GEOMETRY AND TOPOLOGY

Sheet 6, 07.11.2023
Exercise 6.1. Let G and H be two groups, considered as categories \mathbf{G} and \mathbf{H} with one object.
(a) What is a functor $F: \mathbf{G} \rightarrow \mathbf{H}$?
(b) Given two functors $F_{1}, F_{2}: \mathbf{G} \rightarrow \mathbf{H}$, under which conditions does a natural transformation $\eta: F_{1} \rightarrow F_{2}$ exist ?

Exercise 6.2. Let Grp be the category of groups and group homomorphisms, and let $\mathbf{A b}$ be the full subcategory of Abelian groups. For a group G, let $[G, G]$ be the subgroup of commutators of G, which is the subgroup generated by the commutators $[g, h]=g h g^{-1} h^{-1}$ for all $g, h \in G$. Prove the following statements:
(a) $[G, G]$ is a normal subgroup of G, and $G^{\mathrm{ab}}=G /[G, G]$ is an Abelian group.
(b) The correspondence $G \mapsto G^{\text {ab }}$ is part of a functor of a functor $(-)^{\text {ab }}: \mathbf{G r p} \rightarrow \mathbf{A b}$ with

$$
\mathbf{A b} \xrightarrow{\complement} \mathbf{G r p} \xrightarrow{(-)^{\mathrm{ab}}} \mathbf{A b}
$$

the identity.
Exercise 6.3. Let G be a group and let

$$
Z(G)=\{g \in G \mid h g=g h \text { for all } h \in G\}
$$

be the center of G. It is clear that $Z(G)$ is an Abelian subgroup of G is. Prove that there is no functor $F: \mathbf{G r p} \rightarrow \mathbf{A b}$ with $F(G)=Z(G)$ for all group G.
Hint: Consider a factorization of the identity $\Sigma_{2} \rightarrow \Sigma_{3} \rightarrow \Sigma_{2}$, where Σ_{n} denotes the symmetric group with n ! elements denotes.

Exercise 6.4. Show that in the category set of sets, the property of a map of being injective (resp. surjective) can be defined in terms of morphisms of set. In a general category \mathbf{C}, we call morphisms having this property monomorphisms (resp. epimorphisms).
Exercise 6.5. Let ring be the category of rings (with unit) and homomorphisms of rings. Let $f: \mathbb{Z} \rightarrow \mathbb{Q}$ be be the inclusion.
(a) Is f a monomorphism in ring?
(b) Is f an epimorphism in ring?
(c) Is f an isomorphism in ring?

Exercise 6.6. Let (P, \leq) and (Q, \leq) be two quasi-ordered sets.
(a) Show that there is a small category \mathbf{P} with P as set of objects, and a unique morphism $a \rightarrow b$ iff $a \leq b$.
(b) Describe the functors $\mathbf{P} \rightarrow \mathbf{Q}$.
(c) Given two functors $F, G: \mathbf{P} \rightarrow \mathbf{Q}$, under what conditions does a natural transformation $F \Longrightarrow G$ exist? How many such transformations are there?
Exercise 6.7. Consider the following subspaces of \mathbb{R} :

$$
\mathbb{Z}, \mathbb{Q}, \quad X=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}, \quad Y=X \cup\{0\}
$$

(a) Which are homeomorphic?
(b) Which have the same homotopy type ?

