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Abstract Let p ≥ 5 be a prime, let ku be the connective complex K-theory
spectrum, and let K(ku) be the algebraic K-theory spectrum of ku. In this pa-
per we study the p-primary homotopy type of the spectrum K(ku) by comput-
ing its mod (p, v1) homotopy groups. We show that up to a finite summand,
these groups form a finitely generated free module over the polynomial al-
gebra Fp[b], where b is a class of degree 2p + 2 defined as a “higher Bott
element”.

Mathematics Subject Classification (2000) 19D55 · 55N15

1 Introduction

The algebraic K-theory of a local or global number field F , with suitable
finite coefficients, is known to satisfy a form of Bott periodicity. Bott period-
icity refers here to the periodicity of topological complex K-theory, and is an
example of v1-periodicity in the sense of stable homotopy theory. For exam-
ple, if p is an odd prime and if F contains a primitive p-th root of unity, then
the mod (p) algebraic K-theory K∗(F ;Z/p) of F contains a non-nilpotent
Bott element β of degree 2, with

βp−1 = v1.
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In one of its reformulations [19, 41], the Lichtenbaum-Quillen Conjecture
asserts that the localization

K∗(F ;Z/p) → K∗(F ;Z/p)[β−1]

away from β is an isomorphism in positive degrees. In particular, K∗(F ;Z/p)

is periodic of period 2 in positive degrees. In the local case, this follows
from [23, Theorem D].

The p-local stable homotopy category also features higher forms of pe-
riodicity [25], one for each integer n ≥ 0, referred to as vn-periodicity. It is
detected for example by the nth Morava K-theory K(n), having coefficients
K(0)∗ = Q and K(n)∗ = Fp[vn, v

−1
n ] with |vn| = 2pn −2 if n ≥ 1. The study

of v2-periodicity is at the focus of current research in algebraic topology, as
illustrated for example by the efforts to define the elliptic cohomology theory
known as topological modular forms [24].

Waldhausen [44] extended the definition of algebraic K-theory to include
specific “rings up to homotopy” called structured ring spectra, like E∞ ring
spectra [30], S-algebras [20], or symmetric ring-spectra [26]. The chromatic
red-shift conjecture [4] of John Rognes predicts that the algebraic K-theory of
a suitable vn-periodic structured ring-spectrum is essentially vn+1-periodic,
as illustrated above in the case of number fields (which are v0-periodic). For
an example with the next level of periodicity, we consider the algebraic K-
theory of topological K-theory.

Let p ≥ 5 be a prime, and let kup denote the p-completed connective com-
plex K-theory spectrum with coefficients kup∗ = Zp[u], |u| = 2, where Zp

is the ring of p-adic integers. Let �p be the Adams summand of kup with co-
efficients �p∗ = Zp[v1] and v1 = up−1. In joint work with John Rognes [2],
we have computed the mod (p, v1) algebraic K-theory of the S-algebra �p ,
denoted V (1)∗K(�p), and we have shown that it is essentially v2-periodic.
This computation provides a first example of red-shift for non-ordinary rings.

In this paper, following the discussion in [1, Sect. 10], we interpret kup

as a tamely ramified extension of �p of degree p − 1, and we compute
V (1)∗K(kup). As expected, the result is again essentially periodic. However,
V (1)∗K(kup) has a shorter period : its periodicity is given by multiplication
with a higher Bott element b ∈ V (1)∗K(kup), of degree 2p + 2. We defer a
definition of b to Sect. 3 below, and summarize our main result in the follow-
ing statement.

Theorem 1.1 Let p ≥ 5 be a prime. The higher Bott element b ∈
V (1)2p+2K(kup) is non-nilpotent and satisfies the relation

bp−1 = −v2.
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Let P(b) denote the polynomial Fp-sub-algebra of V (1)∗K(kup) generated
by b. Then there is a short exact sequence of graded P(b)-modules

0 → Σ2p−3
Fp → V (1)∗K(kup) → F → 0,

where Σ2p−3
Fp is the sub-module of b-torsion elements and F is a free P(b)-

module on 8 + 4(p − 1) generators.

A detailed description of the free P(b)-module F is given in Theorem 8.1.
The proof is based on evaluating the cyclotomic trace map [11]

trc : K(kup) → TC(kup)

to topological cyclic homology. We emphasize that the higher Bott element b

is not the reduction of a class in the mod (p) or integral homotopy of K(kup).
The cyclic subgroup Δ ⊂ Z

×
p of order p − 1 acts on kup by p-adic Adams

operations. The Adams summand is defined as the homotopy fixed-point
spectrum �p = kuhΔ

p , and Δ qualifies as the Galois group of the tamely ram-
ified extension �p → kup of commutative S-algebras given by the inclusion
of homotopy fixed-points. We proved in [1, Theorem 10.2] that the induced
map K(�p) → K(kup) factors through a weak equivalence

K(�p)
�−→ K(kup)hΔ

after p-completion. The mod (p, v1) homotopy groups of K(�p) and K(kup)

are related as follows.

Proposition 1.2 Let i∗ : V (1)∗K(�p) → V (1)∗K(kup) be the homomor-
phism induced by the extension of S-algebras �p → kup .

(a) The homomorphism i∗ factors through an isomorphism

V (1)∗K(�p) ∼= (
V (1)∗K(kup)

)Δ ⊂ V (1)∗K(kup)

onto the classes fixed by the Galois group. The higher Bott element b is
not fixed under the action of Δ, but bp−1 = −v2 is, accounting for the
v2-periodicity of V (1)∗K(�p).

(b) The homomorphism

μ : P(b) ⊗P(v2) V (1)∗K(�p) → V (1)∗K(kup)

induced by i∗ and the P(b)-action has finite kernel and cokernel, and is
an isomorphism in degrees larger than 2p2 − 4. By localizing away from
b, we obtain an isomorphism of P(b, b−1)-modules

P(b, b−1) ⊗P(v2) V (1)∗K(�p)
∼=−→ V (1)∗K(kup)[b−1].
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In particular, the P(b)-module V (1)∗K(kup) is almost the module ob-
tained from the P(v2)-module V (1)∗K(�p) by the extension P(v2) ⊂ P(b)

of scalars. The kernel of μ consists of b-multiples of the v2-torsion elements,
and we have a non-trivial cokernel because some of the P(v2)-module gener-
ators of V (1)∗K(�p) are multiples of b in V (1)∗K(kup), see Corollary 8.2.

Notice that for the cyclotomic extension Zp → Zp[ζp] of complete dis-
crete valuation rings with Galois group Δ (where ζp is a primitive pth root
of unity), we have corresponding results in mod (p) algebraic K-theory. In
effect, the natural homomorphism K∗(Zp;Z/p) → K∗(Zp[ζp];Z/p) fac-
tors through an isomorphism onto the Δ-fixed classes. The Bott class β ∈
K2(Zp[ζp];Z/p) is not fixed under Δ, but βp−1 = v1 is. This accounts
for the fact that K∗(Zp[ζp];Z/p) has a shorter period than K∗(Zp;Z/p).
Moreover, the P(β)-module K∗(Zp[ζp];Z/p) is essentially obtained from
the P(v1)-module K∗(Zp;Z/p) by the extension P(v1) ⊂ P(β) of scalars.
These facts are extracted from computations by Hesselholt and Madsen [23,
Theorem D]. We therefore interpret Proposition 1.2 as follows: up to a chro-
matic shift of one in the sense of stable homotopy theory, the algebraic K-
theory spectra of the tamely ramified extensions

Zp[ζp]
and

kup

Zp

Δ

�p

Δ

have a comparable formal structure.
This example of red-shift provides evidence that structural results for the

algebraic K-theory of ordinary rings might well be generalized to provide
more conceptual descriptions of the algebraic K-theory of S-algebras. See
Remarks 3.5 and 8.4 for a discussion of the results we have in mind here.

We now turn to the algebraic K-theory K(ku) of the (non p-completed)
connective complex K-theory spectrum ku, with coefficients ku∗ = Z[u],
|u| = 2. The p-completion ku → kup induces a map

κ : K(ku) → K(kup),

and the higher Bott element b ∈ V (1)2p+2K(kup) is in fact defined as the
image of a class with same name in V (1)2p+2K(ku). The difference between
K(ku) and K(kup) can be measured by means of the homotopy Cartesian
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square after p-completion

K(ku)

κ

π
K(Z)

κ

K(kup)
π

K(Zp)

of Dundas [18, p. 224]. Here π denotes the map induced in K-theory by
the zeroth Postnikov sections ku → HZ and kup → HZp , where HR is the
Eilenberg-Mac Lane spectrum of the ring R. The homotopy type of the p-
completion of K(Zp) has been computed by Bökstedt, Hesselholt and Mad-
sen [10, 22]. The Lichtenbaum-Quillen Conjecture for K(Z) (see for exam-
ple [34, Chap. 6]) implies that the homotopy fiber of K(Z) → K(Zp) has
finite V (1)-homotopy groups, which are concentrated in degrees smaller than
2p − 1. This implies the result below. In fact there seems to be some con-
sensus that work of Vladimir Voevodsky and Markus Rost should imply the
Lichtenbaum-Quillen Conjecture, but to our knowledge this has not appeared
in written form. We therefore keep it as an assumption in the following re-
sults.

Proposition 1.3 Let p ≥ 5 be a prime, and assume that the Lichtenbaum-
Quillen Conjecture for K(Z) holds at p. Then the homomorphism of P(b)-
modules

κ∗ : V (1)∗K(ku) → V (1)∗K(kup)

is an isomorphism in degrees larger than 2p − 1. Localizing the V (1)-
homotopy groups away from b, we obtain an isomorphism

V (1)∗K(ku)[b−1] ∼= V (1)∗K(kup)[b−1]

of P(b, b−1)-algebras.

This result is of interest beyond algebraic K-theory. Baas, Dundas and
Rognes have proposed a geometric definition of a cohomology theory derived
from a suitable notion of bundles of complex two-vector spaces [6]. These
are a two-categorical analogue of the ordinary complex vector bundles which
enter in the geometric definition of topological K-theory. They conjectured
in [6, 5.1] that the spectrum representing this new theory is weakly homotopy
equivalent to K(ku), and this was proved by these authors and Birgit Richter
in [7]. The next statement follows from Theorem 1.1 and Proposition 1.3.
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Proposition 1.4 If the Lichtenbaum-Quillen Conjecture for K(Z) holds, then
at any prime p ≥ 5 the spectrum K(ku) is of telescopic complexity two in the
sense of [6, 6.1].

This result was anticipated in [6, Sect. 6], and ensures that the cohomol-
ogy theory derived from two-vector bundles is, from the view-point of stable
homotopy theory, a legitimate candidate for elliptic cohomology.

The computations presented in this paper fail at the primes 2 and 3, be-
cause of the non-existence of the ring-spectrum V (1). Theoretically, compu-
tations in mod (p) homotopy or in integral homotopy could also be carried
out, but the algebra seems quite intractable. Another approach [16, 28] is
via homology computations. There are ongoing projects in this direction by
Robert Bruner, Sverre Lunøe-Nielsen and John Rognes.

Up to degree three, the integral homotopy groups of K(ku) can be com-
puted essentially by using the map π : K(ku) → K(Z) introduced above. The
map π∗ : K∗(ku) → K∗(Z) is 3-connected, so that

K0(ku) ∼= Z, K1(ku) ∼= Z/2 and K2(ku) ∼= Z/2.

Here K1(ku) and K2(ku) are generated by the image of η ∈ π1S and η2 ∈ π2S,
respectively, under the unit S → K(ku). Let w : BBU⊗ → Ω∞K(ku) be the
map induced by the inclusion of units, see (3.3). There is a non-split extension

0 → π3(BBU⊗)
w∗−→ K3(ku)

π∗−→ K3(Z) → 0

with π3(BBU⊗) ∼= Z{μ}, K3(ku) ∼= Z{ς} ⊕ Z/24{ν} and K3(Z) ∼= Z/48{λ},
where ν is the image of the Hopf class ν, which generates π3S ∼= Z/24. We
have w∗(μ) = 2ς − ν and π∗(ς) = λ. See [5] for details. This indicates that
the integral homotopy groups K∗(ku) contain intriguing non-trivial exten-
sions from subgroups in π∗S, π∗BBU⊗ and K∗(Z).

The rational algebraic K-groups of ku are well understood. In joint work
with Rognes [3], we have proved that after rationalization, the sequence

BBU⊗
w−→ Ω∞K(ku)

π−→ Ω∞K(Z)

is a split homotopy fibre-sequence. A rational splitting of w is provided by a
rational determinant map Ω∞K(ku) → (BBU⊗)Q. In particular, by Borel’s
computation [14] of K∗(Z) ⊗ Q, there is a rational equivalence

Ω∞K(ku) �Q SU × (SU/SO) × Z.

All but finitely many of the non-torsion classes in the integral homotopy
groups π∗K(ku) detected by this equivalence reduce mod (p) to multiples
of v1, and hence reduce to zero in V (1)∗K(ku).
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We briefly discuss the contents of this paper. In Sect. 2, we study the V (1)-
homotopy of the Eilenberg-Mac Lane space K(Z,3), which is a subspace of
the space of units of ku. In Sect. 3, we define low-dimensional classes in
V (1)∗K(ku) corresponding to units of ku, and in particular we introduce the
higher Bott element. We prove in Sect. 4 that these classes are non-zero by
means of the Bökstedt trace map

tr : K(ku) → THH(ku)

to topological Hochschild homology. In Sect. 5, we compute V (1)nK(kup)

for n ≤ 2p − 2. This complements the computations in higher degrees pro-
vided by the cyclotomic trace

trc : K(kup) → TC(kup)

to topological cyclic homology. In Sect. 6 we compute the various homotopy
fixed points of THH(kup) under the action of the cyclic groups Cpn and the
circle, which are the ingredients for the computation of V (1)∗TC(kup) in
Sect. 7. In Sect. 8 we prove Theorem 1.1 on the structure of V (1)∗K(kup)

stated above. We also give a computation of V (1)∗K(KUp) for KUp the p-
completed periodic K-theory spectrum, up to some indeterminacy.

Notations and conventions Throughout the paper, unless stated otherwise,
p will be a fixed prime with p ≥ 5, and Zp will denote the p-adic in-
tegers. For an Fp-vector space V , let E(V ), P(V ) and Γ (V ) be the ex-
terior algebra, polynomial algebra and divided power algebra on V , re-
spectively. If V has a basis {x1, . . . , xn}, we write V = Fp{x1, . . . , xn} and
E(x1, . . . , xn), P(x1, . . . , xn) and Γ (x1, . . . , xn) for these algebras. By def-
inition, Γ (x) is the Fp-vector space Fp{γkx | k ≥ 0} with product given by
γix · γjx = (

i+j
i

)
γi+j x, where γ0x = 1 and γ1x = x. Let Ph(x) = P(x)/(xh)

be the truncated polynomial algebra of height h. For an algebra A, we denote
by A{x1, . . . , xn} the free A-module generated by x1, . . . , xn.

If Y is a space and E∗ is a homology theory, such as mod (p) homol-
ogy, V (1)-homotopy or Morava K-theory K(2)∗, we denote by E∗(Y ) the
unreduced E∗-homology of Y , which we identify with the E∗-homology of
the suspension spectrum Σ∞(Y+), where Y+ denotes Y with a disjoint base-
point added. We usually write Σ∞+ Y instead of Σ∞(Y+).

The reduced E∗-homology of a pointed space X is denoted Ẽ∗(X). We
denote π∗X the (unstable) homotopy groups of X, and π∗Σ∞X its stable
homotopy groups.

If f : A → B is a map of S-algebras, we also denote by f its image under
various functors like THH, TC or K .

