Homology Theory

EXERCISES

Sheet 4, 02.10.2019

Exercise 4.1. Prove the following assertions.

- (a) The composition of two fibrations is a fibration.
- (b) The product of two fibrations is a fibration.
- (c) If $p: E \to B$ is a fibration with B path-connected and $E \neq \emptyset$, then p is surjective.
- (d) Assume given a pull-back square

where p is a fibration. Prove that q is also a fibration. In the pointed case, prove that the restriction of f induces a homeomorphism $Z \to F$, where Z and F are the fibres of q and p, respectively.

Exercise 4.2. Consider the triangle $E \subset \mathbb{R}^2$ with vertices (0,0), (1,0) und (0,1). Let B = [0,1], and let $p : E \to B$ be the restriction of the projection $\mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x$. Prove the following assertions.

- (a) The map p is a fibration.
- (b) The map p is not a fibre bundle.

Exercise 4.3. Consider $n \ge 1$. Compute $\pi_m(\mathbb{R}P^n, *)$ and $\pi_\ell(\mathbb{C}P^n, *)$ for as many values of m and ℓ as possible.

Exercise 4.4. Show that the nerve functor $N : CAT \to \widehat{\Delta}$ is fully faithful.

Exercise 4.5. Let $X \in \widehat{\Delta}$. Recall that an *n*-simplex $x \in X_n$ corresponds by Yoneda to a morphism $x : \Delta_n \to X$. An *n*-simplex *x* is called *degenerate* if it factors through some Δ_m for m < n (and is called *non-degenerate* otherwise).

Show that for any *n*-simplex $x : \Delta_n \to X$ there exists a unique pair (y, α) , where $\alpha : \Delta_n \to \Delta_m$ is a surjection and $y : \Delta_m \to X$ an *m*-simplex such that $y \circ \alpha = x$ (here we identify Δ as a full subcategory of $\widehat{\Delta}$).

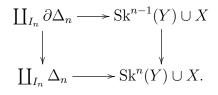
Hint: for the uniqueness, use that in Δ the surjections admit a section.

Exercise 4.6. Let $X \in \widehat{\Delta}$ and $n \in \mathbb{N}$. We define the *nth-skeleton of* S, denoted $\operatorname{Sk}^n(X) \in \widehat{\Delta}$, as the simplicial subset of X generated by X_n (i.e. the smallest simplicial subset of X whose set of *n*-simplices is X_n).

- (a) Show that $\operatorname{Sk}^n(X)_m = \{x\alpha \in X_m \mid \alpha : \Delta_m \to \Delta_n, x \in X_n\}.$
- (b) Let $\partial \Delta_n = \bigcup_{0 \le i \le n} \text{Bild}(\delta^i : \Delta_{n-1} \to \Delta_n)$. Let $X \subset Y$ be a simplicial subset, and let I_n be the set of non-degenerate *n*-simplices of Y that are not in X. Prove that the obvious

http://www.math.univ-paris13.fr/~ausoni/m2-2019.html

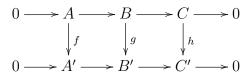
square in $\widehat{\Delta}$ of the following form is co-carthesian:



Exercise 4.7. Two maps $f_0, f_1 : X \to Y$ in $\widehat{\Delta}$ are called *homotopic* if there is a morphism $X \times \Delta_1 \to Y$ with $H \circ (\operatorname{id} \times d_1) = f_0$ and $H \circ (\operatorname{id} \times d_0) = f_1$. We call H a *a simplicial homotopy* from f_0 to f_1 .

- (a) Show that if $F_0, F_1 : C \to D \in CAT$, a simplicial homotopy from NF_0 to NF_1 corresponds precisely to a natural transformation $F_0 \Longrightarrow F_1$.
- (b) Show that if C has a terminal object c (meaning that C(a, c) is a singleton for any $a \in C$), then NC is contractible.

Exercise 4.8. Suppose given a commutative diagram of *R*-modules with exact rows



Prove the existence of a natural homomorphism ∂ : $\operatorname{Ker}(h) \to \operatorname{Coker}(f)$ fitting in an exact sequence

$$0 \to \operatorname{Ker}(f) \to \operatorname{Ker}(g) \to \operatorname{Ker}(h) \xrightarrow{\partial} \operatorname{Coker}(f) \to \operatorname{Coker}(g) \to \operatorname{Coker}(h) \to 0.$$

Exercise 4.9. Suppose given a commutative diagram of *R*-modules with exact rows

$$\cdots \xrightarrow{\partial_{n+1}} A_n \xrightarrow{i_n} B_n \xrightarrow{p_n} C_n \xrightarrow{\partial_n} A_{n-1} \xrightarrow{i_{n-1}} \cdots$$

$$f_n \bigvee \qquad g_n \bigvee \qquad h_n \bigvee \qquad f_{n-1} \bigvee \qquad f_{n-1} \bigvee \qquad \cdots$$

$$\cdots \xrightarrow{\partial'_{n+1}} A'_n \xrightarrow{i'_n} B'_n \xrightarrow{p'_n} C'_n \xrightarrow{\partial'_n} A'_{n-1} \xrightarrow{i'_{n-1}} \cdots ,$$

such that h_n is an isomorphism for all n. Let $D_n = \partial_n h_n^{-1} p'_n : B'_n \to A_{n-1}$. Prove that the following sequence is exact:

$$\cdots \to A_n \xrightarrow{(f_n, i_n)} A'_n \oplus B_n \xrightarrow{i'_n - g_n} B'_n \xrightarrow{D_n} A_{n-1} \to \cdots$$