GEOMETRY AND TOPOLOGY

Sheet 8, 21.11.2023
Exercise 8.1. Show that $\left\langle t_{1}, t_{2}, \ldots, t_{n} \mid t_{1}^{2} t_{2}^{2} \ldots t_{n}^{2}\right\rangle_{\mathrm{ab}} \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z} / 2$.
Exercise 8.2. Compute $\pi_{1}\left(S^{n}, x\right)$ for any $n \geq 2$ and a chosen point $x \in S^{n}$.
Exercise 8.3. Let $n \in \mathbb{N}$. Construct a pointed space (X, x) with $\pi_{1}(X, x) \cong \mathbb{Z} / n$.
Exercise 8.4. Compute $\pi_{1}\left(\mathbb{R} P^{n} ; x\right)$ for any $n \geq 2$ and a chosen point $x \in \mathbb{R} P^{n}$.
Exercise 8.5. Let Y be a space. Prove that the following statements are equivalent.
(a) Y is simply-connected (i. e. Y is path-connected, and $\pi_{1}(Y, y)=0$ for any $\left.y \in Y\right)$.
(b) Y is non-empty, and for every pair of continuous maps $f, g: S^{1} \rightarrow Y$, we have that f and g are homotopic.

Theorem (Borsuk-Ulam): If $f: S^{n} \rightarrow \mathbb{R}^{n}$ is continuous, then there exists $x \in S^{n}$ with $f(x)=f(-x)$.
Exercise 8.6. We prove (among other things) the above theorem for $n=0,1,2$. Let $k \in \mathbb{Z} \backslash\{0\}$, and let $d_{k}: S^{1} \rightarrow S^{1}$ given by $d_{k}(z)=z^{k}\left(k\right.$-th power of z as a complex number). Let $h: S^{1} \rightarrow S^{1}$ be a continuous map with $h(1)=1$ and $h(-x)=-h(x)$ for all $x \in S^{1}$.
(a) Show that a continuous map $\bar{h}: S^{1} \rightarrow S^{1}$ with $d_{2} h=\bar{h} d_{2}$ exists :

(b) Prove that $\bar{h}_{*}: \pi_{*}\left(S^{1}, 1\right) \rightarrow \pi_{*}\left(S^{1}, 1\right)$ is injective.
(c) Determine $\left(d_{k}\right)_{*}: \pi_{*}\left(S^{1}, 1\right) \rightarrow \pi_{*}\left(S^{1}, 1\right)$.
(d) Prove that $h_{*}: \pi_{*}\left(S^{1}, 1\right) \rightarrow \pi_{*}\left(S^{1}, 1\right)$ is injective. In particular, h is not null-homotopic (i.e. not homotopic to a constant map).
(e) Let $f: S^{2} \rightarrow S^{1}$ be continuous. Show that an $x \in S^{2}$ exists with $f(-x) \neq-f(x)$.

Hint : Consider the restriction of f to the equator $S^{1}=S^{2} \cap\left(\mathbb{R}^{2} \times\{0\}\right)$, and show that it is null-homotopic.
(f) Prove Borsuk-Ulam's theorem for $n=0,1$ and 2 .

Hint: If $f(x) \neq f(-x)$ holds, then consider $\frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}$.
Exercise 8.7. Consider $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$. Let $n, k \in \mathbb{N}$ be positive and relatively prime. Let $\zeta_{n}=e^{\frac{2 \pi i}{n}} \in \mathbb{C}$ and let $h: S^{3} \rightarrow S^{3}$ be the continuous map defined by $h\left(z_{1}, z_{2}\right)=\left(z_{1} \zeta_{n}, z_{2} \zeta_{n}^{k}\right)$.
(a) Prove that h generates a subgroup G of the group of homeomorphisms of S^{3}, which is cyclic of order n.
(b) Let $L(n, k)$ be the space of orbits S^{3} / G (with the quotient topology). Compute the fundamental group of of $L(n, k)$.
(c) Show: if $L(n, k)$ and $L\left(n^{\prime}, k^{\prime}\right)$ are homotopy equivalent, then $n=n^{\prime}$.

