GEOMETRY AND TOPOLOGY

Sheet 6, 07.11.2023

Exercise 6.1. Let G and H be two groups, considered as categories G and H with one object.

- (a) What is a functor $F : \mathbf{G} \to \mathbf{H}$?
- (b) Given two functors $F_1, F_2 : \mathbf{G} \to \mathbf{H}$, under which conditions does a natural transformation $\eta : F_1 \to F_2$ exist ?

Exercise 6.2. Let **Grp** be the category of groups and group homomorphisms, and let **Ab** be the full subcategory of Abelian groups. For a group *G*, let [G, G] be the *subgroup of commutators of G*, which is the subgroup generated by the commutators $[g, h] = ghg^{-1}h^{-1}$ for all $g, h \in G$. Prove the following statements:

- (a) [G,G] is a normal subgroup of G, and $G^{ab} = G/[G,G]$ is an Abelian group.
- (b) The correspondence $G \mapsto G^{ab}$ is part of a functor of a functor $(-)^{ab} : \mathbf{Grp} \to \mathbf{Ab}$ with

$$\mathbf{Ab} \xrightarrow{\mathsf{C}} \mathbf{Grp} \xrightarrow{(-)^{\mathsf{ab}}} \mathbf{Ab}$$

the identity.

Exercise 6.3. Let G be a group and let

 $Z(G) = \{g \in G \mid hg = gh \text{ for all } h \in G\}$

be the center of G. It is clear that Z(G) is an Abelian subgroup of G is. Prove that there is no functor $F : \mathbf{Grp} \to \mathbf{Ab}$ with F(G) = Z(G) for all group G.

Hint: Consider a factorization of the identity $\Sigma_2 \rightarrow \Sigma_3 \rightarrow \Sigma_2$, where Σ_n denotes the symmetric group with *n*! elements denotes.

Exercise 6.4. Show that in the category **set** of sets, the property of a map of being *injective* (resp. *surjective*) can be defined in terms of morphisms of **set**. In a general category **C**, we call morphisms having this property *monomorphisms* (resp. *epimorphisms*).

Exercise 6.5. Let **ring** be the category of rings (with unit) and homomorphisms of rings. Let $f : \mathbb{Z} \to \mathbb{Q}$ be be the inclusion.

- (a) Is *f* a monomorphism in **ring**?
- (b) Is f an epimorphism in **ring**?
- (c) Is f an isomorphism in **ring**?

Exercise 6.6. Let (P, \leq) and (Q, \leq) be two quasi-ordered sets.

- (a) Show that there is a small category **P** with *P* as set of objects, and a unique morphism $a \rightarrow b$ iff $a \leq b$.
- (b) Describe the functors $\mathbf{P} \rightarrow \mathbf{Q}$.
- (c) Given two functors $F, G : \mathbf{P} \to \mathbf{Q}$, under what conditions does a natural transformation $F \Longrightarrow G$ exist? How many such transformations are there?

Exercise 6.7. Consider the following subspaces of \mathbb{R} :

 $\mathbb{Z}, \mathbb{Q}, X = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}, Y = X \cup \{0\}.$

- (a) Which are homeomorphic ?
- (b) Which have the same homotopy type ?