In our computations with spectral sequences, we often determine a differ-
ential d only up to multiplication by a unit. We use the notation d(x)

.= y
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to indicate that the equation d(x) = αy holds for some unit α ∈ Fp . Classes
surviving to the Er -term of a spectral sequence, for r ≥ 3, are often given as
a product of classes in the E2-term. To improve the readability, we denote the
product of two classes x, y in Er by x · y.

2 On the V (1)-homotopy of K(Z,3)

If G is a topological monoid, let us denote by BG its classifying space, ob-
tained by realization of the bar construction, see for example [36, Chap. 1]. If
G is an Abelian topological group, then so is BG. The space BG is equipped
with the bar filtration

{∗} = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bn−1 ⊂ Bn ⊂ · · ·BG, (2.1)

with filtration quotients Bn/Bn−1 ∼= Σn(G∧n). In particular, we have a map

s : ΣG = B1 ⊂ BG, (2.2)

which in any homology theory E∗ induces a map

σ : E∗G → E∗+1BG

called the suspension. If E∗ is a multiplicative homology theory satisfying
the Künneth isomorphism, we have the bar spectral sequence [36, Chap. 2]

E1
s,∗(G) = Ẽ∗(G)⊗E∗ s,

E2
s,t (G) = TorE∗(G)

s,t (E∗,E∗) ⇒ Es+t (BG)

associated to the bar filtration (2.1).
Let K(Z,0) be equal to Z as a discrete topological group, and for m ≥ 1,

we define recursively the Eilenberg-Mac Lane space K(Z,m) as the Abelian
topological group BK(Z,m − 1). We recall Cartan’s computation of the al-
gebra H∗(K(Z,m);Fp) for p an odd prime and m = 2,3. The generators
are constructed explicitly from the unit 1 ∈ H∗(K(Z,0);Fp) by means of the
suspension σ and two further operators

ϕ : H2q(K(Z,m);Fp) → H2pq+2(K(Z,m + 1);Fp) and

γp : H2q(K(Z,m);Fp) → H2pq(K(Z,m);Fp),

called the transpotence [17, p. 6-06] and the p-th divided power [17, p. 7-07],
respectively. The transpotence is an additive homomorphism since p is odd.
For x ∈ H2q(K(Z,m);Fp), the class ϕ(x) is represented, for example, by

xp−1 ⊗ x ∈ E1
2,2pq(K(Z,m))
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in the bar spectral sequence. The algebra H∗(K(Z,m);Fp) has the structure
of an algebra with divided powers, which are uniquely determined by γp .

Theorem 2.1 (Cartan) Let p be an odd prime. There are isomorphisms of
Fp-algebras with divided powers

Γ (y)
∼=−→ H∗(K(Z,2);Fp)

given by y �→ σσ(1), with |y| = 2, and

⊗

k≥0

E(ek) ⊗ Γ (fk)
∼=−→ H∗(K(Z,3);Fp),

given by ek �→ σγ k
pσσ(1) and fk �→ ϕγ k

pσσ(1), with degrees |ek| = 2pk + 1
and |fk| = 2pk+1 + 2. For k ≥ 0, the generators fk and ek+1 are related by a
primary mod (p) homology Bockstein

β(fk) = ek+1.

Proof The computation of H∗(K(Z,m);Fp) as an algebra is given in [17,
Théorème fondamental, p. 9-03]. The Bockstein relation β(fk) = ek+1 is es-
tablished in [17, p. 8-04]. �

Ravenel and Wilson [36] make use of the bar spectral sequence to compute
the Morava K-theory K(n)∗K(π,m) as an algebra when π = Z or Z/pj . All
generators can be defined explicitly, starting with the unit 1 ∈ K(n)∗K(π,0)

and using the suspension, divided powers, transpotence and the Hopf-ring
structure on K(n)∗K(π,∗). We refer to [36, 5.6 and 12.1] for the following
result, and for the definition of the generators β(k) and b(2k,1).

Theorem 2.2 (Ravenel-Wilson) Let p ≥ 3 be a prime and let K(2) be the
Morava K-theory spectrum with coefficients K(2)∗ = Fp[v2, v

−1
2 ]. There are

isomorphisms of K(2)∗-algebras

K(2)∗K(Z,2) ∼= K(2)∗[β(k) | k ≥ 0]/(βp

(0), β
p

(k+1) − v
pk

2 β(k) | k ≥ 0)

where |β(k)| = 2pk , and

K(2)∗K(Z,3) ∼= K(2)∗[b(2k,1) | k ≥ 0]/(bp

(2k,1) + v
pk

2 b(2k,1) | k ≥ 0)

where |b(2k,1)| = 2pk(p + 1). The class β(0) ∈ K(2)2K(Z,2) is equal to
σσ(1), and the class b(0,1) ∈ K(2)2p+2K(Z,3) is the transpotence of β(0).
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We now turn to V (1)-homotopy. For an integer n ≥ 0, we denote by V (n)

the Smith-Toda complex [42], with mod (p) homology given by

H∗(V (n);Fp) ∼= E(τ0, . . . , τn)

as a left sub-comodule of the dual Steenrod algebra. In particular, V (0) = S/p

is the mod (p) Moore spectrum, and the spectra V (0) and V (1) fit in cofibre
sequences

S
p−→ S

i0−→ V (0)
j0−→ ΣS

and

Σ2p−2V (0)
v1−→ V (0)

i1−→ V (1)
j1−→ Σ2p−1V (0),

where v1 is a periodic map. For n = 0,1 and p ≥ 5, the spectrum V (n) is a
commutative ring spectrum [35], and its ring of coefficients V (n)∗ is an Fp-
algebra which contains a non-nilpotent class vn+1, of degree 2pn+1 − 2. We
call “V (n)-homotopy” the homology theory associated to the spectrum V (n).
In other words, the V (n)-homotopy groups of a spectrum X are defined by

V (n)∗X = π∗(V (n) ∧ X).

Notice that V (0)∗X is denoted π∗(X;Z/p) by some authors, and called the
mod (p) homotopy groups of X. By analogy, we sometimes call V (1)∗X the
mod (p, v1) homotopy groups of X. If Y is a space, then V (n)∗Y is defined
as V (n)∗Σ∞+ Y .

The primary mod (p) homotopy Bockstein β0,1 : V (0)∗X → V (0)∗−1X

is the homomorphism induced by (Σi0)j0, and the primary mod (v1) ho-
motopy Bockstein β1,1 : V (1)∗X → V (1)∗−2p+1X is the homomorphism
induced by (Σ2p−1i1)j1. The homomorphisms i0∗ : π∗(X) → V (0)∗X and
i1∗ : V (0)∗X → V (1)∗X are called the mod (p) reduction and the mod (v1)

reduction, respectively.
Let HFp be the Eilenberg-Mac Lane spectrum of Fp . The unit map S →

HFp factors through a map of ring spectra h : V (1) → HFp , which induces
an injective homomorphism in mod (p) homology. Identifying the homol-
ogy of V (1) with its image in the dual Steenrod algebra A∗, we obtain the
isomorphism

H∗(V (1);Fp) ∼= E(τ0, τ1)

of left A∗-comodule algebras mentioned above. Toda [42, Theorem 5.2] com-
puted V (1)∗ in a range of degrees for which the Adams spectral sequence
collapses. Up to some renaming of the classes, we deduce from his theorem
that for p ≥ 5 there is an isomorphism of P(v2) ⊗ P(β1)-modules

P(v2) ⊗ P(β1) ⊗ Fp{1, α1, β
′
1, (α1β1)

�} → V (1)∗ (2.3)
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in degrees ∗ < 4p2 − 2p − 4. The classes α1 and β1 are the mod (p, v1)

reduction of the classes with same name in π∗(S), of degrees 2p − 3 and
2p2 − 2p − 2, respectively. The class β ′

1 is the mod (v1) reduction of the
class with same name in V (0)∗ that supports a primary mod (p) homotopy
Bockstein β0,1(β

′
1) = β1, and is of degree 2p2 − 2p − 1. The classes v2 and

(α1β1)
�, of degree 2p2 − 2 and 2p2 + 2p − 6 respectively, support a primary

mod (v1) homotopy Bockstein, given by β1,1(v2) = β ′
1 and β1,1((α1β1)

�) =
α1β1. The class v2 is non-nilpotent. The lowest-degree class in V (1)∗ that is
not in the image of (2.3) is the mod (p, v1) reduction of the class β2 in π∗(S),
of degree 4p2 − 2p − 4.

If X is a connective spectrum of finite type, the Atiyah-Hirzebruch spectral
sequence

E2
s,t = Hs(X;Fp) ⊗ V (1)t ⇒ V (1)s+tX (2.4)

converges strongly, and we can use it to compute V (1)∗X in low degrees.
The first non-trivial Postnikov invariant of V (1) is Steenrod’s reduced power
operation P 1, corresponding to the first possibly non-trivial differential of the
spectral sequence on the zeroth line, see Remark 2.4. This operation detects
the class α1, which belongs to the kernel of the Hurewicz homomorphism
V (1)∗ → H∗(V (1);Fp). In some more details, we have a commutative dia-
gram

V (1)

ρ

h

Σ2p−3HFp

g

V (1)[2p − 3] h
HFp

P 1

Σ2p−2HFp,

(2.5)

where ρ is the (2p − 3)th-Postnikov section, and the horizontal sequence is a
cofibre sequence. Notice that by (2.3) the map ρ is (2p2 −2p−2)-connected,
so that under our assumptions on X we have a well defined homomorphism

α = (ρ∗)−1g∗ : Hn−2p+3(X;Fp) → V (1)nX

for n ≤ 2p2 − 2p − 3.

Lemma 2.3 Let X be a connective spectrum of finite type, and let p ≥ 3 be a
prime. For n ≤ 2p2 − 2p − 3, the group V (1)nX fits in an exact sequence

Hn+1(X;Fp)
(P 1)∗−→ Hn−2p+3(X;Fp)

α−→ V (1)nX

h∗−→ Hn(X;Fp)
(P 1)∗−→ Hn−2p+2(X;Fp).



622 C. Ausoni

Here (P 1)∗ denotes the homology operation dual to P 1. If X is a ring spec-
trum then α sends the unit 1 ∈ H0(X;Fp) to α1. Moreover, for any X and any
n ≥ 0, we have a commutative diagram

V (1)nX
h∗

β1,1

Hn(X;Fp)

Q∗
1

V (1)n−2p+1X
h∗

Hn−2p+1(X;Fp)

relating the primary mod (v1) homotopy Bockstein β1,1 to the homology op-
eration Q∗

1 dual to Milnor’s primitive Q1 = P 1δ − δP 1 ∈ A.

Proof This exact sequence is the sequence associated to the cofibre sequence
in (2.5), where we have replaced V (1)[2p − 3]nX by V (1)nX via ρ∗, which
is an isomorphism for these values of n, by strong convergence of the Atiyah-
Hirzebruch spectral sequence. The assertion on α1 is true if X = S, and fol-
lows by naturality for X an arbitrary ring spectrum.

The self-map f = (Σ2p−1i1)j1 of V (1), which induces β1,1, is given in
mod (p) homology by the homomorphism f∗ : E(τ0, τ1) → E(τ0, τ1) of de-
gree 1 − 2p with f∗(1) = f∗(τ0) = 0, f∗(τ1) = 1 and f∗(τ0τ1) = τ0. We have
a commutative diagram

V (1)∗X
β1,1

g∗

V (1)∗X

g∗

E(τ0, τ1) ⊗ H∗(X;Fp)
f∗⊗1

e∗

E(τ0, τ1) ⊗ H∗(X;Fp)

μ

A∗ ⊗ H∗(X;Fp)
τ1

∗⊗1
H∗(X;Fp).

The horizontal arrows are of degree 1 − 2p, and τ1
∗ : A∗ → Fp is the dual

of τ1 with respect to the standard basis {τ(E)ξ(R)} of A∗ given in [33,
Chap. 6]. The homomorphism g∗ is induced in homotopy by the smash
product of the unit S → HFp with the identity of V (1) ∧ X, μ is induced
by the right homotopy action HFp ∧ V (1) → HFp , and e∗ is induced by
1 ∧ h ∧ 1 : HFp ∧ V (1) ∧ X → HFp ∧ HFp ∧ X. We have μg∗ = h∗ and
e∗g∗ = ν∗h∗, where ν∗ is the left A∗-coaction on H∗(X;Fp). This completes
the proof since (τ1

∗ ⊗ 1)ν∗ = Q∗
1 by definition of Q1, see [33, p. 163]. �
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Remark 2.4 For X connective, the Atiyah-Hirzebruch spectral sequence (2.4)
has only two non-trivial lines in internal degrees t ≤ 2p2 − 2p − 3, corre-
sponding to 1 and α1 in V (1)∗, see (2.3). The argument above shows that
there is a differential

d2p−2(z) = (P 1)∗(z)α1

for z ∈ E2∗,0. In total degrees less than 2p2 − 2p − 3 this is the only possibly
non-trivial differential.

Lemma 2.5 The map

Fp{α1} ⊕ Pp(x) → V (1)∗K(Z,2)

given by x �→ σσ(1) with |x| = 2 is an isomorphism in degrees less than
4p − 3.

Proof This follows from Theorem 2.1, Lemma 2.3 and the relation

(P 1)∗
(
γk+p−1(y)

) = kγk(y) (2.6)

in H∗(K(Z,2);Fp) ∼= Γ (y). �

Consider the cofibration

B1 = ΣK(Z,2)
i−→ B2

j−→ Σ2(K(Z,2)∧2) → Σ2K(Z,2)

extracted from the bar filtration (2.1) of K(Z,3). It induces an exact sequence

V (1)∗ΣK(Z,2)
i∗−→ V (1)∗B2

j∗−→ Ṽ (1)∗Σ2(K(Z,2)∧2)

Σ2μ∗−→ V (1)∗Σ2K(Z,2),

where μ∗ is induced by the product on K(Z,2). We know that
V (1)2p+1K(Z,2) = 0, by Lemma 2.5, which implies that the homomorphism

V (1)2p+2B2
j∗−→ Ṽ (1)2pK(Z,2)∧2

is injective. We know as well that the composition

Ṽ (1)∗K(Z,2) ⊗ Ṽ (1)∗K(Z,2)
k−→ Ṽ (1)∗K(Z,2)∧2 μ∗−→ V (1)∗K(Z,2)

sends the class xp−1 ⊗ x to zero. In particular, the class k(xp−1 ⊗ x) is in
the image of j∗. Let b̃′ ∈ V (1)2p+2B2 be the unique class which satisfies the
equation

j∗(b̃′) = Σ2k(xp−1 ⊗ x).
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Definition 2.6 We define the fundamental class e′
0 ∈ V (1)3K(Z,3) as the

image of the unit 1 ∈ V (1)0K(Z,0) under the iterated suspension σ 3. We
define

b′ ∈ V (1)2p+2K(Z,3)

as b′ = l2∗(b̃′), where l2 : B2 → K(Z,3) is the inclusion of the second sub-
space in the bar filtration.

Notice that the definition of b′ in V (1)-homotopy, using xp−1 ⊗x as above,
lifts the definition of the transpotence in the homology of the bar construction.
We use this fact in the proof of the following proposition.

Proposition 2.7 The class b′ ∈ V (1)∗K(Z,3) is non-nilpotent, and satisfies
the relation

b′p = −v2b
′.

There is a primary mod (v1) homotopy Bockstein

β1,1(b
′) = e′

0.

Proof First, we notice that the Fp-vector space V (1)2p2+2pK(Z,3), which
contains b′p , is of rank at most one. Indeed, consider the Atiyah-Hirzebruch
spectral sequence

E2
s,t

∼= Hs(K(Z,3);Fp) ⊗ V (1)t ⇒ V (1)s+tK(Z,3).

