НОМОТОРУ 1

Sheet 3, 20.11.2023

Exercise 3.1. Consider

 $E = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ y = x - 1 \text{ or } y = 1/n, n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}^2,$

and define $p: E \to B = [0,1]$ by p(x,y) = x. Prove that p is a Serre fibration, but is not a Hurewicz fibration.

Exercise 3.2. Let (X, A) be a pair of spaces and (Y, *) be a pointed space.

(a) Let $q: X \to X/A$ be the quotient map, and take $\{A\}$ as base point of X/A. Prove that the map

 $\bar{q}: \operatorname{map}_*(X/A, Y) \to \operatorname{map}((X, A), (Y, *)), \quad f \mapsto fq$

is continuous and bijective. Here $\operatorname{map}_*(X/A, Y)$ denotes the subspace of $\operatorname{map}(X/A, Y)$ consisting of pointed maps. Deduce that there is a bijection in hoTop_{*}

$$\bar{q}: [X/A, Y]_* \to [(X, A), (Y, *)].$$

- (b) What about the case $A = \emptyset$?
- (c) Deduce from (a) that there is a natural bijection

$$[S^n, X]_* \to \pi_n(X, *)$$
 and $[(D^n, S^{n-1}), (X, A)]_* \to \pi_n(X, A, *)$

where $[-, -]_*$ denotes the set of pointed homotopy classes.

Exercise 3.3. Denote by \vee the coproduct on Top_{*} (describe it!). It is also a coproduct on hoTop. Define the notion of a co-*H*-space (the categorical dual of an *H*-space). If (X, *) is a co-*H*-space, then $[(X, *), (Y, *)]_*$ has an associative and unital product. Prove that for $n \geq 1$, S^n admits a co-*H*-group structure, such that the induced product on $[(S^n, *), (X, *)]_*$ is the same as the product on $\pi_n(X, *)$.

Why do co-groups not show up in any algebra lecture ?

Exercise 3.4. Let $p: (E, e) \to (B, b)$ be a Serre fibration with fibre $p^{-1}(b) = F$. Prove that there is an induced map

$$\Omega^n(p): (\Omega^n(E,e),*) \to (\Omega^n(B,b),*),$$

and that it is a Serre fibration with fibre $\Omega^n(F, e)$.

Exercise 3.5. Let (X, *) be a pointed space, and set $\mathbb{R}_+ = \{t \in \mathbb{R} \mid t \ge 0\}$. Define the space of Moore loops as

 $\Omega^{M}(X,*) = \{(t,w) \in \mathbb{R}_{+} \times F(\mathbb{R}_{+},X) \, | \, w(0) = *, \text{ and } w(s) = * \text{ if } s \ge t\},\$

with the subspace topology of $\mathbb{R}_+ \times F(\mathbb{R}_+, X)$. Define a product

 $\mu: \Omega^M(X, *) \times \Omega^M(X, *) \to \Omega^M(X, *), \quad \mu\bigl((s, v), (t, w)\bigr) = (s + t, u),$

where u is the obvious concatenation of v and w. We take $* = (0, c_*)$ as base point of $\Omega^M(X, *)$. Prove the following assertions.

- (a) $\Omega^M(X, *)$ is a topological monoid.
- (b) The (unpointed) inclusion $\Omega(X, *) \subset \Omega^M(X, *)$ is a deformation retract. The retraction can be chosen pointed, and the products are compatible up to homotopy.

