GUIDO'S BOOK OF CONJECTURES

1. THE CHROMATIC RED-SHIFT IN ALGEBRAIC K-THEORY

Christian Ausoni and John Rognes

The algebraic *K*-theory of the sphere spectrum **S** is of interest in geometric topology, by Waldhausen's stable parametrized *h*-cobordism theorem [WJR] (ca. 1979). We wish to understand *K***S** like we understand *K***Z**, via Galois descent. As a building block, the algebraic *K*-theory of the Bousfield localization $L_{K(n)}$ **S** of **S** with respect to the *n*-th Morava K-theory *K*(*n*) might be more accessible. John has developed a theory of Galois extensions for **S**-algebras, and in this framework he has stated extensions of the Lichtenbaum-Quillen conjectures. Their precise formulation is distilled from the clues provided by our computations of the algebraic *K*-theory of topological *K*-theory and related spectra, and it is to be expected that they will keep maturing in a cask of skepticism for a few years. Writing X^{hG} for the homotopy fixed-point spectrum of a finite group *G* acting on a spectrum *X*, we recall:

DEFINITION 1.1 ([Ro]). A map $A \to B$ of commutative **S**-algebras is a K(n)-local *G*-Galois extension if *G* acts on *B* through commutative *A*algebra maps, and the canonical maps $A \to B^{hG}$ and $B \wedge_A B \to \prod_G B$ are K(n)-equivalences.

Let E_n be Morava's *E*-theory [GH] with coefficients given by $(E_n)_* = W(\mathbf{F}_{p^n})[[u_1, \ldots, u_{n-1}]][u^{\pm 1}]$. Then $L_{K(n)}\mathbf{S} \to E_n$ is an example of a K(n)-local pro-Galois extension. Let *V* be a finite CW-spectrum of chromatic type n+1, and let $T = v_{n+1}^{-1}V$ be the mapping telescope of its essentially unique v_{n+1} -self-map. For n = 0 take $V = V(0) = \mathbf{S}/p$ (the Moore spectrum), and for n = 1, $p \ge 3$ take $V = V(1) = V(0)/v_1$.

CONJECTURE 1.2. Let $A \to B$ be a K(n)-local G-Galois extension. Then there is a homotopy equivalence $T \wedge KA \to T \wedge (KB)^{hG}$.

For n = 0, $A \rightarrow B$ is a *G*-Galois extension of commutative **Q**-algebras, and conjecture 1.2 is the descent conjecture of Lichtenbaum-Quillen (1973). For n = 1, conjecture 1.2 holds by [Au], [AR1], [BM] for the K(1)-local \mathbf{F}_p^{\times} -Galois extension $L_p \rightarrow KU_p$, where KU_p is the *p*-complete periodic *K*-theory spectrum and L_p its Adams summand. CONJECTURE 1.3. Let B be a suitably finite K(n)-local commutative **S**algebra (for example $L_{K(n)}\mathbf{S} \to B$ could be a G-Galois extension). Then the map $V \wedge KB \to T \wedge KB$ induces an isomorphism on homotopy groups in sufficiently high degrees.

If n = 0 and B = HF for a reasonable field F, then $V \wedge KF = K(F; \mathbb{Z}/p) \rightarrow T \wedge KF \simeq K^{\text{ét}}(F; \mathbb{Z}/p)$ induces an isomorphism on homotopy groups in sufficiently high degrees by Thomason's theorem (1985). For n = 1, $p \ge 5$ and $B = L_p$, KU_p or their connective versions ℓ_p and ku_p , it is known ([AR1], [BM]) that $V(1)_*KB$ is a finitely generated free $\mathbf{F}_p[v_2]$ -module in high degrees, hence conjecture 1.3 holds for these S-algebras. This is evidence for the "red-shift conjecture", which, in a less precise formulation than conjecture 1.3, asserts that algebraic K-theory increases chromatic complexity by one.

The algebraic *K*-theory of a ring of integers \mathcal{O}_F in a number field *F* can be computed from the *K*-theory of its residue fields and the fraction field *F*, by a localization sequence. To compute $K(F; \mathbb{Z}/p)$ one uses Suslin's theorem (1983) that $K(\bar{F}; \mathbb{Z}/p) \simeq V(0) \wedge ku$, and descent with respect to the absolute Galois group G_F . To generalize this program we wish to make sense of the K(n)-local **S**-algebraic fraction field \mathcal{F} of $L_{K(n)}\mathbf{S}$ (or one of its pro-Galois extensions), construct a separably closed extension Ω_n , and evaluate its algebraic *K*-theory.

CONJECTURE 1.4. If Ω_n is a separable closure of the fraction field of $L_{K(n)}\mathbf{S}$, then there is a homotopy equivalence $L_{K(n+1)}K(\Omega_n) \simeq E_{n+1}$.

For n = 0 this reduces to $L_{K(1)}K(\bar{\mathbf{Q}}_p) \simeq E_1 \simeq KU_p$, a weaker formulation of Suslin's theorem. For n = 1 we did some computations [AR2] aimed at understanding what the fraction field \mathcal{F} of KU_p might be. We *define* $K\mathcal{F}$ to sit in a hypothetical localization sequence $K(KU/p) \rightarrow K(KU_p) \rightarrow K\mathcal{F}$, as the cofiber of the transfer map for $KU_p \rightarrow KU/p$. The result is that $V(1)_*K\mathcal{F}$ is, in high enough degrees, a free $\mathbf{F}_p[v_2]$ -module on $2(p^2+3)(p-1)$ generators. In particular \mathcal{F} cannot be the $H\mathbf{Q}_p$ -algebra $KU_p[1/p]$. We rather believe that \mathcal{F} is an **S**-algebraic analogue of a two-dimensional local field. For example, there appears to be a perfect arithmetic duality pairing in the Galois cohomology of \mathcal{F} , analogous to Tate-Poitou duality (1963) for local number fields.

REFERENCES

- [Au] Ch. Ausoni, Topological Hochschild homology of connective complex Ktheory, Amer. J. Math. 127, 2005, 1261-1313.
- [AR1] Ch. Ausoni and J. Rognes, Algebraic K-theory of topological K-theory, Acta Math. 188, 2002, 1–39.
- [AR2] Ch. Ausoni and J. Rognes, Algebraic K-theory of the fraction field of topological K-theory, preprint 2006.
- [BM] A. J. Blumberg and M. A. Mandell, *The localization sequence for the algebraic K-theory of topological K-theory*, preprint 2006 (ArXiv math.KT/0606513), to appear in Acta Math.
- [GH] P. Goerss and M. J. Hopkins, *Moduli spaces of commutative ring spectra*, Structured ring spectra, London Math. Soc. Lecture Note Ser. 315, 2004, 151–200.
- [Ro] J. Rognes, Galois extensions of structured ring spectra, preprint 2005 (ArXiv math.AT/0502183), to appear in Mem. Amer. Math. Soc.
- [WJR] F. Waldhausen, B. Jahren and J. Rognes, *The stable parametrized h-cobordism theorem*, preprint 2006.

Mathematical Institute, University of Bonn and Department of Mathematics, University of Oslo