From Theorem 2.1 and the formula (2.3) for V (1)∗ in low degrees we deduce
that E2∗,∗ consists of Fp{f0 · v2, e0 · f0 · α1 · β1} in total degree 2p2 + 2p.
Suspending the relation (2.6) for k = 1 we get a relation

(P 1)∗(e1) = e0. (2.7)

Notice that for degree reasons the class e1 · f0 · β1 ∈ E2∗,∗ survives to E
2p−2∗,∗

as a product of e1 and f0 · β1. By Remark 2.4, and since f0 · β1 is a cycle, we
have a differential

d2p−2(e1 · f0 · β1) = e0 · f0 · α1 · β1,

and this implies the claim on V (1)2p2+2pK(Z,3).
The unit map S → K(2) factors through a map of ring spectra V (1) →

K(2). The induced ring homomorphism

V (1)∗K(Z,2) → K(2)∗K(Z,2)
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maps x to β(0), since these classes are defined as the double suspension of
the unit in V (1)0K(Z,0), respectively K(2)0K(Z,0). By construction, the
class b′ maps to the transpotence of β(0), which is b(0,1). We deduce that the
sub-V (1)∗-algebra of V (1)∗K(Z,3) generated by b′ maps surjectively onto
the subalgebra

P(v2, b(0,1))/(b
p

(0,1) + v2b(0,1))

of K(2)∗K(Z,3) generated by v2 and b(0,1). In particular b′ is non-nilpotent.
Thus V (1)2p2+2pK(Z,3) is of rank one, and injects into K(2)2p2+2pK(Z,3).
This implies the identity b′p = −v2b

′.
To prove the Bockstein relation, we map to homology. The Hurewicz

homomorphism h∗ : V (1)∗K(Z,3) → H∗(K(Z,3);Fp) is an isomorphism
in degrees 3 and 2p + 2, mapping e′

0 to e0 and b′ to the transpotence
ϕ(y) = f0 of y. We have a primary homology Bockstein β(f0) = e1 by Theo-
rem 2.1, and combining with (2.7) we obtain (P 1)∗β(f0) = e0. We also have
β(P 1)∗(f0) = 0 for degree reasons. Finally,

Q∗
1(f0) = (

(P 1)∗β − β(P 1)∗
)
(f0) = e0,

so by Lemma 2.3 the relation β1,1(b
′) = e′

0 holds. �

3 The units of ku and the higher Bott element

The aim of this section is to define low-dimensional classes in V (1)∗K(ku)

by using the inclusion of units.
We recall from [30] or [31, Definition 7.6] that the space of units GL1(A)

of an E∞-ring spectrum A is defined by the following pull-back square of
spaces

GL1(A) Ω∞A

π0

GL1(π0A) π0A.

Taking the vertical fiber over 1 ∈ GL1(π0A), we obtain a fiber sequence of
group-like E∞-spaces or infinite loop spaces

SL1(A) → GL1(A) → GL1(π0A),

with products given by the multiplicative structure of A. Here we can assume
that we have a model of GL1(A) and of SL1(A) which is actually a topologi-
cal monoid, see for example [39, Sect. 2.3]. The functor GL1 from E∞-ring
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spectra to infinite loop spaces is right adjoint, up to homotopy, to the suspen-
sion functor Σ∞+ . This follows from [31, Lemma 9.6].

In the case of ku, the space SL1(ku) is commonly denoted BU⊗. This nota-
tion refers to the product of the underlying H -space of BU⊗, which represents
the tensor product of virtual line bundles.

The first Postnikov section π : BU⊗ → K(Z,2), with homotopy fiber de-
noted by BSU⊗, admits a section j : K(Z,2) � BU(1) → BU⊗. Here the map
j represents viewing a line bundle as a virtual line bundle. Both π and j are
infinite loop maps, and we have a splitting of infinite loop-spaces

BU⊗ � K(Z,2) × BSU⊗,

see [30, V.3.1]. We denote by Bj : K(Z,3) → BBU⊗ a first delooping of j ,
fitting in a homotopy commutative diagram

K(Z,2)

s̃

j

BU⊗

s̃

ΩK(Z,3)
ΩBj

ΩBBU⊗,

(3.1)

where s̃ denotes the homotopy equivalence which is right adjoint to the sus-
pension s as in (2.2). We name y1 ∈ π2K(Z,2) ∼= Z the generator that maps
to y ∈ H2(K(Z,2);Fp) by the Hurewicz homomorphism. We have maps of
based spaces

K(Z,2)
j−→ BU⊗

c0−→ BU × {0} ⊂ BU × Z,

where c0 is the inclusion in BU × Z followed by the translation of the com-
ponent of 1 to that of 0 in the H -group BU × Z. The map c0j is a π2-
isomorphism, and we define

u = c0∗j∗(y1) ∈ π2(BU × Z).

We call u the Bott class. We have an isomorphism of rings

π∗(BU × Z) = π∗ku ∼= Z[u]
given by Bott periodicity. The map c0∗ : π∗(BU⊗) → π∗(BU × Z) is an iso-
morphism in positive degrees, and we define yn ∈ π2n(BU⊗) by requiring
c0∗(yn) = un. Finally, we define

σ ′
n ∈ V (1)2n+1BBU⊗ (3.2)
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as the image of yn under the composition

π2nBU⊗
h∗−→ V (1)2nBU⊗

σ−→ V (1)2n+1BBU⊗.

Here the first map is the Hurewicz homomorphism from (unstable) homotopy
to V (1)-homotopy, and σ is the suspension induced by the map s : ΣBU⊗ →
BBU⊗.

Lemma 3.1 Consider the homomorphism

Bj∗ : V (1)3K(Z,3) → V (1)3BBU⊗

induced by the map defined above. We have σ ′
1 = (Bj)∗(e′

0), where e′
0 =

σ 3(1) ∈ V (1)3K(Z,3), as given in Definition 2.6.

Proof We have a commutative diagram

π2K(Z,2)
h∗

j∗

V (1)2K(Z,2)
σ

j∗

V (1)3K(Z,3)

Bj∗

π2BU⊗
h∗

V (1)2BU⊗
σ

V (1)3BBU⊗.

The right-hand square is induced in V (1)-homotopy from the square left
adjoint to the square (3.1). The class y1 ∈ π2K(Z,2) was chosen so that
h∗(y1) = σ 2(1) in V (1)2K(Z,2) ∼= H2(K(Z,2);Fp). The lemma follows,
since

σ ′
1 = σh∗j∗(y1) = (Bj)∗σh∗(y1) = (Bj)∗σ 3(1) = (Bj)∗(e′

0). �

The space Ω∞K(ku) is defined as the group completion of the topological
monoid

⊔
n BGLn(ku), with product modelling the block-sum of matrices,

see for instance [20, VI.7]. The composition

w : BBU⊗ → BGL1(ku) →
⊔

n

BGLn(ku) → Ω∞K(ku) (3.3)

factors through an infinite loop map BBU⊗ → SL1K(ku), which is right ad-
joint to a map

ω : Σ∞+ BBU⊗ → K(ku)

of commutative S-algebras. We consider also the map of commutative S-
algebras

φ : Σ∞+ K(Z,3) → K(ku)
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defined as the composition of the suspension of Bj : K(Z,3) → BBU⊗ with
the map ω.

Definition 3.2 For n ≥ 1, we define

σn = ω∗(σ ′
n) ∈ V (1)2n+1K(ku),

where σ ′
n is the class given in (3.2). We define the “higher Bott element” as

b = φ∗(b′) ∈ V (1)2p+2K(ku),

where b′ ∈ V (1)2p+2K(Z,3) is the class given in Definition 2.6.

Remark 3.3 Notice that by Proposition 2.7 the classes b and σ1 are related by
a primary mod (v1) homotopy Bockstein β1,1(b) = σ1.

Remark 3.4 Assume that p is an odd prime. If R is a number ring containing
a primitive p-th root of unity ζp , for example R = Z[ζp], then the mod (p)

algebraic K-theory of R contains a non-nilpotent class

β ∈ V (0)2K(R),

called the Bott element, which we referred to in the introduction. It was de-
fined by Browder [15] using the composition

BCp → BGL1R → Ω∞K(R)

analogous to (3.3), and its adjoint

φ : Σ∞+ BCp → K(R).

Here Cp denotes the cyclic subgroup of order p of GL1(R) generated by ζp .
By inspection, the class x = ζp − 1 satisfies xp = 0 in the group-ring
Fp[Cp] = V (0)0Cp , and has a well defined “transpotence” β ′ ∈ V (0)2BCp ,
supporting a primary mod (p) homotopy Bockstein β0,1(β

′) .= σ(1) ∈
V (0)1BCp . The classical Bott element can then be defined as

β = φ∗(β ′) ∈ V (0)2K(R).

An embedding of rings R ⊂ C
top, where C

top has the Euclidean topology,
induces a map of commutative S-algebras ι : K(R) → K(Ctop) = ku in al-
gebraic K-theory. Browder’s Proposition [15, 2.2] implies that ι∗φ∗(β ′) = u,
where u is the Bott class in V (0)∗ku ∼= P(u). This proves that β is non-
nilpotent and is related to the Bott periodicity of topological K-theory. Snaith
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showed [40] that the relation β ′p = v1β
′ in V (0)∗BCp promotes to the rela-

tion

βp−1 = v1

in V (0)∗K(R).

The remark above makes it clear that our construction of b ∈
V (1)2p+2K(ku) is inspired from the classical Bott element, and that these
classes share interesting properties. This provides some justification for call-
ing b a higher Bott element. Here higher refers to the fact that b lives one
chromatic step higher than β , in the sense that it is defined only in algebraic
K-theory modulo (p, v1) and that it is related to v2-periodicity. Indeed, recall
from Theorem 1.1 and Proposition 1.3 that b is non-nilpotent and that the
relation b′p = −v2b

′ in V (1)∗K(Z,3) promotes to the relation

bp−1 = −v2

in V (1)∗K(ku). Our proof of these assertions relies on the computation of the
cyclotomic trace for ku, and is much more technical then in the number ring
case: unfortunately, in the present situation we don’t have an analogue of the
map K(R) → K(Ctop), but see the remark below for a possible candidate.

Remark 3.5 John Rognes conjectured [4] that if Ω1 is a separably closed
K(1)-local pro-Galois extension of ku, in the sense of [38], then there is a
weak equivalence

LK(2)K(Ω1) � E2,

where LK(2) is the Bousfield localization functor with respect to the Morava
K-theory K(2), and where E2 is the second Morava E-theory spectrum [21]
with coefficients

(E2)∗ = W(Fp2)[[u1]][u,u−1].
This would provide a map

ι : K(ku) → LK(2)K(Ω1) � E2

that might play the role, at this chromatic level, of the map K(R) → K(Ctop)

mentioned in Remark 3.4. Since V (1)∗E2 ∼= Fp2[u,u−1] with up2−1 = v2,
we presume that the class b would be detected by the non-nilpotent class

ι∗(b) = αup+1 ∈ V (1)∗E2

for some α ∈ Fp2 \ Fp with αp−1 = −1. More generally, we expect that a pe-
riodic higher Bott element can be defined in V (1)∗K(A) if A is an commuta-
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tive S-algebra with an S-algebra map A → Ω1 and a suitable (p − 1)th-root
of v1 in V (0)∗A.

4 The trace map

In this section, we consider the Bökstedt trace map [11]

tr : K(ku) → THH(ku)

to topological Hochschild homology. This is a map of commutative S-
algebras, and it induces a homomorphism of graded-commutative algebras in
V (1)-homotopy, which we just call the trace. Our aim here is to prove that for
n ≤ p − 2 the classes σn and b defined above are non-zero in V (1)∗K(ku), as
well as some of their products, see Proposition 4.6. We achieve this by show-
ing that these classes have a non-zero trace in V (1)∗THH(ku). To this end,
we briefly recall the computation of V (1)∗THH(ku) given in [1, 9.15].

The topological Hochschild homology spectrum THH(ku) is a ku-algebra,
and its V (1)-homotopy groups form an algebra over the truncated poly-
nomial algebra V (1)∗ku = Pp−1(u), where we also denote by u the mod
(p, v1) reduction of the Bott class u ∈ π2ku. There is a free Fp-sub-algebra
E(λ1) ⊗ P(μ) in V (1)∗THH(ku), and there is an isomorphism of E(λ1) ⊗
P(μ) ⊗ Pp−1(u)-modules

V (1)∗THH(ku) ∼= E(λ1) ⊗ P(μ) ⊗ Q∗, (4.1)

where Q∗ is the Pp−1(u)-module given by

Q∗ = Pp−1(u) ⊕ Pp−2(u){a0, b1, a1, b2, . . . , ap−2, bp−1} ⊕ Pp−1(u){ap−1}.
The degree of these generators is given by |λ1| = 2p − 1, |μ| = 2p2, |ai | =
2pi + 3 and |bj | = 2pj + 2. The isomorphism (4.1) is an isomorphism of
Pp−1(u)-algebras if the product on the Pp−1(u)-module generators of Q∗ is
given by the relations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bibj = ubi+j i + j ≤ p − 1,

bibj = ubi+j−pμ i + j ≥ p,

aibj = uai+j i + j ≤ p − 1,

aibj = uai+j−pμ i + j ≥ p,

aiaj = 0 0 ≤ i, j ≤ p − 1.

(4.2)

Here by convention b0 = u. For example we have a product

(ukai)(u
lbj ) = up−2ap−1

if k + l = p − 3 and i + j = p − 1.



On the algebraic K-theory of the complex K-theory spectrum 631

Remark 4.1 The class μ is called μ2 in [1], but we adopt here the notation
of [2].

The classes un−1a0 ∈ V (1)2n+1THH(ku) for 1 ≤ n ≤ p−2 are constructed
as follows. The circle action S1+ ∧ THH(ku) → THH(ku) restricts in the ho-
motopy category to a map d : ΣTHH(ku) → THH(ku), which in any homol-
ogy theory E∗ induces Connes’ operator

d : E∗THH(ku) → E∗+1THH(ku). (4.3)

We have an S-algebra map l : ku → THH(ku) given by the inclusion of zero-
simplices. Composing the induced map in E∗-homology with d yields a sus-
pension homomorphism

dl∗ : E∗ku → E∗+1THH(ku),

see [32, 3.2] (it is often denoted σ ). For 1 ≤ n ≤ p − 2, we define the class
un−1a0 as the image

un−1a0 = dl∗(un)

of un ∈ V (1)∗ku. Mapping to homology, we can show that these classes are
non-zero. By Lemma 2.3, the Hurewicz homomorphism

h∗ : V (1)∗THH(ku) → H∗(THH(ku);Fp)

is an isomorphism in degrees ∗ ≤ 2p−3 (notice that α1 = 0 in V (1)∗THH(ku)

since THH(ku) is a ku-algebra). Let x = h∗(u) ∈ H2(ku;Fp) be the image of
u ∈ V (1)2ku. We then have h∗(un−1a0) = dl∗(xn) in H2n+1(THH(ku);Fp),
and this class represents the permanent cycle 1 ⊗ xn ∈ E1

1,2n(ku) in the Bök-
stedt spectral sequence

E1
s,∗(ku) = H∗(ku;Fp)⊗(s+1),

E2
s,∗(ku) = HH

Fp
s,∗

(
H∗(ku;Fp)

) ⇒ Hs+∗(THH(ku);Fp).

This proves that the classes h∗(un−1a0) are non-zero for these values of n.
We refer to [1, Sect. 9] for more details.