Exercise 3.6. Let $k \in \mathbb{N}$, $k \ge 1$ be chosen, and $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For $n \ge k$, consider the inclusions $V_{n,k}^{\mathbb{F}} \subset V_{n+1,k}^{\mathbb{F}} \text{ and } G_{n,k}^{\mathbb{F}} \subset G_{n+1,k}^{\mathbb{F}}$

induced by the inclusion $\mathbb{F}^n = \mathbb{F}^n \times \{0\} \subset \mathbb{F}^{n+1}$. Define $V_{\infty,k}^{\mathbb{F}} = \operatorname{colim}_n V_{n,k}^{\mathbb{F}}$ and $G_{\infty,k}^{\mathbb{F}} = \operatorname{colim}_n V_{n,k}^{\mathbb{F}}$. $\operatorname{colim}_n G^{\mathbb{F}}_{n,k}.$

- (a) Prove that the induced map $V_{\infty,k}^{\mathbb{F}} \to G_{\infty,k}^{\mathbb{F}}$ is a Serre fibration.
- (b) Prove that for $n \ge 1$ there is an isomorphism of groups

$$\pi_{n+1}(G^{\mathbb{F}}_{\infty k}, *) \to \pi_n(G(k), 1)$$

where G(k) = O(k), U(k) for $\mathbb{F} = \mathbb{R}$, \mathbb{C} respectively.

(c) Compute $\pi_n(G_{\infty,k}^{\mathbb{R}},*)$ for $n \leq 1$ and $\pi_m(G_{\infty,k}^{\mathbb{C}},*)$ for $m \leq 2$.

Exercise 3.7. Let $p: E \to B$ be a Hurewicz fibration.

- (a) Assume w is a path in B, with a = w(0) and b = w(1). Using the homotopy lifting property of p, define a map $h_w: F_a \to F_b$ such that that $[h_w]$ depends only on [w].
- (b) Prove the existence of a functor $F^p: \Pi(B) \to \text{hoTop}$ with $F^p(a) = F_a$. Deduce that if a, b lie in the same path component of B, then $F_a \simeq F_b$.

Exercise 3.8. Prove the following variant of Lemma 1.45 of the lecture: Let (X, A) be a pair and $n \ge 1$. The following conditions are equivalent:

- (a) The pair (X, A) is *n*-connected;
- (b) Any map of pairs $f: (I^n, \partial I^n) \to (X, A)$ is homotopic (as maps of pairs) to a map $g: (I^n, \partial I^n) \to (X, A)$ with $g(I^n) \subset A$.

Exercise 3.9. Prove that $\mathbb{R}P^n$ is simple if and only if n is odd.

Exercise 3.10. Let (X, *) be a pointed space, and identify $\pi_n(X, *)$ with $[(S^n, *), (X, *)]_*$. Define the composition product as

$$\pi_p(X,*) \times \pi_q(S^p,*) \xrightarrow{\circ} \pi_q(X), \quad ([f],[\alpha]) \mapsto [f] \circ [\alpha] := [f\alpha].$$

Prove the following assertions.

- (a) The composition product is well-defined, natural in X and associtive in the sense that $([f] \circ [\alpha]) \circ [\beta] = [f] \circ ([\alpha] \circ [\beta])$ in $\pi_r(X, *)$, for $\beta \in \pi_r(S^q, *)$.
- (b) It is additive in the second variable: for any $[\alpha_1], [\alpha_2] \in \pi_q(S^p, *)$, we have

$$[f] \circ ([\alpha_1] + [\alpha_2]) = [f] \circ [\alpha_1] + [f] \circ [\alpha_2].$$

- (c) Let $h \in \pi_3(S^2, *)$ be the generator given by the Hopf-map, and $1 = [\mathrm{id}_{S^2}] \in \pi_2(S^2, *)$. Show that $(-1) \circ h = h \in \pi_3(S^2, *)$. This shows that $- \circ [\alpha]$ is not necessarily additive.
- (d) Let $\beta \in \pi_{q-1}(S^{p-1}, *)$. Show that $\circ \Sigma_*[\beta] : \pi_p(X, *) \to \pi_q(X, *)$ is additive. (e) Prove that 2h is in the kernel of $\Sigma_* : \pi_3(S^2, *) \to \pi_4(S^3, *)$. Deduce that the group $\pi_4(S^3, *) \cong \pi_1^s$ has order 1 or 2 (we will prove later that the order is 2).