GEOMETRY AND TOPOLOGY

Sheet 3, 11.10.2023

Exercise 3.1. Let $p : X \to Y$ be a quotient map of spaces, with *Y* connected. Assume furthermore that for any $y \in Y$, the subspace $p^{-1}(\{y\}) \subset X$ is connected. Show that *X* is then connected.

Exercise 3.2. Give an example of a quotient map that is neither open nor closed.

Exercise 3.3. Let $X = \prod_{i=1}^{n} X_i$ be a product of spaces, and $p_i : X \to X_i$ the projection for $i \ge 1$.

- (a) Show that p_i is an open map, but not necessarily a closed map.
- (b) Show that if X_i is non-empty for i > 1, then p_1 is a quotient map.

Exercise 3.4. Let \mathbb{R} and \mathbb{R}^2 be given the Euclidean topology. Consider the following spaces *A*, *B*, *C* and *D*, that can each be seen as "an infinite union of circles":

- (a) A is the union of circles with center (0, n) and radius n in \mathbb{R}^2 , for all $n \ge 1$, with the subspace topology;
- (b) *B* is the union of circles with center $(0, \frac{1}{n})$ and radius $\frac{1}{n}$ in \mathbb{R}^2 for all $n \ge 1$, with the subspace topology;
- (c) $C = \mathbb{R}/\mathbb{Z}$, the quotient space of \mathbb{R} by the *subspace* \mathbb{Z} (not the quotient of groups!);
- (d) $D = \bigvee_{\mathbb{N}} S^1$, where \lor denotes the coproduct of pointed spaces (see Exercise 1.11).

For which pairs (X, Y), where X and Y run through the above spaces, does there exist a continuous bijection $X \rightarrow Y$? Which pairs (X, Y) consist of homeomorphic spaces ?

Exercise 3.5. Show that the product of the quotient maps $id : \mathbb{Q} \to \mathbb{Q}$ and $q : \mathbb{R} \to \mathbb{R}/\mathbb{N}_{\geq 1}$ (quotient by the *subspace*) is not a quotient map. (Hint: For each $n \geq 1$, let $c_n = \sqrt{2}/n$ and consider the straight lines in \mathbb{R}^2 with slope 1 and -1 respectively through the point (n, c_n) . Then let U_n consist of the points of $\mathbb{R} \times \mathbb{Q}$ that sit above both of these lines or below both of these lines, and also between the vertical lines $x = n - \frac{1}{4}$ and $x = n + \frac{1}{4}$. Finally, consider $U' = p \times id(\bigcup_{\mathbb{N} \ge 1} U_n)$.)

Exercise 3.6. Let *G* be a topological group, and *H* be a subgroup. Show that the quotient G/H of groups (i.e. the space of orbits) is Hausdorff if and only if *H* is closed. What does it say in the case $H = \{e\}$?

Exercise 3.7. Show that for $n \in \mathbb{N}$ and $n \ge 1$, the quotient of \mathbb{R}^n by its subgroup \mathbb{Z}^n is homeomorphic to the *n*-torus $T_n := (S^1)^n$.