Lemma 4.2 If 1 ≤ n ≤ p − 2, the class σ ′
n of (3.2) maps to the class un−1a0

under the composition

V (1)∗BBU⊗
ω∗−→ V (1)∗K(ku)

tr∗−→ V (1)∗THH(ku).
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Proof As mentioned above, h∗ : V (1)2n+1THH(ku) → H2n+1(THH(ku);Fp)

is an isomorphism for n ≤ p − 2 and maps un−1a0 to dl∗(xn). Thus, passing
to homology and using the definition of σ ′

n in (3.2), if suffices to prove that
the composition

H2n(BU⊗;Fp)
σ−→ H2n+1(BBU⊗;Fp)

tr∗ω∗−→ H2n+1(THH(ku);Fp)

maps zn = h∗(yn) ∈ H2n(BU⊗;Fp) to dl∗(xn). Here we also denoted by
h∗ the Hurewicz homomorphism π2nBU⊗ → H2n(BU⊗;Fp). First, we need
some information on the trace map. We will use the following commutative
diagram of spaces

BBU⊗
i

w

BcyBU⊗

τ

BU⊗
l

c1

Ω∞K(ku)
Ω∞tr

Ω∞THH(ku) Ω∞ku,
l

(4.4)

which is assembled from [39, Sect. 4]. Here the space BcyBU⊗ is the realiza-
tion of the cyclic nerve of the topological monoid BU⊗ and, as Ω∞THH(ku),
is equipped with a canonical S1-action. The map τ is the realization of a mor-
phism of cyclic spaces, and is therefore S1-equivariant. The maps l are given
by the inclusion of 0-simplices, while c1 is the inclusion of the component
of 1. There is a homotopy fibration [39, Proposition 3.1]

BU⊗
l−→ BcyBU⊗

p−→ BBU⊗, (4.5)

and the map p admits a section up to homotopy i : BBU⊗ → BcyBU⊗.
Let d be Connes’ operator on H∗(BcyBU⊗;Fp) and H∗(Ω∞THH(ku);Fp).

It commutes with τ∗ : H∗(BcyBU⊗;Fp) → H∗(Ω∞THH(ku);Fp) since τ is
equivariant. In the next lemma, we prove that

dl∗(zn) = i∗σ(zn)

holds in H2n+1(B
cyBU⊗;Fp). Using (4.4), we deduce

(Ω∞tr)∗w∗σ(zn) = τ∗i∗σ(zn) = τ∗dl∗(zn) = dτ∗l∗(zn) = dl∗c1∗(zn).

Finally, composing with the stabilization map

st : H∗(Ω∞THH(ku);Fp) → H∗(THH(ku);Fp)

to spectrum homology, we obtain

tr∗ω∗σ(zn) = st(Ω∞tr)∗w∗σ(zn) = stdl∗c1∗(zn) = dl∗(xn).
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For the last equality, we used that the stabilization commutes with dl∗, and
that stc1∗(zn) = xn for 1 ≤ n ≤ p − 2. �

Lemma 4.3 The equality dl∗(zn) = i∗σ(zn) holds in H2n+1(B
cyBU⊗;Fp).

Proof We consider the homotopy fibration (4.5). Since H∗(BU⊗;Fp) is con-
centrated in even degrees, the map p∗ : H∗(BcyBU⊗;Fp) → H∗(BBU⊗;Fp)

restricts to an isomorphism

p∗ : Prim
(
H2n+1(B

cyBU⊗;Fp)
) → Prim

(
H2n+1(BBU⊗;Fp)

)

of the subgroups of primitive elements in degree 2n + 1, with the restriction
of i∗ as inverse. The class l∗(zn) is spherical, hence primitive, and it follows
from d(1) = 0 that dl∗(zn) is also primitive.

Next, we consider the diagram

S1 × BU⊗
1×l

S1 × BcyBU⊗
μ

BcyBU⊗

p

S1 ∧ BU⊗
s

BBU⊗,

where μ denotes the S1-action on BcyBU⊗ and s the suspension map (2.2).
This diagram is commutative, as can be checked at simplicial level by using
the definition of μ, see for example [27, 7.1.9]. Therefore p∗dl∗(zn) = σ(zn),
and since dl∗(zn) is primitive, we have

dl∗(zn) = i∗p∗dl∗(zn) = i∗σ(zn). �

Lemma 4.4 The class b′ maps to the class b1 under the composition

V (1)∗K(Z,3)
φ∗−→ V (1)∗K(ku)

tr∗−→ V (1)∗THH(ku).

Proof We know from Lemmas 3.1 and 4.2 that e′
0 ∈ V (1)3K(Z,3) maps to

the class a0 in V (1)3THH(ku). We have primary mod (v1) homotopy Bock-
stein

β1,1(b
′) = e′

0 and β1,1(b1) = a0

in V (1)∗K(Z,3) and V (1)∗THH(ku) respectively, see Proposition 2.7 and [1,
9.19]. Moreover V (1)2p+2THH(ku) = Fp{b1}, so that β1,1 is injective on this
group. The result follows, since

β1,1tr∗φ∗(b′) = tr∗φ∗β1,1(b
′) = tr∗φ∗(e′

0) = a0. �
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Let κ : ku → kup be the completion at p. It induces the inclusion Z[u] →
Zp[u] of coefficients rings.

Definition 4.5 We also denote by

σn ∈ V (1)2n+1K(kup) and b ∈ V (1)2p+2K(kup)

the image under κ∗ : V (1)∗K(ku) → V (1)∗K(kup) of the classes σn and b

defined in Definition 3.2.

Proposition 4.6 The classes

{
bk for 0 ≤ k ≤ p − 2, and
σnb

l for 1 ≤ n ≤ p − 2 and 0 ≤ l ≤ p − 2 − n

are non-zero in V (1)∗K(ku) and in V (1)∗K(kup).

Proof For V (1)∗K(ku), it follows from Lemmas 4.2, 4.4 and the structure
of V (1)∗THH(ku) given in (4.2). In more detail, we have tr∗(bk) = bk

1 �= 0
for k ≤ p − 2 and tr∗(σnb

l) = un−1a0b
l
1 = un+l−1al �= 0 for l ≤ p − 3 and

n + l − 1 ≤ p − 3. Notice that we have a commutative diagram

V (1)∗K(ku)
tr∗

κ∗

V (1)∗THH(ku)

κ∗

V (1)∗K(kup)
tr∗

V (1)∗THH(kup).

The map κ : THH(ku) → THH(kup) is a weak equivalence after p-comple-
tion, so in this diagram the right-hand κ∗ is an isomorphism. This proves that
the result also holds for V (1)∗K(kup). �

Remark 4.7 We claimed in Theorem 1.1 and Proposition 1.3 that b is non-
nilpotent in V (1)∗K(ku). However, we have

tr∗(bp−1) = tr∗(b)p−1 = b
p−1
1 = up−2bp−1 = 0

in V (1)∗THH(ku), so that the Bökstedt trace is not sufficient for proving this
assertion. This is of course also predicted by our other claim that bp−1 =
−v2 holds in V (1)∗K(ku). Indeed, v2 maps to zero in V (1)∗THH(ku) since
THH(ku) is a ku-algebra.
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5 Algebraic K-theory in low degrees

In this section, we compute the groups V (1)∗K(kup) in degrees ∗ ≤ 2p − 2.
This complements the computations presented in the next sections, which are
based on evaluating the fixed points of THH(ku) and which are valid only in
degrees larger than 2p − 2, see Proposition 6.7.

Consider the Adams summand

�p = kuhΔ
p

of kup , where Δ ∼= Z/(p−1) is the finite subgroup of the p-adic units, acting
on kup by p-adic Adams operations, and where (−)hΔ denotes the homo-
topy fixed points. By Theorem 10.2 of [1], the natural map V (1)∗K(�p) →
V (1)∗K(kup) factors through an isomorphism

V (1)∗K(�p) ∼= (
V (1)∗K(kup)

)Δ ⊂ V (1)∗K(kup) (5.1)

onto the elements of V (1)∗K(kup) fixed under the induced action of Δ. In
the sequel, we identify V (1)∗K(�p) with its image in V (1)∗K(kup).

The V (1)-homotopy of K(�p) is computed in [2]. In the degrees we are
concerned with here, namely ∗ ≤ 2p − 2, V (1)∗K(�p) is generated as an
Fp-vector space by the classes listed in

{1, λ1t
d , s, ∂λ1 |0 < d < p}, (5.2)

of degree |λ1t
d | = 2p − 2d − 1, |s| = 2p − 3 and |∂λ1| = 2p − 2, see [2, 9.1]

(where the sporadic v2-torsion class s was denoted a). The zeroth Postnikov
section �p → HZp is a (2p − 2)-connected map, so that the induced map
K(�p) → K(Zp) is (2p − 1)-connected [9, Proposition 10.9]. All the classes
listed in (5.2) map to classes with same name in V (1)∗K(Zp), which is given
by the formula

V (1)∗K(Zp) ∼= E(λ1) ⊕ Fp{s, ∂λ1} ⊕ Fp{λ1t
d |0 < d < p}.

The name of the classes in this formula refers to permanent cycles in
the S1 homotopy fixed-point spectral sequence used in the computation of
V (1)∗K(Zp) by traces, compare with Theorem 7.9. If desired, these classes
could be given a more memorable name by means of the inclusion

V (0)∗K(Zp) → V (0)∗K(Qp(ζp)),

in the target of which they can be decomposed as a product of a unit and a
power of the Bott element β ∈ V (0)2K(Qp(ζp)).

Using the inclusion given in (5.1), we view the classes listed in (5.2) as
elements of V (1)∗K(kup). The following lemma implies that these classes
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are linearly independent of the classes in V (1)∗K(kup) constructed in the
previous section.

Lemma 5.1 The non-zero classes bk and σnb
l in V (1)∗K(kup) given in Pro-

position 4.6 are not fixed under the action of Δ.

Proof All these classes map into V (1)∗THH(ku) to classes which do not lie in
the image of V (1)∗THH(�p), and hence which are not fixed under the action
of Δ, see Proposition 10.1 of [1]. �

Proposition 5.2 The inclusion

Fp{1, σn, λ1t
d , s, ∂λ1 |1 ≤ n ≤ p − 2, 0 < d < p} ⊂ V (1)∗K(kup)

of graded Fp-vector spaces is an isomorphism in degrees ≤ 2p − 2.

Proof We have constructed all the classes listed above and have argued that
they are linearly independent. It suffices therefore to compute the dimension
of V (1)nK(kup) as an Fp-vector space for all 0 ≤ n ≤ 2p − 2.

Consider a double loop map ΩS3 → BU⊗ such that the composition

S2 → ΩS3→BU⊗,

where S2 → ΩS3 is the adjunction unit, represents the class y1 ∈ π2BU⊗
defined in Sect. 3. By adjunction we have a map of E2-ring spectra

S[ΩS3] → ku,

where S[ΩS3] is another notation for the suspension spectrum Σ∞+ ΩS3. We
refer to [3, Proposition 2.2] for some more details on the construction of
this map. After p-completion this map is (2p − 3)-connected, and induces
a (2p − 2)-connected map K(S[ΩS3]p) → K(kup). The dimension of the
Fp-vector space V (1)nK(S[ΩS3]p) for n ≤ 2p − 2 is computed in the fol-
lowing lemma, and this completes the proof of this proposition. Notice that a
priory

V (1)2p−2K(S[ΩS3]p) → V (1)2p−2K(kup)

is only surjective, but luckily V (1)2p−2K(S[ΩS3]p) is of rank one. Since
we know that the rank of V (1)2p−2K(kup) is at least one, we also have an
isomorphism in this degree. �
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Lemma 5.3 The dimension of V (1)nK(S[ΩS3]p) as an Fp-vector space is
⎧
⎪⎪⎨

⎪⎪⎩

1 if n = 0,1,2p − 2,

2 if n is odd with 3 ≤ n ≤ 2p − 5,

3 if n = 2p − 3,

0 for other values of n ≤ 2p − 2.

Proof We compute V (1)∗K(S[ΩS3]p) in degrees less than 2p − 1 by using
the cyclotomic trace map to topological cyclic homology [11], which sits in
a cofibre sequence [22]

K(S[ΩS3]p)p
trc−→ TC(S[ΩS3]p) → Σ−1HZp → ΣK(S[ΩS3]p)p.

Here TC(X) = TC(X;p) denotes the (p-completed) topological cyclic ho-
mology spectrum of a spectrum X. By inspection, it suffices to prove that we
have

dimFp
V (1)nTC(S[ΩS3]p) =

⎧
⎨

⎩

1 if n = −1,0,1,2p − 2,

2 if n is odd with 3 ≤ n ≤ 2p − 3,

0 for other values of n ≤ 2p − 2.
(5.3)

Indeed, V (1)∗Σ−1HZp consists of a copy of Fp in degrees −1 and 2p − 2,
and is zero in other degrees. We have an isomorphism V (1)−1TC(S[ΩS3]p)

→ V (1)−1Σ
−1HZp , and the sporadic class s is in the image of the connect-

ing homomorphism

V (1)2p−2Σ
−1HZp → V (1)2p−3K(S[ΩS3]p),

by naturality with respect to S[ΩS3]p → HZp , see for example [2, Proof
of 9.1].

The reduced topological cyclic homology spectrum T̃C(S[ΩS3]p) is the
homotopy fibre of the map c : TC(S[ΩS3]p) → TC(Sp) induced by the map
S3 → ∗ to a one-point space. The maps c admits a splitting, and we have a
decomposition

TC(S[ΩS3]p) � TC(Sp) ∨ T̃C(S[ΩS3]p).

The spectrum TC(Sp) decomposes as

TC(Sp) � Sp ∨ ΣCP ∞−1,

where CP ∞−1 is the (p-completed) Thom spectrum of minus the canonical line
bundle on CP ∞, see [29]. The homology of ΣCP ∞−1 is given by

H∗(ΣCP ∞−1;Fp) ∼= Fp{xi | i ≥ −1}
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with |xi | = 2i + 1. Moreover these classes can be chosen so that the relations

(P 1)∗(xp−2) = x−1 and (P 1)∗(xp−1) = 0

hold. It follows from Lemma 2.3 that we have an inclusion

Fp{ci | − 1 ≤ i ≤ p − 3} ∪ Fp{α(x0)} ⊂ V (1)∗(ΣCP ∞−1),

which is an isomorphism in degrees ∗ ≤ 2p − 2, with h∗(ci) = xi . These
classes have degree |ci | = 2i + 1 and |α(x0)| = 2p − 2.

By [12, 3.9], we have a decomposition

T̃C(S[ΩS3]p) � Σ∞S3
p ∨ Ṽ ,

where Ṽ is the (p-completed) homotopy fiber of the composition

Σ∞Σ(ES1+ ∧S1 LS3)
trf−→ Σ∞LS3 ε1−→ Σ∞S3.

Here trf is the dimension-shifting S1-transfer on the free loop space LS3 of S3,
and ε1 is the evaluation at 1 ∈ S1, see [29]. We consider the Serre spectral
sequence

E2∗∗ = H∗
(
BS1;H∗(LS3,Fp)

) ⇒ H∗(ES1 ×S1 LS3;Fp).

We have isomorphisms

H∗(BS1;Fp) ∼= H∗(K(Z,2);Fp) = Γ (y) and

H∗(LS3;Fp) ∼= P(z) ⊗ E(dz).

Here z ∈ H2(ΩS3;Fp) ⊂ H2(LS3;Fp) and dz ∈ H3(LS3;Fp) is the suspen-
sion of z associated to the circle action on LS3. In particular, we have a non-
zero d2-differential

d2(yz) = dz.

