt von Polynomen kleineren Grades geschrieben werden kann.

Aufgabe 3.2. Zerlege das Polynom $t^8 - 1 \in K[t]$ als Produkt irreduzibler Polynome, wobei

- (a) $K = \mathbb{C}$ (c) $K = \mathbb{Q}$ (e) $K = \mathbb{F}_3$ (g) $K = \mathbb{F}_7$.
- (b) $K = \mathbb{R}$ (d) $K = \mathbb{F}_2$ (f) $K = \mathbb{F}_5$

Aufgabe 3.3. Sei V ein K-Vektorraum endlicher Dimension und $f: V \to V$ eine Projektion (also $f^2 = f$). Berechne das charakteristische Polynom von f.

Aufgabe 3.4. Sei V ein endlich-dimensionaler \mathbb{C} -Vektorraum, $n \geq 1$ und $f: V \to V$ ein Homomorphismus mit $f^n = 1$.

(a) Es sei $U \subset V$ ein Unterraum mit f(U) = U und $p: V \to V$ eine Projektion auf U, also eine lineare Abbildung mit $p^2 = p$ und Bild(p) = U. Definiere $q: V \to V$ durch

$$q = \frac{1}{n} \sum_{i=1}^{n} f^{i} p f^{-i} .$$

Beweise:

- -q ist ebenfalls eine Projektion auf U, und ausserdem kommutiert q mit f (also qf = fq).
- Setze W = Kern(q). Dann gelten $V = U \oplus W$ und f(W) = W.
- (b) Beweise, dass f diagonalisierbar ist.

Aufgabe 3.5. Seien $A, B, C, D \in M_n(K)$ mit DC = CD und D invertierbar. Beweise:

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC) \,.$$

Bemerkung: Die Gleichung gilt auch wenn D nicht invertierbar ist.

^{*}Abgabe: Dienstag 29.04.20078 vor der Vorlesung.