HOMOTOPY 1

Sheet 5, 04.12.2023

Exercise 5.1. We want to show weak homotopy invariance of singular homology. Let ($S_{*}(X), d_{*}$) denote the singular chain complex of a space X. If $k, n \in \mathbb{N}$, view the standard n-simplex as a CW-complex with $\binom{k+1}{n+1} n$-cells given by its n-dimensional faces, and let $\Delta^{k, n}$ be its n skeleton. For $(X, A) \in \operatorname{Top}^{2}$, let $\operatorname{Sing}_{k}^{(A, n)}(X)=\operatorname{Top}^{2}\left(\left(\Delta^{k}, \Delta^{k, n}\right),(X, A)\right)$, and $S_{k}^{(A, n)}(X)=$ $\mathbb{Z}\left\{\operatorname{Sing}_{k}^{(A, n)}(X)\right\} \subset S_{k}(X)$.
(a) Show that this defines the inclusion of a sub-chain-complex $\phi:\left(S_{*}^{(A, n)}(X), d_{*}\right) \subset$ $\left(S_{*}(X), d_{*}\right)$.
Suppose now that (X, A) is a n-connected pair.
(b) By induction on k, construct for any k and any k-simplex $\sigma_{0}: \Delta^{k} \rightarrow X$ a homotopy $H^{\sigma}: \Delta^{k} \times I \rightarrow X$ between σ_{0} and $\sigma_{1}=H_{1}^{\sigma}$, such that:
(1) $\sigma_{1} \in \operatorname{Sing}_{k}^{(A, n)}(X)$
(2) $H_{t}^{\sigma}=\sigma_{0}$ if $\sigma \in \operatorname{Sing}_{k}^{(A, n)}(X)$, for any $t \in I$.
(3) For any face $d_{i}: \Delta^{k-1} \rightarrow \Delta^{k}$, we have $H^{\sigma} \circ\left(d_{i} \times \mathrm{id}\right)=H^{\sigma \circ d_{i}}$.
(c) Show that the rule $\sigma_{0} \mapsto \sigma_{1}$ defines a morphism of chain complexes $\psi:\left(S_{*}(X), d_{*}\right) \rightarrow$ $\left(S_{*}^{(A, n)}(X), d_{*}\right)$ with $\psi \circ \phi=\mathrm{id}$.
(d) Construct a chain homotopy between $\phi \circ \psi$ and id, using, for any $\sigma \in \operatorname{Sing}_{k}(X)$, the composition

$$
H_{*}^{\sigma} \circ h: S_{k}\left(\Delta^{k}\right) \rightarrow S_{k+1}\left(\Delta^{k} \times I\right) \rightarrow S_{k+1}(X),
$$

where h is the standard chain homotopy (used in proving homotopy invariance of homology) between the chain maps induced by the inclusion of the bottom face and top face of the cylinder $\Delta^{k} \times I$.
(e) Deduce that the homomorphism $H_{k}(A ; \mathbb{Z}) \rightarrow H_{k}(X ; \mathbb{Z})$ induced by the inclusion $A \rightarrow X$ is an isomorphism for $k \leq n$.

In the next three exercises, we construct and study the Poincaré sphere.

Exercise 5.2. Prove that there is a group homorphism $\phi: S^{3} \rightarrow S O(3)$ (the rotation group of \mathbb{R}^{3}) realizing S^{3} as the universal cover of $S O(3)$, and $S O(3)$ as the quotient of S^{3} by the subroup $\mathbb{Z} / 2$.
Hint: Show that $S U(2)$, the group of unitary 2×2-matrices of determinant 1 , is isomorphic to S^{3}, the group of unit quaternions. To construct the group homomorphism $S U(2) \rightarrow S O(3)$, consider the action of S^{3} on \mathbb{H} by conjugation. This representation splits as the trivial representation on $\mathbb{R}\{1\}$, and a representation on $\mathbb{R}\{i, j, k\}$ (by rotations, which we see easily from identifictation of S^{3} with $S U(2)$!).

Exercise 5.3. We study the finite subgroup $I<S O(3)$ of rotations preserving an icosahedra $X \subset \mathbb{R}^{3}$ centered at the origin (i.e. mapping it to itself), called the icosahedral group.
(a) Let $I_{n}=\{f \in I ; f$ has exact order $n\}$. Show that $I=I_{1} \sqcup I_{2} \sqcup I_{3} \sqcup I_{5}$ (the identity, and the rotations with axes cutting X along the middle of an edge, of a face, or a vertex, respectively). Deduce that I has order 60.
(b) Show that I is simple (its only normal subgroups N are $\{\operatorname{id}\}$ and I). To do so, first show that the cyclic subgroups of order 2 (axe through the middle of an edge) are conjugated to each other; similarly for those or order 3 or 5 . Deduce that a normal subgroup is of order $1+a \operatorname{Card}\left(I_{2}\right)+2 b \operatorname{Card}\left(I_{3}\right)+4 c \operatorname{Card}\left(I_{5}\right)$ for some $a, b, c \in\{0,1\}$; conclude using that this number must divide 60 .
(c) Deduce that I is perfect (i.e. $I=[I, I]$, or $I_{\mathrm{ab}}=0$).

Exercise 5.4. The binary icosahedral group is the subgroup $I^{\prime}=\phi^{-1}(I)$ of S^{3}, of order 120.
(a) Show that $-1 \in\left[I^{\prime}, I^{\prime}\right]$, and deduce that I^{\prime} is perfect. To do so, assume that the icosahedron X is in a position in $\mathbb{R}\{i, j, k\}$ so that the quaternions i and j belong to I^{\prime}, and use $-1=[i, j]$.
(b) The quotient $P=S^{3} / I^{\prime}$ is called the Poincaré sphere. Explain why P is a smooth, compact, oriented manifold of dimension 3.
(c) Using the Hurewicz theorem for π_{1} and Poincaré duality, show that the quotient map $S^{3} \rightarrow P$ induces an isomorphism in homology.
(d) Using the Serre fibration $I^{\prime} \rightarrow S^{3} \rightarrow P$, explain how the homotopy groups of S^{3} and P agree or differ.

Exercise 5.5. Check that the pair $(|\mid$, Sing $)$ is an adjoint pair

$$
|\mid: \widehat{\Delta} \longleftrightarrow \text { Top }: \text { Sing }
$$

Exercise 5.6. Let C and D be small categories, $F, G: C \rightarrow D$ functors and $\eta: F \Rightarrow G$ a natural transformation. Show that η corresponds to a functor $C \times[1] \rightarrow D$, and induces a homotopy between the maps $|N F|$ and $|N G|$.

Exercise 5.7. Show that if a small category C has an initial or terminal object, then its classifying space is contractible.

Exercise 5.8. Describe explicitly $B \mathbb{Z} / 2$, the classifying space of the group $\mathbb{Z} / 2$ (viewed as a category), as a CW-complex.

Exercise 5.9. Determine a finite category C_{n} such that the geometric realization of $N C_{n}$ is the sphere S^{n}, up to homeomorphism.

Exercise 5.10. Show that the nerve functor N from small categories to simplicial sets is right adjoined to the path functor P from simplicial sets to small categories, that associates to a simplical set X the small category whose set of objects is the set X_{0}, with morphisms of the form $x: d_{1} x \rightarrow d_{0} x$ for all $x \in X_{1}$, with relations of the form $d_{1} y=d_{0} y \circ d_{2} y$ for all $y \in X_{2}$.

Exercise 5.11. Let X be a simplicial set. Under what conditions on X does X determine a category C such that $X=N C$ (the nerve of C)?