For degree reasons no further non-zero differential involves the classes in total
degree less than 2p, and we have an inclusion

Pp(y) ⊕ Fp{zj |1 ≤ j ≤ p − 1} ⊂ H∗(ES1 ×S1 LS3;Fp)

which is an isomorphism in degrees less than 2p. We deduce that the inclu-
sion

ΣFp{zj |1 ≤ j ≤ p − 1} ⊂ H∗(Σ∞Σ(ES1+ ∧S1 LS3);Fp)
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is an isomorphism in degrees less the 2p − 1. The homomorphism

(ε1trf)∗ : H∗(Σ∞Σ(ES1+ ∧S1 LS3);Fp) → H∗(S3;Fp) = E(e)

maps Σz to a generator e of H3(S
3;Fp) since the restriction of trf to

Σ∞Σ(S1+ ∧S1 LS3) is induced by the circle action. This implies that we have
an inclusion

Fp{e,Σzj |2 ≤ j ≤ p − 2} ⊂ H∗(Σ∞S3
p ∨ Ṽ ;Fp) ∼= H∗(T̃C(S[ΩS3]p);Fp)

which is an isomorphism in degrees smaller than 2p − 1. By Lemma 2.3

Fp{e,Σzj |2 ≤ j ≤ p − 2} ⊂ V (1)∗T̃C(S[ΩS3]p)

is also an isomorphism in degrees less than 2p − 1. In summary, we have

V (1)∗TC(S[ΩS3]p) ∼= V (1)∗ ⊕ V (1)∗ΣCP ∞−1 ⊕ V (1)∗T̃C(S[ΩS3]p),

which is isomorphic to

Fp{1, α1, ci, α(x0), e,Σzj | − 1 ≤ i ≤ p − 3, 2 ≤ j ≤ p − 2}
in degrees smaller than 2p − 1. This proves that formula (5.3) for the rank of
the Fp-vector space V (1)∗TC(S[ΩS3]p) is correct. �

Remark 5.4 In an earlier proof of this lemma we used the space BU(1) and
the map θ : Σ∞+ BU(1) → ku of commutative S-algebras. I thank John Rognes
for noticing that using ΩS3 instead simplifies the computation. The maps

S[ΩS3] → Σ∞+ BU(1) → ku

are π0-isomorphisms and rational equivalences. We use this in [3] to deter-
mine the rational homotopy type of K(ku).

6 The fixed points

In this section we compute the V (1)-homotopy groups of the homotopy limit

TF(kup) = holimn,F THH(kup)Cpn ,

where F : THH(kup)
C

pn+1 → THH(kup)Cpn is the Frobenius map. This
will be used in the next section to compute the topological cyclic homol-
ogy of kup . The strategy to perform such computations was developed in
[9, 22, 43], but we will closely follow the exposition and adopt the notations
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of [2, Sects. 3, 5 and 6], with an exception: the G Tate construction on an
equivariant G spectrum X will be denoted by XtG instead of Ĥ(G,X). We
refer the reader to [2, Sect. 3] for a brief review of the homotopy commutative
norm-restriction diagram

K(kup)

trn
trn−1

THH(kup)hCpn

N

THH(kup)Cpn
R

Γn

THH(kup)
C

pn−1

Γ̂n

ΣTHH(kup)hCpn

THH(kup)hCpn

Nh

THH(kup)hCpn
Rh

THH(kup)tCpn ΣTHH(kup)hCpn

for any n ≥ 1, which is our essential tool. By passage to homotopy limits over
the Frobenius maps, we obtain the homotopy commutative diagram

K(kup)

trF
trF

ΣTHH(kup)hS1

N
TF(kup)

R

Γ

TF(kup)

Γ̂

Σ2THH(kup)hS1

ΣTHH(kup)hS1

Nh

THH(kup)hS1
Rh

THH(kup)tS
1

Σ2THH(kup)hS1 .

The map i∗ : V (1)∗THH(�p) → THH(kup) factors through an isomorphism
onto the Δ-fixed elements of V (1)∗THH(kup),

i∗ : V (1)∗THH(�p)
∼=−→ (

V (1)∗THH(kup)
)Δ ⊂ V (1)∗THH(kup), (6.1)

see [1, 10.1]. The corresponding results hold also for the Cpn or S1 ho-
motopy fixed points of THH, for the Cpn or S1 Tate construction on THH,
and for TC and K , see [1, 10.2]. In the sequel, we identify V (1)∗THH(�p),
V (1)∗TC(�p), etc. with their image under i∗. We have a similar statement for
the various spectral sequences computing the V (1)-homotopy of these spec-
tra.

Lemma 6.1 Let G = S1 or G = Cpn , and let E∗(G, �p) and E∗(G, kup)

be the G homotopy fixed-point spectral sequences converging strongly to
V (1)∗THH(�p)hG and V (1)∗THH(kup)hG, respectively. Then the morphism
of spectral sequences induced by the map �p → kup is equal to the inclusion
of the Δ fixed points

E∗(G, �p) = (
E∗(G, kup)

)Δ ⊂ E∗(G, kup).
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This holds also for the morphism induced on the G Tate spectral sequences
converging to V (1)∗THH(�p)tG and V (1)∗THH(kup)tG, which is given by

Ê∗(G, �p) = (
Ê∗(G, kup)

)Δ ⊂ Ê∗(G, kup).

Proof The group Δ acts on kup by S-algebra maps, and it acts S1-
equivariently on THH(kup). In particular Δ acts by morphisms of spectral
sequences on E∗(G, kup) and Ê∗(G, kup), and hence it suffices to prove that
the claims hold at the level of the E2-terms. This follows from (6.1). �

From now on, we will omit kup from the notation and just write E∗(G)

and Ê∗(G) for the G homotopy fixed-point and G Tate spectral sequences
converging to V (1)∗THH(kup)hG and V (1)∗THH(kup)tG, respectively.

At this point, we recall the notion of δ-weight introduced in [1, 8.2].
We fix a generator δ of the group Δ acting on kup , K(kup), THH(kup),
TC(kup), etc. The self-map δ∗ of V (1)∗kup = Pp−1(u) maps u to αu for
some generator α of F

×
p . We say that a class v ∈ V (1)∗K(kup) has δ-weight

i ∈ Z/(p − 1) if δ∗(v) = αiv. The same convention holds for classes in
V (1)∗THH(kup), V (1)∗TC(kup), etc. For example, the generators ai and bj

of V (1)∗THH(kup) given in (4.1) all have δ-weight 1, see [1, 10.1]. Similarly,
it follows from its definition that b ∈ V (1)∗K(kup) has δ-weight 1. Since δ∗
is diagonalizable, we can reinterpret Lemma 6.1 by saying that each of these
spectral sequences for kup has an extra Z/(p − 1)-grading given by the δ-
weight, and that its homogeneous summand of δ-weight 0 consists of the
corresponding spectral sequence for �p . Together with the internal and filtra-
tion degrees, the δ-weight endows the Er -terms of these spectral sequences
with a tri-grading that we will refer to in the computations below.

By a computation of McClure and Staffeldt [32], [2, 2.6], we have an iso-
morphism of Fp-algebras

V (1)∗THH(�p) ∼= E(λ1, λ2) ⊗ P(μ).

The induced map V (1)∗THH(�p) → V (1)∗THH(kup) sends λ1 and μ to the

classes with same name, and λ2 to the class a1b
p−2
1 .

Remark 6.2 In the sequel, we will frequently denote by λ2 the class a1b
p−2
1 .

The Cp-Tate spectral sequence

Ê(Cp)2
s,t = Ĥ−s

(
Cp,V (1)tTHH(kup)

) ⇒ V (1)s+tTHH(kup)tCp

has an E2-term given by

Ê(Cp)2 = P(t, t−1) ⊗ E(u1) ⊗ V (1)∗THH(kup)
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with t in bidegree (−2,0), u1 in bidegree (−1,0), and w ∈ V (1)tTHH(kup)

in bidegree (0, t). Recall the description of V (1)∗THH(kup) given in (4.1).

Lemma 6.3 In the Cp Tate spectral sequence Ê∗(Cp) the classes λ1, λ2, b1
and tμ are infinite cycles. There are non-zero differentials

d2(bi) = (1 − i)ai t

d2p(t1−p)
.= λ1 · t

d2p2
(tp−p2

)
.= λ2 · tp

d2p2+1(u1 · t−p2
)

.= tμ

with 0 ≤ i ≤ p − 1. The spectral sequence collapses at the Ê2p2+2-term,
leaving

Ê∞(Cp) =P(t±p2
) ⊗ E(λ1, a1) ⊗ Pp−1(b1)

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Fp{a1t
j , b1t

j |vp(j) = 1}.
Remark 6.4 Beware that in the lemma above, the index j appearing as a
power of t runs over all integers, positive or negative, with specified p-adic
valuation. The same remark holds for the Lemmas 6.10 and 6.12 below, and
also for the power j of μ in Lemmas 6.11 and 6.13 below.

Proof We know from [2, Proposition 4.8] that tμ is an infinite cycle. The
classes λ1, λ2 and b1 are also infinite cycles, see the argument given at the
top of [2, p. 21].

Let d be Connes’ operator (4.3) on V (1)∗THH(kup), and recall from above
the notation b0 = u. We have

d(b0) = a0,

and this relation is detected via the Hurewicz homomorphism in mod (p)

homology, see [1, Sect. 9]. It follows from [37, Sect. 3.3] that in the S1 ho-
motopy fixed-point spectral sequence

E2(S1) = P(t) ⊗ V (1)∗THH(kup) ⇒ V (1)∗THH(kup)hS1

we have a d2-differential

d2(b0) = a0t.

Since E2(S1) injects into Ê2(Cp) via RhF , this differential is also present
in Ê2(Cp). The differentials d2(bi) = (1 − i)ai t for i �= 0 follow easily from



On the algebraic K-theory of the complex K-theory spectrum 643

the case i = 0 and the multiplicative structure. Indeed d2(μ) = 0 for degree
reasons, and hence d2(u2μ) = 2uμa0t . From the relation bibp−i = u2μ we
deduce that d2(bi) = αiait for some αi ∈ Fp , because in V (1)∗THH(kup)

the equation xbp−i = uμa0 has x = ai as unique (homogeneous) solution.

First, notice that 0 = d2(b
p−1
1 ) = (p − 1)α1λ2, so we have α1 = 0. Next,

the relation b1bp−1 = u2μ implies that αp−1 = 2, while b1bi = ubi+1 for
i ≤ p − 2 implies that αi = 1 + αi+1. We deduce that αi = 1 − i, proving the
claim on the d2-differential, which leaves

Ê3(Cp) = P(t±1, tμ) ⊗ E(u1, λ1, a1) ⊗ Pp−1(b1).

Lemma 6.1 determines the given next three non-zero differentials, by com-
parison with the case of the �p treated in [2, Sect. 5.5], and this takes care
of the summand of δ-weight zero. The only algebra generators of Ê3(Cp) of
non-zero δ-weight are a1 and b1. We know that b1 is an infinite cycle. In the
S1 Tate spectral sequence, using the known differentials, the tri-grading and
the product, it is easy to see that a1 survives to the E2p2+2-term. Therefore
a1 also survives to the E2p2+2-term in Ê∗(Cp), via the morphism of spectral
sequences induced by F . The d2p differential leaves

Ê2p+1(Cp) = P(t±p, tμ) ⊗ E(u1, λ1, a1) ⊗ Pp−1(b1),

and the d2p2
differential leaves

Ê2p2+1(Cp) =P(t±p2
, tμ) ⊗ E(u1, λ1, a1) ⊗ Pp−1(b1) ⊕ E(u1, λ1)

⊗ Pp−2(b1) ⊗ P(tμ) ⊗ Fp{a1t
j , b1t

j |vp(j) = 1},

as can be computed using the relation a1 · bp−2 = λ2. Finally, d2p2+1 leaves

Ê2p2+2(Cp) =P(t±p2
) ⊗ E(λ1, a1) ⊗ Pp−1(b1)

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Fp{a1t
j , b1t

j |vp(j) = 1},
and at this stage the spectral sequence collapses for bidegree reasons. �

Remark 6.5 The d2-differential can also be determined by computing d(bi)

for i ≥ 0, using Connes’ operator in Hochschild homology (c.f. [1, 3.4]).

Definition 6.6 We call a homomorphism of graded groups k-coconnected if
it is an isomorphism in all dimensions greater than k and injective in dimen-
sion k.
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Proposition 6.7 The algebra map

(Γ̂1)∗ : V (1)∗THH(kup) → V (1)∗THH(kup)tCp

factorizes as the localization away from μ, followed by an isomorphism

V (1)∗THH(kup)[μ−1] → V (1)∗THH(kup)tCp

given by

λ1 �→ λ1, μ �→ t−p2
, bi �→ t (1−i)pb1, and ai �→ t (1−i)pa1

for 0 ≤ i ≤ p−1, up to some non-zero scalar multiples. In particular the map
(Γ̂1)∗ is (2p − 2)-coconnected.

Proof By naturality with respect to �p → kup and by the computation of
(Γ̂1)∗ for �p given in [2, Theorem 5.5], we know that the map (Γ̂1)∗ for kup

satisfies

λ1 �→ λ1, λ2 �→ λ2 and μ �→ t−p2
.

In V (1)∗THH(kup) we have multiplicative relations up−3aibj = λ2 for i +
j = p − 1, from which we deduce that (Γ̂1)∗(ukai) �= 0 and (Γ̂1)∗(ukbi) �= 0
for any 0 ≤ k ≤ p − 3 and any 0 ≤ i ≤ p − 1. For degree reasons, this forces

(Γ̂1)∗(ai) = t (1−i)pa1 and (Γ̂1)∗(bi) = t (1−i)pb1

up to some non-zero scalar multiples. �

Corollary 6.8 The canonical maps

Γn : THH(kup)Cpn → THH(kup)hCpn ,

Γ̂n : THH(kup)
C

pn−1 → THH(kup)tCpn ,

Γ : TF(kup) → THH(kup)hS1
,

Γ̂ : TF(kup) → THH(kup)tS
1
,

for n ≥ 1 all induce (2p − 2)-coconnected maps in V (1)-homotopy.

Proof The claims for Γn and Γ̂n follow from Proposition 6.7 and the gener-
alization of a theorem of Tsalidis [43] given in [13]. The claims for Γ and Γ̂

follow by passage to homotopy limits. �
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Definition 6.9 Let r(n) = 0 for all n ≤ 0, and let r(n) = pn + r(n−2) for all
n ≥ 1. Thus r(2n − 1) = p2n−1 + · · · + p (odd powers) and r(2n) = p2n +
· · · + p2 (even powers).

Lemma 6.10 In the Cpn Tate spectral sequence Ê∗(Cpn) the classes λ1, λ2,
b1 and tμ are infinite cycles. There are non-zero differentials

d2(bi) = (1 − i)ait

d2p(t1−p)
.= λ1 · t

d2p2
(tp−p2

)
.= λ2 · tp

with 0 ≤ i ≤ p − 1, leaving

Ê2p2+1(Cpn) =P(t±p2
) ⊗ E(un,λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ)

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ P(tμ)

⊗ Fp{a1t
j , b1t

j |vp(j) = 1}.

If n ≥ 2, then for each 1 ≤ k ≤ n − 1 there is a triple of non-zero differentials

d2r(2k)+2(b1t
j )

.= a1t
j · tp2k · (tμ)r(2k−2)+1

d2r(2k+1)(tp
2k−p2k+1

)
.= λ1 · tp2k · (tμ)r(2k−1)

d2r(2k+2)(tp
2k+1−p2k+2

)
.= λ2 · tp2k+1 · (tμ)r(2k)

with vp(j) = 2k − 1, leaving

Ê2r(2k+2)+1(Cpn) =P(t±p2k+2
) ⊗ E(un,λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ)

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ P(tμ)

⊗ Fp{a1t
j , b1t

j |vp(j) = 2k + 1}
⊕

⊕

1≤m≤k

T̂m(Cpn),
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where

T̂m(Cpn) =E(un,λ1) ⊗ Pr(2m)(tμ) ⊗ Fp{λ2t
j |vp(j) = 2m + 1}

⊕ E(un, a1) ⊗ Pp−1(b1) ⊗ Pr(2m−1)(tμ)

⊗ Fp{λ1t
j |vp(j) = 2m}

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ Pr(2m−2)+1(tμ)

⊗ Fp{a1t
j |vp(j) = 2m − 1}.

