$\label{lem:http://www.math.uni-bonn.de/people/ausoni/topologie1.html} \\ Wintersemester~2008/2009$

ÜBUNGEN ZUR TOPOLOGIE I

Blatt 2*, 17.10.2008

Aufgabe 2.1. Sei (X, d) ein metrischer Raum und sei \bar{d} die Metrik auf X, die durch $\bar{d}(x, y) = \min\{d(x, y), 1\}$ definiert ist (siehe Aufgabe 1.4). Sei Ω eine Menge, und sei X^{Ω} die Menge aller Abbildungen $\Omega \to X$. Beweise die folgenden Aussagen.

(a) Die Abbildung $\rho: X^{\Omega} \times X^{\Omega} \to \mathbb{R}$, die durch

$$\rho(f,g) = \sup\{\bar{d}(f(\omega), g(\omega)), \ \omega \in \Omega\}$$

definiert ist, ist eine Metrik auf X^{Ω} .

(b) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge in X^{Ω} . Sie konvergiert uniform (gleichmäßig) gegen eine Abbildung $f\in X^{\Omega}$ genau dann, wenn $\lim_{n\to\infty} f_n=f$ im metrischen Raum (X^{Ω},ρ) gilt.

Definition. Die Metrik ρ in 2.1 heißt die uniforme (gleichmäßige) Metrik auf X^{Ω} .

Aufgabe 2.2. Finde eine Menge X und Metriken d und d' auf X, sodass die beiden folgenden Aussagen gelten.

- (a) Die Identitätsabbildungen $(X, d) \to (X, d')$ und $(X, d') \to (X, d)$ sind stetig.
- (b) Es existiert keine positive Funktion $c: X \to \mathbb{R}$ mit $d(x,y) \le c(x)d'(x,y)$ für alle $x,y \in X$.

Aufgabe 2.3. Sei $\ell^2 = \{ f \in \mathbb{R}^{\mathbb{N}} \mid \sum_n f(n)^2 < \infty \}$, und sei

$$\| \|_2 : \ell^2 \to \mathbb{R} \text{ durch } \| f \|_2 = \left(\sum_n f(n)^2 \right)^{\frac{1}{2}}$$

definiert.

- (a) Zeige, dass $(\ell^2, \|\ \|_2)$ ein normierter Raum ist.
- (b) Sei $\| \|_{\infty}$ die "Sup" Norm auf ℓ^2 , also

$$||f||_{\infty} = \sup\{|f(n)|, \ n \in \mathbb{N}\}.$$

Sei \mathcal{T}_2 (bzw. \mathcal{T}_{∞}) die Topologie auf ℓ^2 , die von $\| \|_2$ (bzw. von $\| \|_{\infty}$) gegeben ist. Beweise, dass \mathcal{T}_2 (strikt) feiner als \mathcal{T}_{∞} ist.

Aufgabe 2.4. Sei $\underline{n} = \{1, 2, \dots, n\} \subset \mathbb{N}$, und sei Σ_n die symmetrische Gruppe mit n! Elementen (also die Gruppe der Permutationen von \underline{n}).

- (a) Wieviele verschiedene Topologien gibt es auf der Menge 3?
- (b) Wieviele Topologien \mathcal{T} gibt es auf der Menge \underline{n} mit der Eigenschaft, dass jedes $\sigma \in \Sigma_n$ als Abbildung $\underline{n} \to \underline{n}$ stetig (bezüglich \mathcal{T}) ist?

Begründe deine Antwort.

Aufgabe 2.5. Sei (V, || ||) ein normierter Raum mit $V \neq \{0\}$, und sei d die zugehörige Metrik. Beweise, dass eine offene Kugel in (V, d) ein eindeutig bestimmtes Zentrum und einen eindeutig bestimmten Radius besitzt.

^{*}Abgabe: Montag 27.10.2008 vor der Vorlesung.