ÜBUNGEN ZUR ALGEBRAISCHEN TOPOLOGIE II

Blatt 6*, 11.11.2011

Aufgabe 6.1. Betrachte

$$E = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ y = x - 1 \text{ oder } y = 1/n, n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}^2,$$

und sei $p: E \to B = [0,1]$ durch p(x,y) = x definiert. Beweise, dass p eine Serre-Faserung ist, aber keine Hurewicz-Faserung.

Hinweis: Sei $X = p^{-1}(1)$ und $a: X \times \{0\} = X \to E$ die Inklusion.

Beobachtung: X ist kein CW-Komplex.

Aufgabe 6.2. Gib eine Formel in Dollar[†] für "das" Hopf-Faserbündel $h: S^3 \to S^2$ an, wobei man S^3 und S^2 als Teilräume von \mathbb{R}^4 , bzw. \mathbb{R}^3 betrachtet.

Aufgabe 6.3. Sei $f:X\to Y$ eine punktierte Abbildung. Ergänze die Einzelheiten der Konstruktion der "lange Faserfolge"

$$\cdots \to \Omega^2 Y \to \Omega F(f) \to \Omega X \to \Omega Y \to F(f) \to X \xrightarrow{f} Y$$

von f, die in der Vorlesung erwähnt worden ist.

Aufgabe 6.4. Wir haben für $1 \le k \le n$ Inklusionen von Hausdorffräumen

$$V_{n,k} \subset V_{n+1,k}$$
 und $G_{n,k} \subset G_{n+1,k}$

induziert von der Inklusion $\mathbb{F}^n = \mathbb{F}^n \times \{0\} \subset \mathbb{F}^{n+1}$. Wir definieren $V_{\infty,k} = \bigcup_{n \geq k} V_{n,k}$ und $G_{\infty,k} = \bigcup_{n \geq k} G_{n,k}$ (mit der Colimes-Topologie).

- (a) Beweise, dass die offensichtliche Abbildung $V_{\infty,k} \to G_{\infty,k}$ eine Serre-Faserung ist.
- (b) Beweise, dass wir für alle n > 1 einen Isomorphismus von Gruppen

$$\pi_{n+1}(G_{\infty,k},*) \to \pi_n(G(k),1)$$

haben (wobei G(k) = O(k), U(k) wenn $\mathbb{F} = \mathbb{R}$, bzw. \mathbb{C}).

(c) Berechne $\pi_n(G_{\infty,k}^{\mathbb{R}},*)$ für $n \leq 1$ und $\pi_m(G_{\infty,k}^{\mathbb{C}},*)$ für $m \leq 2$.

^{*}Abgabe: Montag 21.11.2011.

http://wwwmath.uni-muenster.de/u/ausoni/topologie3-WS11-12.html

[†]Also: eine explizite Formel. Den Ausdruck kenne ich aus der Topologie-Vorlesung von Prof. A. Derighetti.