For n ≥ 1, there is a last non-zero differential

d2r(2n)+1(un · t−p2n

)
.= (tμ)r(2n−2)+1

after which the spectral sequence collapses, leaving

Ê∞(Cpn) =P(t±p2n

) ⊗ E(λ1, a1) ⊗ Pp−1(b1) ⊗ Pr(2n−2)+1(tμ)

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Pr(2n−2)+1(tμ)

⊗ Fp{a1t
j , b1t

j |vp(j) = 2n − 1}
⊕

⊕

1≤m≤n−1

T̂m(Cpn).

Next, we describe the Cpn homotopy fixed-point spectral sequence
E∗(Cpn) for THH(kup). It is algebraically easier to describe the Er -terms
of the Cpn homotopy fixed-point spectral sequence for THH(kup)tCp , which
we denote abusively by

μ−1E∗(Cpn) ⇒ V (1)∗(THH(kup)tCp)hCpn ,

compare with [2, p. 23]. We know from Proposition 6.7 that the map

Γ̂
hCpn

1 : THH(kup)hCpn → (THH(kup)tCp)hCpn

induces a morphism of spectral sequences

E∗(Cpn) → μ−1E∗(Cpn)

which on E2-terms (but not on higher terms) indeed corresponds to invert-
ing μ. By the same Proposition and by strong convergence of the spectral

sequences, the map Γ̂
hCpn

1 induces a (2p − 2)-coconnected homomorphism
in V (1)-homotopy.
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Lemma 6.11 In the Cpn homotopy fixed-point spectral sequence
μ−1E∗(Cpn) the classes λ1, λ2, b1 and tμ are infinite cycles. There are
non-zero differentials

d2(bi) = (1 − i)ait

d2p(μp−1)
.= λ1 · μ−1 · (tμ)p

d2p2
(μp2−p)

.= λ2 · μ−p · (t \ μ)p
2

with 0 ≤ i ≤ p − 1, leaving

μ−1E2p2+1(Cpn) =P(μ±p2
) ⊗ E(un,λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ)

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ P(tμ)

⊗ Fp{a1μ
j , b1μ

j |vp(j) = 1} ⊕ T1(Cpn),

where

T1(Cpn) =E(un,λ1) ⊗ Pp2(tμ) ⊗ Fp{λ2μ
j |vp(j) = 1}

⊕ E(un, a1) ⊗ Pp−1(b1) ⊗ Pp(tμ) ⊗ Fp{λ1μ
j |vp(j) = 0}

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ P(μ±1)

⊗ Fp{ai |0 ≤ i ≤ p − 1, i �= 1}.

If n ≥ 2, then for each 2 ≤ k ≤ n there is a triple of non-zero differentials

d2r(2k−2)+2(b1μ
j)

.= a1μ
j · μ−p2k−2 · (tμ)r(2k−2)+1

d2r(2k−1)(μp2k−1−p2k−2
)

.= λ1 · μ−p2k−2 · (tμ)r(2k−1)

d2r(2k)(μp2k−p2k−1
)

.= λ2 · μ−p2k−1 · (tμ)r(2k)

with vp(j) = 2k − 3, leaving

μ−1E2r(2k)+1(Cpn) =P(μ±p2k

) ⊗ E(un,λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ)

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ P(tμ)

⊗ Fp{a1μ
j , b1μ

j |vp(j) = 2k − 1}
⊕

⊕

1≤m≤k

Tm(Cpn),



648 C. Ausoni

where for m ≥ 2 we have

Tm(Cpn) =E(un,λ1) ⊗ Pr(2m)(tμ) ⊗ Fp{λ2μ
j |vp(j) = 2m − 1}

⊕ E(un, a1) ⊗ Pp−1(b1) ⊗ Pr(2m−1)(tμ)

⊗ Fp{λ1μ
j |vp(j) = 2m − 2}

⊕ E(un,λ1) ⊗ Pp−2(b1) ⊗ Pr(2m−2)+1(tμ)

⊗ Fp{a1μ
j |vp(j) = 2m − 3}.

For n ≥ 1, there is a last non-zero differential

d2r(2n)+1(un · μp2n

)
.= (tμ)r(2n)+1

after which the spectral sequence collapses, leaving

μ−1E∞(Cpn) =P(μ±p2n

) ⊗ E(λ1, a1) ⊗ Pp−1(b1) ⊗ Pr(2n)+1(tμ)

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Pr(2n)+1(tμ)

⊗ Fp{a1μ
j , b1μ

j |vp(j) = 2n − 1}
⊕

⊕

1≤m≤n

Tm(Cpn).

Proof We prove these two lemmas by induction on n, showing that Lem-
ma 6.10 for Cpn implies Lemma 6.11 for Cpn , which in turn implies
Lemma 6.10 for Cpn+1 . The induction starts with Lemma 6.10 for Cp , which
is the content of Lemma 6.3. Let us therefore assume given n ≥ 1 such that
Lemma 6.10 holds for Cpn . The homotopy restriction map

Rh : THH(kup)hCpn → THH(kup)tCpn

induces a morphism of spectral sequences (Rh)∗ : E∗(Cpn) → Ê∗(Cpn),
which at the E2-terms corresponds to inverting the class t ∈ E2−2,0(Cpn),

(Rh)2 : E2(Cpn) ⊂ E2(Cpn)[t−1] ∼= Ê2(Cpn), (6.2)

and can be pictured as the inclusion of the second quadrant into the upper-
half plane. As we will see below, although (Rh)r is not injective for r ≥ 3,
it detects all the non-trivial differentials of Er(Cpn). Taking into account the
multiplicative structure and the fact that λ1, λ2, b1 and tμ are infinite cycles,
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we claim that these differential are given by

d2(bi) = (1 − i)ait

d2p(t)
.= λ1 · t1+p

d2p2
(tp)

.= λ2 · tp+p2

with 0 ≤ i ≤ p − 1,

d2r(2k)+2(b1t
j )

.= a1t
j · tp2k · (tμ)r(2k−2)+1

d2r(2k+1)(tp
2k

)
.= λ1 · tp2k+p2k+1 · (tμ)r(2k−1)

d2r(2k+2)(tp
2k+1

)
.= λ2 · tp2k+1+p2k+2 · (tμ)r(2k)

if n ≥ 2, 1 ≤ k ≤ n − 1 and vp(j) = 2k − 1 with i ≥ 0, and finally

d2r(2n)+1(un)
.= (tμ)r(2n−2)+1 · tp2n

.

To prove this claim, we assume that some r ≥ 2 is given, and that Er(Cpn)

has been computed using the differentials dr ′
above with r ′ < r . The class tμ

is an infinite cycle, and Er(Cpn) is a P(tμ)-module. Our choice of generators
induces a decomposition Er(Cpn) ∼= F r(Cpn) ⊕ T r(Cpn), where F r(Cpn) is
a free P(tμ)-module and T r(Cpn) is a tμ-torsion module. By inspection, the
non-zero elements of T r(Cpn) are concentrated in filtration degrees s with
−r < s ≤ 0, so they cannot be boundaries. They cannot support non-zero dif-
ferentials either since a tμ-torsion class cannot map to a non-torsion class.
Thus the differential dr maps F r(Cpn) to itself and T r(Cpn) to zero. The
morphism (Rh)r maps F r(Cpn) injectively into Êr (Cpn), and it therefore
detects the non-zero differentials of Er(Cpn) as the non-zero differential of
Êr (Cpn) which lie in the second quadrant. These are precisely the differen-
tials given above. By induction on r , this determines all the non-trivial differ-
entials of E∗(Cpn). In the μ-inverted homotopy fixed-point spectral sequence
μ−1E∗(Cpn), these can be rewritten as the claimed differentials. This proves
Lemma 6.11 for Cpn .

We now turn to the proof of Lemma 6.10 for Cpn+1 . In the Tate spectral

sequence Ê∗(Cpn) the first non-zero differential of odd length originating
from a column of odd s-filtration is d2r(2n)+1. By [2, Lemma 5.2] the spec-
tral sequences Ê∗(Cpn) and Ê∗(Cpn+1) are abstractly isomorphic up to the
E2r(2n)+1-term included. The Frobenius map

F : THH(kup)
tC

pn+1 → THH(kup)tCpn
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induces a morphism of the corresponding Tate spectral sequences, which on
Er -terms with 2 ≤ r ≤ 2r(2n) + 1 maps the columns of even s-filtration
isomorphically. This detects all the claimed differentials of Êr (Cpn+1) for
2 ≤ r ≤ 2r(2n), and leaves

Ê2r(2n)+1(Cpn+1) = F̂ 2r(2n)+1(Cpn+1) ⊕
n−1⊕

m=1

T̂m(Cpn+1),

where F̂ 2r(2n)+1(Cpn+1) is the tμ-torsion free summand

F̂ 2r(2n)+1(Cpn+1) =P(t±p2n

) ⊗ E(un+1, λ1) ⊗ P(tμ)

⊗
(
Pp−1(b1) ⊗ E(a1) ⊕ Pp−2(b1)

⊗ Fp{a1t
−ip2n−1

, b1t
−ip2n−1 |0 < i < p}

)
.

The non-zero tμ-torsion elements of Ê2r(2n)+1(Cpn+1) are concentrated in
internal degrees t with 0 ≤ t < 2r(2n). In particular these elements cannot be
boundaries, and they cannot map to non-tμ-torsion elements. As in the case
of the homotopy fixed-point spectral sequence above, we deduce that for r ≥
2r(2n)+1 the differential dr can only affect the summand F̂ 2r(2n)+1(Cpn+1).

By Lemma 6.1 the summand of δ-weight 0 of Ê∗(Cpn+1) is equal to the image
of the injective morphism of spectral sequences

Ê∗(Cpn+1, �p) → Ê∗(Cpn+1, kup) = Ê∗(Cpn+1)

induced by the map �p → kup . Therefore, by [2, Theorem 6.1], the differen-
tials affecting the summand of δ-weight 0 of F̂ 2r(2n)+1(Cpn+1) at a later stage
are given by

d2r(2n+1)(tp
2n−p2n+1

)
.= λ1 · tp2n · (tμ)r(2n−1)

d2r(2n+2)(tp
2n+1−p2n+2

)
.= λ2 · tp2n+1 · (tμ)r(2n)

d2r(2n+2)+1(un+1 · t−p2n+2
)

.= (tμ)r(2n)+1,

(6.3)

together with the multiplicative structure and the fact that tμ is an infinite
cycle. It remains to prove that from the E2r(2n)+1-term on, the only non-zero
differentials supported by homogeneous algebra generators of δ-weight 1 are
given by

d2r(2n)+2(b1t
j )

.= a1t
j · tp2n · (tμ)r(2n−2)+1 (6.4)
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for vp(j) = 2n − 1. First, notice that for tri-degree reasons d2r(2n)+1 = 0, so
that F̂ 2r(2n)+2(Cpn+1) = F̂ 2r(2n)+1(Cpn+1). To detect the differential (6.4) we
make use of the (2p − 2)-coconnected map

(Γ̂n+1)∗ : V (1)∗THH(kup)Cpn → V (1)∗THH(kup)
tC

pn+1 ,

and argue as in [2, proof of 6.1]. There is a commutative diagram

THH(kup)hCpn

Fn

THH(kup)Cpn

Fn

Γn Γ̂n+1

THH(kup)
tC

pn+1

Fn

THH(kup) THH(kup)
Γ0

=
Γ̂1

THH(kup)tCp

where the vertical arrows are the n-fold Frobenius maps. The left-hand Frobe-
nius is given in V (1)-homotopy on the associated graded by the edge homo-
morphism

E∞∗,∗(Cpn) → E∞
0,∗(Cpn) ⊂ E2

0,∗(Cpn) = V (1)∗THH(kup),

which is known by induction hypothesis. For each 0 < � < p there is a direct
summand

Pr(2n−2)+1(tμ){a1μ
�p2n−3} ⊂ E∞∗,∗(Cpn),

and a1μ
�p2n−3

maps by Fn∗ to the class with same name in V (1)∗THH(kup).
Since (Γn)∗ is (2p−2)-coconnected, there is a class x� ∈ V (1)∗THH(kup)Cpn

with Fn∗ (x�) = a1μ
�p2n−3

in V (1)∗THH(kup). In E∞(Cpn) we have no non-
zero class of same total degree, same δ-weight and lower s-filtration than

(tμ)r(2n−2)+1 · a1μ
�p2n−3

,

which forces v
r(2n−2)+1
2 x� = 0 in V (1)∗THH(kup)Cpn . By Proposition 6.7,

the class (Γ̂1F
n)∗(x�) is represented by a1t

−�p2n−1 ∈ Ê∞(Cp), and therefore
(Γ̂n+1)∗(x�) must be detected in s-filtration 2�p2n−1 or higher. The only suit-
able class in Ê2r(2n)+2(Cpn+1) is a1t

−�p2n−1
, which therefore is a permanent

cycle representing (Γ̂n+1)∗(x�). Notice for later use that the same argument
shows that

a1 ∈ Ê
2r(2n)+2
0,2p+3 (Cpn+1)

is a permanent cycle. The map (Γ̂n+1)∗ is an isomorphism in degrees larger
than 2p − 2, and the relation v

r(2n−2)+1
2 (Γ̂n+1)∗(x�) = 0 implies that the infi-
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nite cycle (tμ)r(2n−2)+1 ·a1t
−�p2n−1

, of total degree 2p2n +2�p2n−1 +2p+1
and of δ-weight 1, is a boundary. On the other hand, the component of
Ê2r(2n)+1(Cpn+1) of total degree 2p2n + 2�p2n−1 + 2p + 2, of δ-weight 1
and of s-filtration degree exceeding by at least 2r(2n) + 2 the s-filtration de-
gree of (tμ)r(2n−2)+1 · a1t

−�p2n−1
reduces to

Fp{b1t
−�p2n−1 · t−p2n}.

This proves the existence of a non-zero differential

d2r(2n)+2(b1t
−�p2n−1 · t−p2n

)
.= (tμ)r(2n−2)+1 · a1t

−�p2n−1

for 0 < � < p. Since tp
2n

is a unit and a cycle we obtain the claimed differen-
tials (6.4). This leaves

Ê2r(2n)+3(Cpn+1) = F̂ 2r(2n)+3(Cpn+1)

⊕ E(un+1, λ1) ⊗ Pp−2(b1) ⊗ Pr(2n−2)+1(tμ)

⊗ Fp{a1t
j |vp(j) = 2n − 1}

⊕
n−1⊕

m=1

T̂m(Cpn+1),

with a tμ-torsion free summand

F 2r(2n)+3(Cpn+1) = P(t±p2n

) ⊗ E(un+1, λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ).

Again, further differentials can only affect the summand F 2r(2n)+3(Cpn+1).
Since b1 and a1 are infinite cycles, the next non-zero differentials are
d2r(2n+1) and d2r(2n+2), as given in (6.3), leaving

Ê2r(2n+2)+1(Cpn+1) = F̂ 2r(2n+2)+1(Cpn+1) ⊕
n⊕

m=1

T̂m(Cpn+1),

with

F̂ 2r(2n+2)+1(Cpn+1) =P(t±p2n+2
) ⊗ E(un+1, λ1) ⊗ P(tμ)

⊗
(
Pp−1(b1) ⊗ E(a1) ⊕ Pp−2(b1)

⊗ Fp{a1t
−ip2n+1

, b1t
−ip2n+1 |0 < i < p}

)
.

