HOMOTOPY 1

Sheet 3, 20.11.2023
Exercise 3.1. Consider

$$
E=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1, y=x-1 \text { or } y=1 / n, n \in \mathbb{N} \backslash\{0\}\right\} \subset \mathbb{R}^{2},
$$

and define $p: E \rightarrow B=[0,1]$ by $p(x, y)=x$. Prove that p is a Serre fibration, but is not a Hurewicz fibration.

Exercise 3.2. Let (X, A) be a pair of spaces and $(Y, *)$ be a pointed space.
(a) Let $q: X \rightarrow X / A$ be the quotient map, and take $\{A\}$ as base point of X / A. Prove that the map

$$
\bar{q}: \operatorname{map}_{*}(X / A, Y) \rightarrow \operatorname{map}((X, A),(Y, *)), \quad f \mapsto f q
$$

is continuous and bijective. Here $\operatorname{map}_{*}(X / A, Y)$ denotes the subspace of map $(X / A, Y)$ consisting of pointed maps. Deduce that there is a bijection in hoTop ${ }_{*}$

$$
\bar{q}:[X / A, Y]_{*} \rightarrow[(X, A),(Y, *)] .
$$

(b) What about the case $A=\emptyset$?
(c) Deduce from (a) that there is a natural bijection

$$
\left[S^{n}, X\right]_{*} \rightarrow \pi_{n}(X, *) \text { and } \quad\left[\left(D^{n}, S^{n-1}\right),(X, A)\right]_{*} \rightarrow \pi_{n}(X, A, *)
$$

where $[-,-]_{*}$ denotes the set of pointed homotopy classes.

Exercise 3.3. Denote by \vee the coproduct on Top_{*} (describe it!). It is also a coproduct on hoTop. Define the notion of a co- H-space (the categorical dual of an H-space). If ($X, *$) is a co- H-space, then $[(X, *),(Y, *)]_{*}$ has an associative and unital product. Prove that for $n \geq 1$, S^{n} admits a co- H-group structure, such that the induced product on $\left[\left(S^{n}, *\right),(X, *)\right]_{*}$ is the same as the product on $\pi_{n}(X, *)$.
Why do co-groups not show up in any algebra lecture?

Exercise 3.4. Let $p:(E, e) \rightarrow(B, b)$ be a Serre fibration with fibre $p^{-1}(b)=F$. Prove that there is an induced map

$$
\Omega^{n}(p):\left(\Omega^{n}(E, e), *\right) \rightarrow\left(\Omega^{n}(B, b), *\right),
$$

and that it is a Serre fibration with fibre $\Omega^{n}(F, e)$.

Exercise 3.5. Let $(X, *)$ be a pointed space, and set $\mathbb{R}_{+}=\{t \in \mathbb{R} \mid t \geq 0\}$. Define the space of Moore loops as

$$
\Omega^{M}(X, *)=\left\{(t, w) \in \mathbb{R}_{+} \times F\left(\mathbb{R}_{+}, X\right) \mid w(0)=*, \text { and } w(s)=* \text { if } s \geq t\right\}
$$

with the subspace topology of $\mathbb{R}_{+} \times F\left(\mathbb{R}_{+}, X\right)$. Define a product

$$
\mu: \Omega^{M}(X, *) \times \Omega^{M}(X, *) \rightarrow \Omega^{M}(X, *), \quad \mu((s, v),(t, w))=(s+t, u),
$$

where u is the obvious concatenation of v and w. We take $*=\left(0, c_{*}\right)$ as base point of $\Omega^{M}(X, *)$. Prove the following assertions.
(a) $\Omega^{M}(X, *)$ is a topological monoid.
(b) The (unpointed) inclusion $\Omega(X, *) \subset \Omega^{M}(X, *)$ is a deformation retract. The retraction can be chosen pointed, and the products are compatible up to homotopy.

