GEOMETRY AND TOPOLOGY

Sheet 2, 04.10.2023

Exercise 2.1. Write out the proofs of Proposition 1.22, Lemma 1.23, and Proposition 1.30.

Exercise 2.2. Let *I* be a set and let *X* be a topological space. For each $i \in I$, let $X_i := X$. Prove that there is a homeomorphism $\coprod_{i \in I} X_i \to I^{\delta} \times X$, where I^{δ} denotes the set *I* with the discrete topology.

Exercise 2.3. We define the Cantor set as $C = \bigcap_{n=0}^{\infty} C_n$ where $C_0 = [0, 1]$, $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$, and more generally $C_n := \frac{1}{3} \cdot C_{n-1} \cup (\frac{2}{3} + \frac{1}{3} \cdot C_{n-1})$ for $n \ge 1$. We equip $C \subset \mathbb{R}$ with the subspace topology where \mathbb{R} has the usual topology. Prove that the product $\prod_{\mathbb{N}} \{0, 1\}$ is homeomorphic to the Cantor set.

Exercise 2.4. Suppose X is a topological space.

- (a) Show that connected components are closed subspaces.
- (b) Deduce that if X has finitely many connected components, then X is homeomorphic to the coproduct of its connected components.

Exercise 2.5. Describe the connected components of \mathbb{Q} regarded as a subspace of \mathbb{R} where \mathbb{R} has the usual topology.

Exercise 2.6. Consider the commutative diagram of topological spaces and continuous maps

- (1) Suppose the diagram is a pushout and $X \to Y$ is a homeomorphism. What can you say about $X' \to Y'$? Is the diagram also a pullback in this case ?
- (2) Formulate and prove an analoguous result when the diagram is a pullback.

Exercise 2.7. Consider the commutative diagram of topological spaces and continuous maps

and prove the following:

- (1) Suppose the right-hand-square is a pullback. Prove that the left-hand-square is a pullback if and only if the outer square is a pullback.
- (2) Suppose the left-hand square is a pushout. Prove that the right-hand square is a pushout if and only if the outer square is a pushout.

Exercise 2.8. Let $S^n = \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$. Let

$$D_N^n = \{x \in S^n ; x_{n+1} \ge 0\}, \quad D_S^n = \{x \in S^n ; x_{n+1} \le 0\} \text{ and } D^n = \{x \in \mathbb{R}^n : ||x||_2 \le 1\}$$

be the northern, resp. southern hemisphere of S^n , and the *n*-dimensional disc.

- (a) Explain why S^n is the pushout of the inclusions $D_s^n \leftarrow D_S^n \cap D_N^n \rightarrow D_N^n$. (b) Construct homeomorphisms h_N , h_S and h_{eq} making the following diagram commute (where horizontal maps are inclusions),

$$D_N^n \longleftarrow D_N^n \cap D_S^n \longrightarrow D_S^n$$

$$\downarrow^{h_N} \qquad \downarrow^{h_{eq}} \qquad \downarrow^{h_S}$$

$$D^n \longleftarrow S^{n-1} \longrightarrow D^n$$

and deduce that the pushout of the lover line is homeomorphic to S^n . (See Example 1.34.)

Exercise 2.9. Suppose X, Y, and Z are connected nonempty topological spaces. Consider a pushout diagram

of topological spaces and continuous maps. Is W connected?