Notice that for tri-degree reasons, the classes a1t
−ip2n+1

and b1t
−ip2n+1

are
cycles at the E2r(2n+2)+1-stage. The third differential of (6.3) remains, after



On the algebraic K-theory of the complex K-theory spectrum 653

which the spectral sequence collapses for bidegree reasons, leaving

Ê∞(Cpn+1) =P(t±p2(n+1)

) ⊗ E(λ1, a1) ⊗ Pp−1(b1) ⊗ Pr(2n)+1(tμ)

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Pr(2n)+1(tμ)

⊗ Fp{a1t
j , b1t

j |vp(j) = 2n + 1}
⊕

⊕

1≤m≤n

T̂m(Cpn+1),

as claimed. This completes the induction step and the proof of Lemmas 6.10
and 6.11. �

Taking the limit over the Frobenius maps we obtain the following two lem-
mas.

Lemma 6.12 The associated graded Ê∞(S1) of V (1)∗THH(kup)tS
1

is given
by

Ê∞(S1) = E(λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ) ⊕
⊕

m≥1

T̂m(S1),

where

T̂m(S1) =E(λ1) ⊗ Pr(2m)(tμ) ⊗ Fp{λ2t
j |vp(j) = 2m + 1}

⊕ E(a1) ⊗ Pp−1(b1) ⊗ Pr(2m−1)(tμ) ⊗ Fp{λ1t
j |vp(j) = 2m}

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Pr(2m−2)+1(tμ)

⊗ Fp{a1t
j |vp(j) = 2m − 1}.

Lemma 6.13 The associated graded E∞(S1) of V (1)∗THH(kup)hS1
is

mapped by a (2p − 2)-coconnected homomorphism to

μ−1E∞(S1) = E(λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ) ⊕
⊕

m≥1

Tm(S1),

where

T1(S
1) =E(λ1) ⊗ Pp2(tμ) ⊗ Fp{λ2μ

j |vp(j) = 1}
⊕ E(a1) ⊗ Pp−1(b1) ⊗ Pp(tμ)

⊗ Fp{λ1μ
j |vp(j) = 0}

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ P(μ±1)

⊗ Fp{ai |0 ≤ i ≤ p − 1, i �= 1}
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and, for m ≥ 2,

Tm(S1) =E(λ1) ⊗ Pr(2m)(tμ) ⊗ Fp{λ2μ
j |vp(j) = 2m − 1}

⊕ E(a1) ⊗ Pp−1(b1) ⊗ Pr(2m−1)(tμ)

⊗ Fp{λ1μ
j |vp(j) = 2m − 2}

⊕ E(λ1) ⊗ Pp−2(b1) ⊗ Pr(2m−2)+1(tμ)

⊗ Fp{a1μ
j |vp(j) = 2m − 3}.

7 Topological cyclic homology

We now evaluate the restriction map R : TF(kup) → TF(kup) in V (1)-homo-
topy. Consider the homotopy commutative diagram

TF(kup)
R

Γ

TF(kup)

Γ̂

Γ

THH(kup)hS1

(Γ̂1)
hS1

THH(kup)hS1 Rh

THH(kup)tS
1 G

(THH(kup)tCp)hS1

displayed in [2, p. 27], and with G a V (1)-equivalence. By the argument
in [2, Lemma 7.5], we know that on V (1)∗TF(kup) the profinite topology
coincides with the topology induced via Γ∗ by the spectral sequence filtration
of V (1)∗THH(kup)hS1

, and that the restriction map

R∗ : V (1)∗TF(kup) → V (1)∗TF(kup)

is continuous in degrees larger than 2p − 2. In this range of degrees, we iden-
tify V (1)∗TF(kup) with V (1)∗THH(kup)hS1

via the homeomorphism Γ∗.
Under this identification R∗ corresponds to (Γ∗Γ̂ −1∗ )Rh∗ , and we first describe
Rh∗ and Γ∗Γ̂ −1∗ separately.

Lemma 7.1 In total degrees larger than 2p − 2, the morphism

(Rh)∞ : E∞(S1) → Ê∞(S1)

has the following properties.

(a) It maps E(λ1, a1) ⊗ Pp−1(b) ⊗ P(tμ) isomorphically to the summand
with same name;
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(b) It maps E(λ1) ⊗ Pr(k)(tμ) ⊗ Fp{λ2μ
−dpk−1} onto

E(λ1) ⊗ Pr(k−2)(tμ) ⊗ Fp{λ2t
dpk−1}

and E(λ1) ⊗ Pp−2(b) ⊗ Pr(k)+1(tμ) ⊗ Fp{a1μ
−dpk−1} onto

E(λ1) ⊗ Pp−2(b) ⊗ Pr(k−2)+1(tμ) ⊗ Fp{a1t
dpk−1}

for k ≥ 2 even and 0 < d < p;
(c) It maps E(a1) ⊗ Pp−1(b) ⊗ Pr(k)(tμ) ⊗ Fp{λ1μ

−dpk−1} onto

E(a1) ⊗ Pp−1(b) ⊗ Pr(k−2)(tμ) ⊗ Fp{λ1t
dpk−1}

for k ≥ 3 odd and 0 < d < p;
(d) It maps the remaining summands to zero.

Proof This follows from the description of (Rh)2, see (6.2). �

Lemma 7.2 In degrees larger then 2p−2, the homomorphism Γ∗Γ̂ −1∗ maps

(a) the classes in V (1)∗THH(kup)tS
1

represented in Ê∞(S1) by

λ
ε1
1 a

ε2
1 bk(tμ)mti

for vp(i) �= 1, ε1 and ε2 ∈ {0,1}, 0 ≤ k ≤ p − 2 and m ≥ 0, to classes in

V (1)∗THH(kup)hS1
represented in E∞(S1) by

λ
ε1
1 a

ε2
1 bk(tμ)mμj

with i + p2j = 0, up to multiplication with a unit in Fp;

(b) the classes in V (1)∗THH(kup)tS
1

represented in Ê∞(S1) by

λ
ε1
1 bka1t

i

for vp(i) = 1, ε1 ∈ {0,1} and 0 ≤ k ≤ p − 3, to classes in

V (1)∗THH(kup)hS1
represented in E∞(S1) by

λ
ε1
1 bkμlaj

with i = (1 − j)p − lp2 for 0 ≤ j ≤ p − 1 such that j �= 1, up to multi-
plication with a unit in Fp .

Proof The proof is similar to the proof of [2, Proposition 7.4], and we omit
it. �
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Definition 7.3 We recall from [2, Theorem 9.1] that there are classes λ1t
p−1,

λ1 and λ2 in V (1)∗K(�p) ⊂ V (1)∗K(kup), of degree 1, 2p − 1 and 2p2 − 1,
respectively. We denote by

λ̃1tp−1, λ̃1 and λ̃2

their image in V (1)∗TF(kup) under trF ∗. The latter classes are represented
by

λ1t
p−1 = (tμ)p−1 · λ1μ

1−p, λ1 and λ2

in E∞(S1), respectively, see [2, Theorem 8.4]. We further denote by b and
v2 the image in V (1)∗TF(kup) under trF ∗ of the classes with same name
in V (1)∗K(kup). These classes are represented by b1 and tμ in E∞(S1),
respectively, see Lemma 4.4 and [2, Proposition 4.8].

Lemma 7.4 There exists a unique class ã1 ∈ V (1)2p+3TF(kup) with the fol-
lowing two properties:

(a) ã1 has δ-weight 1 and bp−2ã1 = λ̃2,
(b) R∗(ã1) = ã1.

Moreover, this class ã1 is represented by a1 in E∞(S1).

Proof For i = 0 or 1, let us denote by T
(i)∗ and ker(R − 1)

(i)∗ the summand of
δ-weight i of V (1)∗TF(kup) and ker(R − 1)∗ ⊂ V (1)∗TF(kup), respectively.
We make the following claims:

(1) The homomorphism given by multiplication with bp−2 on T
(1)
2p+3 fits in a

short exact sequence

0 → Fp{z} → T
(1)
2p+3

bp−2−→ T
(0)

2p2−1
→ 0,

where the class z is represented by b1 · (tμ)p−1 · λ1μ
1−p in E∞(S1);

(2) The class z does not belong to ker(R − 1)∗.

Using these claims, it is easy to deduce that multiplication with bp−2 restricts
to an isomorphism

ker(R − 1)
(1)
2p+3

∼=−→ ker(R − 1)
(0)

2p2−1
.

We have λ̃2 ∈ ker(R − 1)
(0)

2p2−1
since λ̃2 has δ-weight 0 and is in the im-

age of trF ∗. Therefore, there is a unique pre-image ã1 ∈ ker(R − 1)
(1)
2p+3

of λ̃2 ∈ ker(R − 1)
(0)

2p2−1
, or, in other words, there is a unique class ã1 ∈
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V (1)2p+3TF(kup) with properties (a) and (b). Moreover, λ̃2 is represented

in E∞(S1) in filtration zero by λ2 = b
p−2
1 a1, and we deduce that ã1 must be

represented in filtration zero by a1. Thus this lemma follows from claims (1)
and (2), which we now prove.

First, notice that the group T
(i)∗ inherits via Γ∗ the spectral sequence fil-

tration of V (1)∗THH(kup)hS1
. Denoting by E∞(S1)

(i)∗ its associated graded,
we know from Lemma 6.13 that

E∞(S1)
(1)
2p+3 =Fp{a1, b1 · xn |n ≥ 0} and

E∞(S1)
(0)

2p2−1
=Fp{λ2, tμ · xn |n ≥ 1},

where xn = (tμ)r(2n+1)−r(2n)−1 · λ1μ
(1−p)p2n

.
Next, the relation b′p + v2b

′ = 0 in V (1)∗K(Z,3), established in Proposi-
tion 2.7, maps under trF ∗φ∗ to the relation bp + v2b = 0 in T

(1)∗ . The class
v2b in T

(1)∗ is represented by the non-zero class tμ ·b1 in E∞(S1) in filtration
−2, and we deduce that bp−1 ∈ T

(0)∗ must be represented by −tμ in E∞(S1).
It follows that if a class x ∈ T

(1)
2p+3 is represented by b1 · xn, then bp−2x is

represented by −tμ · xn in 2 filtration degrees lower. Using a coarser filtra-
tion that ignores this shift, and considering our formulas for E∞(S1)

(1)
2p+3

and E∞(S1)
(0)

2p2−1
given above, we deduce claim (1) from the corresponding

claim for the associated graded, with z represented by b1 · x0.
To prove claim (2), we notice that if a class y ∈ T

(1)
2p+3 is represented by b1 ·

xn with n ≥ 1, then R∗(y) will be represented by b1 · xn−1 in higher filtration,
up to some non-zero scalar multiple: this follows directly from Lemmas 7.1
and 7.2. In particular, R∗(y) �= y. This implies the following claim:

(3) The group ker(R − 1)
(1)
2p+3 contains at most one class represented by

b1 · x0.

Now consider the class x̃0 = λ̃1tp−1 ∈ T
(0)
1 given in Definition 7.6. By defin-

ition, this class lies in ker(R − 1)
(0)
1 and is represented by x0. We also claim

that

(4) The class bx̃0 ∈ ker(R − 1)
(1)
2p+3 is not annihilated by bp−2.

Since bx̃0 is represented by b1 · x0, claim (2) follows from claims (3) and (4).
Finally, to prove claim (4), we recall from [2, Theorem 8.2] that the class

v2x̃0 ∈ ker(R − 1)
(0)

2p2−1
is non-zero, and must be represented, in filtration

degree lower then −2p + 2, by a class in

Fp{tμ · xn |n ≥ 1}.
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None of these classes is annihilated by b1. Therefore bv2x̃0 = −bpx̃0 is non-
zero, and we deduce that bx̃0 ∈ ker(R − 1)

(1)
2p+3 is not annihilated by bp−2. �

Remark 7.5 The lemma above implies that a1 ∈ V (1)∗THH(kup) has a lift
a1 ∈ V (1)∗K(kup) under the trace, with bp−2a1 = λ2, see Theorem 8.1. It
would be nice to have a more direct construction of such a lift. In fact, we con-
jecture that a1 ∈ V (1)∗K(kup) decomposes as bd , where d ∈ V (1)1K(KUp)

is a unit class, when mapped into V (1)∗K(KUp), see the discussion preced-
ing Theorem 8.3 below.

Definition 7.6 We consider the following subgroups of E∞(S1):

A = E(λ1, a1) ⊗ Pp−1(b1) ⊗ P(tμ),

B0 = E(λ1) ⊗ Pp−2(b1) ⊗ Fp{μ−1ai, a0 |2 ≤ i ≤ p − 1},
Bk =

(
E(λ1) ⊗ Pp−2(b1) ⊗

⊕

0<d<p

(
Pr(k)−dpk−1+1(tμ) ⊗ Fp{a1t

dpk−1})
)

⊕
(
E(λ1) ⊗

⊕

0<d<p

Pr(k)−dpk−1(tμ) ⊗ Fp{λ2t
dpk−1}

)
for k ≥ 2 even,

Bk = E(a1) ⊗ Pp−1(b1)

⊗
⊕

0<d<p

(
Pr(k)−dpk−1(tμ) ⊗ Fp{λ1t

dpk−1}) for k ≥ 1 odd,

and we let C be the span of the remaining monomials in E∞(S1). We then
have a direct sum decomposition E∞(S1) = A⊕B ⊕C, with B = ⊕

k≥0 Bk .

Lemma 7.7 In dimensions larger than 2p − 2 there are closed subgroups Ã,
B̃k and C̃ in V (1)∗TF(kup), represented by A, Bk and C in E∞(S1) respec-
tively, such that

(a) R∗ restricts to the identity on Ã,
(b) R∗ maps B̃k+2 onto B̃k for k ≥ 0,
(c) R∗ maps B̃0, B̃1 and C̃ to zero.

In these degrees V (1)∗TF(kup) ∼= Ã ⊕ B̃ ⊕ C̃, where B̃ = ∏
k≥0 B̃k .

Proof On the associated graded E∞(S1), the homomorphism (Γ∗Γ̂ −1∗ )Rh∗
has been described in Lemmas 7.1 and 7.2, and maps A isomorphically to
itself, Bk+2 onto Bk for k ≥ 0, and B0, B1 and C to zero. It remains to find
closed lifts of these groups in V (1)∗TF(kup) with desired properties. We take
Ã to be the (closed) subalgebra of V (1)∗TF(kup) generated by λ̃1, ã1, b and
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v2. Then Ã lifts A, by definition of its algebra generators and by the fact,
proved above, that bp−1 is represented by −tμ in E∞(S1). Also, λ̃1, b and
v2 are fixed under R∗, since they are in the image of trF ∗, and ã1 is fixed by
definition. To construct B̃k for k ≥ 0 and C̃, we follow the procedure given
in [2, Theorem 7.7]. �

Definition 7.8 We denote b ∈ V (1)2p+2TC(kup) the image of the higher Bott
element b, defined in 3.2, under the cyclotomic trace map

(trc)∗ : V (1)∗K(kup) → V (1)∗TC(kup).

Theorem 7.9 The class b ∈ V (1)2p+2TC(kup) satisfies the relation

bp−1 = −v2.

