Homology Theory

## EXERCISES

Sheet 2, 18.09.2019

**Exercise 2.1.** Give a proof of the Yoneda Lemma stated in the lecture. Explain why the Yoneda lemma implies, for example, that when a colimit exists, it is unique up to isomorphism.

**Exercise 2.2.** Let (L, R) be an adjoint pair of functors  $L : \mathbf{C} \to \mathbf{D}, R : \mathbf{D} \to \mathbf{C}$ . Prove the following properties:

- (a) L preserves colimits.
- (b) R preserves limits.

*Hint:* For (a), prove and use that if I is a small category and  $F \in C^{I}$ , then for any object  $Y \in C$ , we have an isomorphism

$$C(\operatorname{colim}_I F, Y) \cong \lim_I C(F(-), Y)$$
.

Then apply Yoneda.

**Exercise 2.3.** Let  $L: C \to D$  be a functor. Prove that if L admits a right adjoint, it is unique up to natural isomorphism.

**Exercise 2.4.** An object  $c_0$  in a category C is called *initial* if for any object x in C,  $C(c_0, x)$  has a unique element. An object  $d_0$  in C is called *terminal* if it is initial in  $C^{\text{op}}$ .

- (a) Prove that if it exists, an initial (terminal) object is unique up to isomorphism.
- (b) Do the following categories admit initial or terminal objects?

Sets, Top, Top<sub>\*</sub>, Grp, Ring, and G (associated to a group G).

(c) Prove that if I is a small category admitting an initial object  $i_0$ , and if  $F \in C^I$ , then  $F(i_0)$  is a limit of F (with the obvious natural transformation  $\Delta_{F(i_0)} \Longrightarrow F$ ). What is the dual statement ?

**Exercise 2.5.** Let  $n \in \mathbb{N}$ ,  $n \ge 1$ , and define the sphere  $S^{n-1}$  and the disk  $D^n$  as the subspaces

$$S^{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}, \text{ and } D^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}.$$

(a) Prove that the sphere  $S^n$  is homeomorphic to the push-out of  $D^n \leftarrow S^{n-1} \to D^n$  (where the maps are the inclusions), so that there exists a cocartesian square



in the category of topological spaces.

(b) Assuming that the identity of  $S^n$  is not homotopic to a constant map (which is the case), explain why this square is not cocartesian in the homotopy category.

http://www.math.univ-paris13.fr/~ausoni/m2-2019.html



where the maps are the inclusions. Is this square Cartesian ? Cocartesian ?

**Exercise 2.7.** Consider the Sierpinski space Z with two points x, y, and with topology given by the family of subsets  $\{\emptyset, \{x\}, X\}$ . Is Z contractible ?

**Exercise 2.8.** Consider the following subspaces of  $\mathbb{R}$ :

$$\mathbb{Z}, \quad X = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}, \quad Y = X \cup \{0\}$$

Which have the same homotopy type ?