Exercise 3.6. Let $k \in \mathbb{N}, k \geq 1$ be chosen, and $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. For $n \geq k$, consider the inclusions

$$
V_{n, k}^{\mathbb{F}} \subset V_{n+1, k}^{\mathbb{F}} \quad \text { and } G_{n, k}^{\mathbb{F}} \subset G_{n+1, k}^{\mathbb{F}}
$$

induced by the inclusion $\mathbb{F}^{n}=\mathbb{F}^{n} \times\{0\} \subset \mathbb{F}^{n+1}$. Define $V_{\infty, k}^{\mathbb{F}}=\operatorname{colim}_{n} V_{n, k}^{\mathbb{F}}$ and $G_{\infty, k}^{\mathbb{F}}=$ $\operatorname{colim}_{n} G_{n, k}^{\mathbb{F}}$.
(a) Prove that the induced map $V_{\infty, k}^{\mathbb{P}} \rightarrow G_{\infty, k}^{\mathbb{F}}$ is a Serre fibration.
(b) Prove that for $n \geq 1$ there is an isomorphism of groups

$$
\pi_{n+1}\left(G_{\infty, k}^{\mathbb{F}}, *\right) \rightarrow \pi_{n}(G(k), 1)
$$

where $G(k)=O(k), U(k)$ for $\mathbb{F}=\mathbb{R}, \mathbb{C}$ respectively.
(c) Compute $\pi_{n}\left(G_{\infty, k}^{\mathbb{R}}, *\right)$ for $n \leq 1$ and $\pi_{m}\left(G_{\infty, k}^{\mathbb{C}}, *\right)$ for $m \leq 2$.

Exercise 3.7. Let $p: E \rightarrow B$ be a Hurewicz fibration.
(a) Assume w is a path in B, with $a=w(0)$ and $b=w(1)$. Using the homotopy lifting property of p, define a map $h_{w}: F_{a} \rightarrow F_{b}$ such that that $\left[h_{w}\right]$ depends only on $[w]$.
(b) Prove the existence of a functor $F^{p}: \Pi(B) \rightarrow$ hoTop with $F^{p}(a)=F_{a}$. Deduce that if a, b lie in the same path component of B, then $F_{a} \simeq F_{b}$.

Exercise 3.8. Prove the following variant of Lemma 1.45 of the lecture: Let (X, A) be a pair and $n \geq 1$. The following conditions are equivalent:
(a) The pair (X, A) is n-connected;
(b) Any map of pairs $f:\left(I^{n}, \partial I^{n}\right) \rightarrow(X, A)$ is homotopic (as maps of pairs) to a map $g:\left(I^{n}, \partial I^{n}\right) \rightarrow(X, A)$ with $g\left(I^{n}\right) \subset A$.

Exercise 3.9. Prove that $\mathbb{R} P^{n}$ is simple if and only if n is odd.

Exercise 3.10. Let $(X, *)$ be a pointed space, and identify $\pi_{n}(X, *)$ with $\left[\left(S^{n}, *\right),(X, *)\right]_{*}$. Define the composition product as

$$
\pi_{p}(X, *) \times \pi_{q}\left(S^{p}, *\right) \xrightarrow{\circ} \pi_{q}(X), \quad([f],[\alpha]) \mapsto[f] \circ[\alpha]:=[f \alpha] .
$$

Prove the following assertions.
(a) The composition product is well-defined, natural in X and associtive in the sense that $([f] \circ[\alpha]) \circ[\beta]=[f] \circ([\alpha] \circ[\beta])$ in $\pi_{r}(X, *)$, for $\beta \in \pi_{r}\left(S^{q}, *\right)$.
(b) It is additive in the second variable: for any $\left[\alpha_{1}\right],\left[\alpha_{2}\right] \in \pi_{q}\left(S^{p}, *\right)$, we have

$$
[f] \circ\left(\left[\alpha_{1}\right]+\left[\alpha_{2}\right]\right)=[f] \circ\left[\alpha_{1}\right]+[f] \circ\left[\alpha_{2}\right] .
$$

(c) Let $h \in \pi_{3}\left(S^{2}, *\right)$ be the generator given by the Hopf-map, and $1=\left[\mathrm{id}_{S^{2}}\right] \in \pi_{2}\left(S^{2}, *\right)$. Show that $(-1) \circ h=h \in \pi_{3}\left(S^{2}, *\right)$. This shows that $-\circ[\alpha]$ is not necessarily additive.
(d) Let $\beta \in \pi_{q-1}\left(S^{p-1}, *\right)$. Show that $-\circ \Sigma_{*}[\beta]: \pi_{p}(X, *) \rightarrow \pi_{q}(X, *)$ is additive.
(e) Prove that $2 h$ is in the kernel of $\Sigma_{*}: \pi_{3}\left(S^{2}, *\right) \rightarrow \pi_{4}\left(S^{3}, *\right)$. Deduce that the group $\pi_{4}\left(S^{3}, *\right) \cong \pi_{1}^{s}$ has order 1 or 2 (we will prove later that the order is 2).