There is an isomorphism of P(b)-modules

V (1)∗TC(kup) ∼=P(b) ⊗ E(∂,λ1, a1)

⊕ P(b) ⊗ E(a1) ⊗ Fp{tdλ1 |0 < d < p}
⊕ P(b) ⊗ E(λ1) ⊗ Fp{uia0, t

p2−pλ2 |0 ≤ i < p − 2},
where the degree of the classes is |∂| = −1, |λ1| = 2p − 1, |a1| = 2p + 3,
|uia0| = 2i + 3, |λ2| = 2p2 − 1 and |t | = −2.

Proof Recall that TC(kup) is defined as the homotopy fiber of the map

R − 1 : TF(kup) → TF(kup).

In V (1)-homotopy, it gives a short exact sequence of P(v2)-modules

0 → Σ−1 cok(R − 1)∗ → V (1)∗TC(kup) → ker(R − 1)∗ → 0. (7.1)

We have isomorphisms of P(v2)-modules

Σ−1 cok(R − 1)∗ ∼= Σ−1Ã

ker(R − 1)∗ ∼= Ã ⊕ lim
k≥0 even

B̃k ⊕ lim
k≥1 odd

B̃k.
(7.2)

Indeed, R∗ − 1 maps each factor of the decomposition V (1)∗TF(kup) ∼= Ã ⊕
B̃ ⊕ C̃ to itself. It restricts to zero on Ã and to the identity on C̃. We have a
short exact sequence

0 → lim
k≥0 even

B̃k →
∏

k≥0 even

B̃k
R∗−1−→

∏

k≥0 even

B̃k → lim1

k≥0 even
B̃k → 0,
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and similarly for the B̃k with k odd. Here the limits are taken over the se-
quential system of maps R∗ : B̃k+2 → B̃k for k ≥ 0 even or k ≥ 1 odd. Since
these maps are surjective, the lim1-terms are trivial. This proves our claims
on Σ−1 cok(R − 1)∗ and ker(R − 1)∗ in (7.2).

For k ≥ 1 odd, the group B̃k is isomorphic as a P(v2)-module to a sum of
2(p − 1)2 cyclic P(v2)-modules

B̃k ∼= E(a1) ⊗ Pr(k)(v2) ⊗ Pp−1(b) ⊗ Fp{λ1t
dpk−1 |0 < d < p}.

The map R∗ respects this decomposition into cyclic P(v2)-modules. Since
the height of these modules grows to infinity with k, we deduce from the
surjectivity of R∗ that limk≥1 odd B̃k is a sum of 2(p − 1)2 free cyclic P(v2)-
modules, given by an isomorphism

lim
k≥1 odd

B̃k
∼= E(a1) ⊗ P(v2) ⊗ Pp−1(b) ⊗ Fp{λ1t

d |0 < d < p}.

Similarly, for k ≥ 2 even, B̃k is isomorphic to a sum of 2(p − 1)2 cyclic
P(v2)-modules of height growing with k, and passing to the limit we have an
isomorphism of P(v2)-modules

lim
k≥0 even

B̃k
∼= E(λ1) ⊗ P(v2) ⊗ Pp−1(b) ⊗ Fp{a1t

dp |0 < d < p}.

Thus ker(R − 1)∗ is a free P(v2)-module, and the exact sequence (7.1) splits.
We have an isomorphism of P(v2)-modules

V (1)∗TC(kup) ∼=P(v2) ⊗ Pp−1(b) ⊗ E(∂,λ1, a1)

⊕ P(v2) ⊗ Pp−1(b) ⊗ E(a1) ⊗ Fp{λ1t
d |0 < d < p}

⊕ P(v2) ⊗ Pp−1(b) ⊗ E(λ1) ⊗ Fp{a1t
pd |0 < d < p}

(7.3)

in degrees larger than 2p − 2, where the summand

P(v2) ⊗ Pp−1(b) ⊗ E(λ1, a1) ⊗ Fp{∂}
is the group cok(R − 1)∗ ∼= Σ−1Ã. We now show that the relation

bp−1 = −v2

holds in V (1)∗TC(kup). Recall from Proposition 2.7 that the class b′p−1 + v2
in V (1)2p2−2K(Z,3) is annihilated by b′. This class maps by trc∗φ∗ to the
class

bp−1 + v2 ∈ V (1)2p2−2TC(kup),
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which is therefore annihilated by b. Thus it suffices to show that zero is the
only class in V (1)2p2−2TC(kup) that is annihilated by b. We consider the
short exact sequence

0 → cok(R − 1)2p2−1 → V (1)2p2−2TC(kup) → ker(R − 1)2p2−2 → 0

given in (7.1) above. Here

ker(R − 1)∗ ⊂ V (1)∗TF(kup)

inherits via Γ∗ the spectral sequence filtration of V (1)∗THH(kup)hS1
.

By (7.3), this filtration gives the short exact sequence

0 → Fp{bp−2 · λ1 · a1t
p} → ker(R − 1)2p2−2 → Fp{v2} → 0

in dimension 2p2 − 2, while in dimension 2p2 + 2p it gives the short exact
sequence

0 → Fp{v2 · λ1 · a1t
p} → ker(R − 1)2p2+2p → Fp{b · v2} → 0.

Here v2 and b · v2 are represented by tμ and b1 · tμ in E∞(S1), respectively.
Multiplication with b is compatible with the filtration, and maps the former
sequence to the latter one. First, notice that the class v2 maps to a non-zero
class in Fp{b · v2}, since b · v2 is represented by b1 · tμ in E∞(S1). Next, the
relation bp = −bv2 in ker(R − 1)∗ implies

bp · λ1 · a1t
p = −v2 · b · λ1 · a1t

p,

which is non-zero by (7.3). A fortiori bp−1 · λ1 · a1t
p ∈ Fp{v2 · λ1 · a1t

p} is
not zero either. Thus ker(R − 1)2p2−2 contains no non-zero class annihilated
by b, and we deduce that

bp−1 + v2 ∈ ∂(cok(R − 1)2p2−1) = Fp{bp−2 · a1 · ∂}.

However the class bp−2 ·a1 ·∂ is not annihilated by b, since by (7.3) we know
that bp · a1 · ∂ = −v2 · b · a1 · ∂ is non-zero. This proves that bp−1 + v2 must
be zero.

In particular b is not a nilpotent class, and we have an isomorphism of
P(b)-modules

V (1)∗TC(kup) ∼=P(b) ⊗ E(∂,λ1, a1)

⊕ P(b) ⊗ E(a1) ⊗ Fp{tdλ1 |0 < d < p}
⊕ P(b) ⊗ E(λ1) ⊗ Fp{a1t

pd |0 < d < p}
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in degrees larger than 2p−2. This proves that our formula for V (1)∗TC(kup)

is correct in dimensions greater than 2p − 2. Let us define M and N as

M =
⊕

−1≤n≤2p−2

V (1)nTC(kup) and N =
⊕

n≥2p−1

V (1)nTC(kup).

We just argued that N is a free P(b)-module. We know by (5.3) that there is
an isomorphism

M ∼= Fp{∂,1, uia0, λ1t
d , ∂λ1 |0 ≤ i ≤ p − 3, 1 ≤ d ≤ p − 1}

of Fp -modules. This proves that the formula for V (1)∗TC(kup) in Theo-
rem 7.9 holds as an isomorphism of Fp-modules. It only remains to show that
for any non-zero class m ∈ M , we have bm �= 0 in V (1)∗TC(kup). By com-

parison with V (1)∗TC(�p) or with V (1)∗THH(kup)hS1
, we know that either

mλ1 or mv2 is non-zero. These products lie in N for degree reasons, so are
not b-torsion classes. Therefore m is not a b-torsion class either. �

8 Algebraic K-theory

Theorem 8.1 There is an isomorphism of P(b)-modules

V (1)∗K(kup) ∼=P(b) ⊗ E(λ1, a1) ⊕ P(b) ⊗ Fp{∂λ1, ∂b, ∂a1, ∂λ1a1}
⊕ P(b) ⊗ E(a1) ⊗ Fp{tdλ1 |0 < d < p}
⊕ P(b) ⊗ E(λ1) ⊗ Fp{σn,λ2t

p2−p |1 ≤ n ≤ p − 2}
⊕ Fp{s},

with bp−1 = −v2. The degree of the generators is given by |∂| = −1, |λ1| =
2p − 1, |a1| = 2p + 3, |σn| = 2n + 1, |t | = −2, |λ2| = 2p2 − 1 and |s| =
2p − 3. The classes 1, σn, λ1, b and a1 map under the trace to 1, un−1a0, λ1,
b1 and a1 in V (1)∗THH(kup), respectively, and the other given P(b)-module
generators map to zero.

Proof There is a cofibre sequence of spectra [22]

K(kup)p → TC(kup) → Σ−1HZp → ΣK(kup)p.

We have an isomorphism V (1)∗Σ−1HZp
∼= Fp{∂, ε} with a primary v1

Bockstein β1,1(ε) = ∂ . Here ∂ is the image of the class ∂ ∈ V (1)−1TC(kup),
while ε maps by the connecting homomorphism to a class

s ∈ V (1)2p−3K(kup).
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These facts, together with Theorem 7.9, allow us to establish our formula for
V (1)∗K(kup). The statement on the trace follows from the definition of the
given P(b)-module generators. �

The following corollary is a restatement of Proposition 1.2 part (b) of the
introduction.

Corollary 8.2 There is a short exact sequence of P(b)-modules

0 → K → P(b) ⊗P(v2) V (1)∗K(�p)
μ−→ K(kup) → Q → 0

where K and Q are finite (and hence torsion) P(b)-modules given by

K =Fp{bka |1 ≤ k ≤ p − 2}, and

Q =Pp−2(b) ⊗ Fp{∂b, ∂a1, a1, ∂λ1a1, λ1a1}
⊕ Pp−2(b) ⊗ Fp{a1λ1t

d |0 < d < p}
⊕ E(λ1) ⊗ Fp{σnb

in |1 ≤ n ≤ p − 2, 0 ≤ in ≤ p − 2 − n}.
Here a ∈ V (1)2p−3K(�p) is the class annihilated by v2 and mapping to s. In
particular we have an isomorphism P(b, b−1)-algebras

P(b, b−1) ⊗P(v2) V (1)∗K(�p) ∼= V (1)∗K(kup)[b−1].

Proof This follows from the formulas for V (1)∗K(�p) and for V (1)∗K(kup)

given in [2, Theorem 9.1] and Theorem 8.1, and the fact that V (1)∗K(�p)

includes as the summand of δ-weight zero in V (1)∗K(kup), see [1, Theo-
rem 10.2]. Notice that for 1 ≤ d ≤ p − 2 the class

λ2t
dp ∈ V (1)2p2−pd−1K(�p)

maps to σdbp−1−d , up to a non-zero scalar multiple. �

Blumberg and Mandell [8] have proved a conjecture of John Rognes that
there is a localization cofibre sequence

K(Zp)
τ−→ K(kup)

j−→ K(KUp) → ΣK(Zp),

relating the algebraic K-theory of kup , of its localization KUp = kup[u−1]
(i.e. periodic K-theory), and of its mod (u) reduction HZp . The V (1)-
homotopy of K(Zp) and K(kup) is known, but we need to compute also the
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transfer map τ∗ and solve a P(b)-module extension if we seek a decent de-
scription of V (1)∗K(KUp). Let us therefore assume that this localization se-
quence maps via trace maps to a corresponding localization sequence in topo-
logical Hochschild homology, building a homotopy commutative diagram of
horizontal fibre sequences

K(Zp)

tr

τ
K(kup)

tr

j

K(KUp)

tr

ΣK(Zp)

Σ tr

THH(Zp)
τ

THH(kup)
j

THH(kup|KUp) ΣTHH(Zp),

(8.1)

as conjectured by Lars Hesselholt, compare with Remark 8.4 below. The
V (1)-homotopy of the bottom line was described in [1, Sect. 10]. The V (1)-
homotopy groups of K(Zp) are given by an isomorphism [22]

V (1)∗K(Zp) ∼= E(λ1) ⊕ Fp{∂v1, ∂λ1} ⊕ Fp{λ1t
d |0 < d < p}.

The class ∂v1 maps to s in V (1)∗K(kup) via τ∗. The class 1 ∈ V (1)0K(Zp)

is in the kernel of τ∗, because it is v2-torsion and there is no torsion
class in V (1)0K(kup). Let d ∈ V (1)1K(KUp) be the class mapping to
1 ∈ V (1)0K(Zp) via the connecting homomorphism. Presumably d corre-
sponds to the added unit or the self-equivalence

KUp
u−→ Σ−2KUp

�−→ KUp,

where u denotes multiplication by the Bott class, and the second map is the
Bott equivalence. The class d maps in V (1)1THH(kup|KUp) to a class with
the same name. In [1, Sect. 10] we establish an (additive) isomorphism

V (1)∗THH(kup|KUp) ∼= Pp−1(u) ⊗ E(d,λ1) ⊗ P(μ1). (8.2)

If this is an isomorphism of algebras, then the relation j∗(b1)d = j∗(a1)

holds in V (1)∗THH(kup|KUp), and it lifts to the relation j∗(b)d = j∗(a1) in
V (1)∗K(KUp). By inspection this determines the structure of V (1)∗K(KUp)

as a P(b)-module.

Theorem 8.3 Under the hypothesis that there exists a commutative diagram
of localization sequences (8.1), and that the isomorphism (8.2) is one of al-
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gebras, we have an isomorphism of P(b)-modules

V (1)∗K(KUp) ∼=P(b) ⊗ E(λ1, d) ⊕ P(b) ⊗ Fp{∂λ1, ∂b, ∂a1, ∂λ1d}
⊕ P(b) ⊗ E(d) ⊗ Fp{tdλ1 |0 < d < p}
⊕ P(b) ⊗ E(λ1) ⊗ Fp{σn,λ2t

p2−p |1 ≤ n ≤ p − 2}.
The class d has degree 1, and the other classes have the degree given in
Theorem 8.1.

Remark 8.4 Consider a complete discrete valuation field K of characteristic
zero with perfect residue field k of characteristic p ≥ 3, and let A be its valua-
tion ring. Hesselholt and Madsen [23] compute the V (0)-homotopy of K(A)

and K(K) by means of the cyclotomic trace. They introduce a relative version
of topological cyclic homology, denoted TC(A|K), that sits in a localization
cofibre sequence

TC(k) → TC(A) → TC(A|K) → ΣTC(k).

The computation of V (0)∗TC(A|K) is achieved by using the rich algebraic
structure on the V (0)-homotopy groups of the tower TR•(A|K), and de-
scribed in terms of the de Rham-Witt complex with log poles W•ω∗(A,A ∩
K×), see [23, Theorem C]. Then V (0)∗TC(A) can be evaluated by means of
the localization sequence. This approach has, in particular, the advantage of
avoiding a computation of V (0)∗TR•(A), which seems quite intractable.

Continuing the discussion in [1, Sect. 10] on a relative trace for kup , and
following Lars Hesselholt, one could speculate on the existence of a relative
term TC(kup|KUp) fitting in a localization sequence

TC(HZp) → TC(kup) → TC(kup|KUp) → ΣTC(HZp),

through which the trace of diagram (8.1) factorizes. By analogy with the
case of complete discrete valuation fields, we expect that a computation of
V (1)∗TRn(kup|KUp) should be easier to handle than the computation of
V (1)∗TRn(kup) presented in this paper. In fact, the advantage of such an ap-
proach is already apparent when comparing

V (1)∗TR1(kup|KUp) = V (1)∗THH(kup|KUp)

in (8.2) with V (1)∗THH(kup) in (4.1), and is also confirmed by partial, hy-
pothetical computations of V (1)∗TRn(�p|Lp) and V (1)∗TRn(kup|KUp) by
Lars Hesselholt (private communication) and the author.
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