Homology Theory

EXERCISES

Sheet 1, 11.09.2019

Exercise 1.1. Let G and H be two groups, considered as categories with one object, which we denote as **G** and **H**.

- (a) What are the functors $F : \mathbf{G} \to \mathbf{H}$?
- (b) Given two functors $F_1, F_2 : \mathbf{G} \to \mathbf{H}$, under which conditions does a natural transformation $\eta : F_1 \to F_2$ exist ?

Exercise 1.2. Let **Grp** be the category of groups and group homomorphisms, and let **Ab** be the full subcategory of abelian groups. If G is a group, let [G, G] be the subgroup of G generated by the commutators $[g, h] = ghg^{-1}h^{-1}$ for all $g, h \in G$. Prove the following assertions:

- (a) [G,G] is a normal subgroup of G, and $G^{ab} = G/[G,G]$ is an abelian group.
- (b) The correspondence $G \mapsto G^{ab}$ is part of a functor $(-)^{ab} : \mathbf{Grp} \to \mathbf{Ab}$ such that the composite functor

$$\mathbf{Ab} \xrightarrow{\subset} \mathbf{Grp} \xrightarrow{(-)^{\mathrm{ab}}} \mathbf{Ab}$$

is the identity.

(c) Prove that the functor $(-)^{ab}$ is a left adjoint functor.

Exercise 1.3. Let G be a group and let

$$Z(G) = \{ g \in G \mid hg = gh \text{ for all } h \in G \}$$

be the center of G. Obviously, Z(G) is an abelian subgroup of G. Prove that there exists no functor $F : \mathbf{Grp} \to \mathbf{Ab}$ which on objects is given by F(G) = Z(G).

Exercise 1.4. In a category C, a morphism $f \in C(X, Y)$ is called a *epimorphism* if it is *right* cancellable. This means that for any object W in C and any pair of morphisms $g, h \in C(Y, W)$, we have the implication

$$(gf = hf) \Longrightarrow (g = h)$$

- (1) Define the dual notion of a monomorphism.
- (2) Prove that in the category of sets, a monomorphism is an injection, and an epimorphism is a surjection.
- (3) Let **Ring** be the category of unital rings and ring homomorphisms. Consider the inclusion $f : \mathbb{Z} \to \mathbb{Q}$.
 - (a) Is f a monomorphism in **Ring**?
 - (b) Is f an epimorphism in **Ring**?
 - (c) Is f an isomorphism in **Ring**?

http://www.math.univ-paris13.fr/~ausoni/m2-2019.html

Exercise 1.5. Let (P, \leq) and (Q, \leq) be two partially ordered sets, viewed as small categories **P** and **Q**.

- (a) Describe the functors $\mathbf{P} \to \mathbf{Q}$.
- (b) Given two functors $F, G : \mathbf{P} \to \mathbf{Q}$, under which conditions does a natural transformation $F \Longrightarrow G$ exist? If so, how many such transformations exist ?

Exercise 1.6. Let **C** be a category, and for $X \in Ob(\mathbf{C})$, let $\varphi^X = \mathbf{C}(X, -) : \mathbf{C} \to \mathbf{Set}$ be the functor corepresented by X. Let $Y \in Ob(\mathbf{C})$, and let $\eta : \varphi^X \Longrightarrow \varphi^Y$ be a natural transformation.

- (a) Prove that there exists a unique $f \in \mathbf{C}(Y, X)$ such that $\eta = \varphi^f$, where φ^f is defined by $\varphi_Z^f : \mathbf{C}(X, Z) \to \mathbf{C}(Y, Z), g \mapsto g \circ f$.
- (b) Formulate and prove the corresponding dual statement for represented cofunctors.

Exercise 1.7. Prove that a category that admits all coproducts and co-equalizers is cocomplete. Use this to prove that the category of modules over a commutative ring is cocomplete.

Exercise 1.8. Explicitly describe push-outs in the following categories:

- (a) The category of sets;
- (b) The category of abelian groups;
- (c) The category of commutative (unital) rings;
- (d) The category of unital rings.