GEOMETRY AND TOPOLOGY

Sheet 8, 21.11.2023

Exercise 8.1. Show that $\langle t_1, t_2, \ldots, t_n | t_1^2 t_2^2 \ldots t_n^2 \rangle_{ab} \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}/2.$

Exercise 8.2. Compute $\pi_1(S^n, x)$ for any $n \ge 2$ and a chosen point $x \in S^n$.

Exercise 8.3. Let $n \in \mathbb{N}$. Construct a pointed space (X, x) with $\pi_1(X, x) \cong \mathbb{Z}/n$.

Exercise 8.4. Compute $\pi_1(\mathbb{R}P^n; x)$ for any $n \ge 2$ and a chosen point $x \in \mathbb{R}P^n$.

Exercise 8.5. Let *Y* be a space. Prove that the following statements are equivalent.

- (a) *Y* is simply-connected (i. e. *Y* is path-connected, and $\pi_1(Y, y) = 0$ for any $y \in Y$).
- (b) Y is non-empty, and for every pair of continuous maps $f, g : S^1 \to Y$, we have that f and g are homotopic.

Theorem (Borsuk-Ulam): If $f : S^n \to \mathbb{R}^n$ is continuous, then there exists $x \in S^n$ with f(x) = f(-x).

Exercise 8.6. We prove (among other things) the above theorem for n = 0, 1, 2. Let $k \in \mathbb{Z} \setminus \{0\}$, and let $d_k : S^1 \to S^1$ given by $d_k(z) = z^k$ (k-th power of z as a complex number). Let $h : S^1 \to S^1$ be a continuous map with h(1) = 1 and h(-x) = -h(x) for all $x \in S^1$.

(a) Show that a continuous map $\bar{h}: S^1 \to S^1$ with $d_2h = \bar{h}d_2$ exists :

- (b) Prove that $\bar{h}_*: \pi_*(S^1, 1) \to \pi_*(S^1, 1)$ is injective.
- (c) Determine $(d_k)_* : \pi_*(S^1, 1) \to \pi_*(S^1, 1)$.
- (d) Prove that $h_*: \pi_*(S^1, 1) \to \pi_*(S^1, 1)$ is injective. In particular, h is not null-homotopic (i.e. not homotopic to a constant map).
- (e) Let $f: S^2 \to S^1$ be continuous. Show that an $x \in S^2$ exists with $f(-x) \neq -f(x)$. *Hint*: Consider the restriction of f to the equator $S^1 = S^2 \cap (\mathbb{R}^2 \times \{0\})$, and show that it is null-homotopic.
- (f) Prove Borsuk-Ulam's theorem for n = 0, 1 and 2. *Hint*: If $f(x) \neq f(-x)$ holds, then consider $\frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}$.

Exercise 8.7. Consider $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1|^2 + |z_2|^2 = 1\}$. Let $n, k \in \mathbb{N}$ be positive and relatively prime. Let $\zeta_n = e^{\frac{2\pi i}{n}} \in \mathbb{C}$ and let $h : S^3 \to S^3$ be the continuous map defined by $h(z_1, z_2) = (z_1\zeta_n, z_2\zeta_n^k)$.

- (a) Prove that h generates a subgroup G of the group of homeomorphisms of S^3 , which is cyclic of order n.
- (b) Let L(n, k) be the space of orbits S^3/G (with the quotient topology). Compute the fundamental group of of L(n, k).
- (c) Show: if L(n, k) and L(n', k') are homotopy equivalent, then n = n'.