http://www.math.uni-bonn.de/people/ausoni/topologie1.html Wintersemester 2008/2009

ÜBUNGEN ZUR TOPOLOGIE I

Blatt 9*, 5.12.2008

Aufgabe 9.1. Sei X ein kompakter Hausdorff-Raum, und seien A und B zwei abgeschlossene Teilräume von X mit $X = A \cup B$. Beweise die folgenden Aussagen.

- (a) Der Raum X ist genau dann metrisierbar, wenn er zweit-abzählbar ist.
- (b) Sind A und B metrisierbar, so ist X metrisierbar.

Aufgabe 9.2. Sei X ein vollständig-regulärer Raum, und sei $\beta(X)$ die Stone-Čech-Kompaktifizierung von X. Beweise, dass X genau dann zusammenhängend ist, wenn $\beta(X)$ zusammenhängend ist.

Aufgabe 9.3. Seien X_0 , X_1 und X_2 Räume und seien $f_1: X_0 \to X_1$ und $f_2: X_0 \to X_2$ stetige Abbildungen. Sei $X_1 \sqcup X_2$ die disjunkte Vereinigung (als Raum) von X_1 und X_2 , und sei \sim die Äquivalenzrelation auf $X_1 \sqcup X_2$, die von $\{(f_1(x), f_2(x)) \mid x \in X_0\}$ erzeugt ist. Sei

$$Z = (X_1 \sqcup X_2)/\sim$$

mit der Quotiententopologie versehen. Für i=1,2, sei $g_i:X_i\to Z$ die Verknüpfung der kanonischen Inklusion $X_i\to X_1\sqcup X_2$ mit der kanonischen Projektion $X_1\sqcup X_2\to Z$. Beweise die folgenden Aussagen.

- (a) g_1 und g_2 sind stetig. Ist f_1 injektiv, so ist g_2 injektiv.
- (b) Sei Y ein Raum, und für i=1,2 seien $h_i:X_i\to Y$ stetige Abbildungen mit $h_1f_1=h_2f_2$. Dann existiert genau eine stetige Abbildung $h:Z\to Y$ mit $h_i=hg_i$ für i=1,2.

Definition. Das Tripel (Z, g_1, g_2) in Aufgabe 9.3 heißt der *Push-Out* von f_1 und f_2 . Der Raum Z wird oft $X_1 \sqcup_{X_0} X_2$ notiert.

Aufgabe 9.4. Sei X ein Raum. Ein Teilraum A von X heißt ein Retrakt von X, wenn es eine stetige Abbildung $r: X \to A$ mit r(a) = a für alle $a \in A$ gibt.

- (a) Beweise: ist X ein Haudorff-Raum und ist $A \subset X$ ein Retrakt von X, so ist A abgeschlossen.
- (b) Sei X ein T_1 -Raum, und seien x, y Punkte in X mit $x \neq y$. Entscheide, unter welche Voraussetzungen der Teilraum $A = \{x, y\}$ ein Retrakt von X ist.
- (c) Sei $n \in \mathbb{N}$. Beweise, dass die Sphäre S^n (Aufgabe 5.1) ein Retrakt von $\mathbb{R}^{n+1} \setminus \{0\}$ ist.
- (d) Ist S^n ein Retrakt von \mathbb{R}^{n+1} ? Gib eine Vermutung an.

Aufgabe 9.5. Sei X ein metrischer Raum, und seien $a,b\in X$. Sei $X^{[0,1]}$ mit der uniformen Metrik (Aufgabe 2.1) versehen. Sei

$$\Omega(X;a,b) = \{ \ w \in X^{[0,1]} \, | \, w \text{ stetig}, \ w(0) = a \ \text{ und } \ w(1) = b \ \}$$

mit der Teilraummetrik versehen. Seien $\alpha, \beta \in \Omega(X; a, b)$. Beweise, dass die folgenden Aussagen äquivalent sind.

- (a) Die Wege α und β sind homotop relativ zu den Endpunkten.
- (b) Es existiert ein Weg von α nach β in $\Omega(X; a, b)$.

^{*}Abgabe: Montag 15.12.2008 vor der Vorlesung.