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Introduction

We are interested in the arithmetic of ring spectra.

To make sense of this we must work with structured ring spectra, such as S-algebras
[EKMM], symmetric ring spectra [HSS] or Γ-rings [Ly]. We will refer to these as S-
algebras. The commutative objects are then commutative S-algebras.

The category of rings is embedded in the category of S-algebras by the Eilenberg–
Mac Lane functor R �→HR. We may therefore view an S-algebra as a generalization of
a ring in the algebraic sense. The added flexibility of S-algebras provides room for new
examples and constructions, which may eventually also shed light upon the category of
rings itself.

In algebraic number theory the arithmetic of the ring of integers in a number field
is largely captured by its Picard group, its unit group and its Brauer group. These are
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in turn reflected in the algebraic K-theory of the ring of integers. Algebraic K-theory is
defined also in the generality of S-algebras. We can thus view the algebraic K-theory of
an S-algebra as a carrier of some of its arithmetic properties.

The algebraic K-theory of (connective) S-algebras can be closely approximated by
diagrams built from the algebraic K-theory of rings [Du, §5]. Hence we expect that global
structural properties enjoyed by algebraic K-theory as a functor of rings should also have
an analogue for algebraic K-theory as a functor of S-algebras.

We have in mind, in particular, the étale descent property of algebraic K-theory
conjectured by Lichtenbaum [Li] and Quillen [Qu2], which has been established for sev-
eral classes of commutative rings [Vo], [RW], [HM2]. We are thus led to ask when a
map of commutative S-algebras A→B should be considered as an étale covering with
Galois group G. In such a situation we may further ask whether the natural map
K(A)→K(B)hG to the homotopy fixed-point spectrum for G acting on K(B) induces an
isomorphism on homotopy in sufficiently high degrees. These questions will be considered
in more detail in [Ro3].

One aim of this line of inquiry is to find a conceptual description of the algebraic
K-theory of the sphere spectrum, K(S0)=A(∗), which coincides with Waldhausen’s al-
gebraic K-theory of the one-point space ∗. In [Ro2] the second author computed the
mod 2 spectrum cohomology of A(∗) as a module over the Steenrod algebra, providing
a very explicit description of this homotopy type. However, this result is achieved by
indirect computation and comparison with topological cyclic homology, rather than by a
structural property of the algebraic K-theory functor. What we are searching for here is a
more memorable intrinsic explanation for the homotopy type appearing as the algebraic
K-theory of an S-algebra.

More generally, for a simplicial group G with classifying space X=BG there is an
S-algebra S0[G], which can be thought of as a group ring over the sphere spectrum, and
K(S0[G])=A(X) is Waldhausen’s algebraic K-theory of the space X. When X has the
homotopy type of a manifold, A(X) carries information about the geometric topology
of that manifold. Hence an étale descent description of K(S0[G]) will be of significant
interest in geometric topology, reaching beyond algebraic K-theory itself.

In the present paper we initiate a computational exploration of this ‘brave new
world’ of ring spectra and their arithmetic.

Étale covers of chromatic localizations. We begin by considering some interesting
examples of (pro-)étale coverings in the category of commutative S-algebras. For conve-
nience we will choose to work locally, with S-algebras that are complete at a prime p.
For the purpose of algebraic K-theory this is less of a restriction than it may seem at
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first. What we have in mind here is that the square diagram

K(A) ��

��

K(Ap)

��

K(π0A) �� K(π0Ap)

is homotopy Cartesian after p-adic completion [Du], when A is a connective S-algebra,
Ap its p-completion, π0A its ring of path components and π0(Ap)∼=(π0A)p. This reduces
the p-adic comparison of K(A) and K(Ap) to the p-adic comparison of K(π0A) and
K(π0Ap), i.e., to a question about ordinary rings, which we view as a simpler question,
or at least as one lying in better explored territory.

This leads us to study p-complete S-algebras, or algebras over the p-complete sphere
spectrum S0

p . This spectrum is approximated in the category of commutative S-algebras
(or E∞ ring spectra) by a tower of p-completed chromatic localizations [Ra1]

S0
p → ...→LnS0

p → ...→L1S
0
p →L0S

0
p =HQp.

Here Ln=LE(n) is Bousfield’s localization functor [Bou], [EKMM] with respect to the nth
Johnson–Wilson theory with coefficient ring E(n)∗=Z(p)[v1, ..., vn, v−1

n ], and by LnS0
p we

mean (LnS0)p. By the Hopkins–Ravenel chromatic convergence theorem [Ra3, §8], the
natural map S0

p→holimn LnS0
p is a homotopy equivalence. For each n�1 there is a further

map of commutative S-algebras LnS0
p→LK(n)S

0
p to the p-completed Bousfield localiza-

tion with respect to the nth Morava K-theory with coefficient ring K(n)∗=Fp[vn, v−1
n ].

This is an equivalence for n=1, and L1S
0
p�LK(1)S

0
p�Jp is the non-connective p-complete

image-of-J spectrum. See [Bou, §4].
There is a highly interesting sequence of commutative S-algebras En constructed by

Morava as spectra [Mo], by Hopkins and Miller [Re] as S-algebras (or A∞ ring spectra)
and by Goerss and Hopkins [GH] as commutative S-algebras (or E∞ ring spectra). The
coefficient ring of En is (En)∗∼=WFpn[[u1, ..., un−1]][u, u−1]. As a special case E1�KUp

is the p-complete complex topological K-theory spectrum.
The cited authors also construct a group action on En through commutative S-

algebra maps, by a semidirect product Gn=Sn�Cn where Sn is the nth (profinite)
Morava stabilizer group [Mo] and Cn=Gal(Fpn/Fp) is the cyclic group of order n. There
is a homotopy equivalence LK(n)S

0
p �EhGn

n , where the homotopy fixed-point spectrum
is formed in a continuous sense [DH], which reflects the Morava change-of-rings theo-
rem [Mo].

Furthermore, the space of self-equivalences of En in the category of commutative
S-algebras is weakly equivalent to its group of path components, which is precisely Gn.
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In fact the extension LK(n)S
0
p→En qualifies as a pro-étale covering in the category of

commutative S-algebras, with Galois group weakly equivalent to Gn. The weak con-
tractibility of each path component of the space of self-equivalences of En (over either
S0

p or LK(n)S
0
p ) serves as the commutative S-algebra version of the unique lifting prop-

erty for étale coverings. Also the natural map ζ:En→THH(En) is a K(n)-equivalence,
cf. [MS1, 5.1], implying that the space of relative Kähler differentials of En over LK(n)S

0
p

is contractible. See [Ro3] for further discussion.
There are further étale coverings of En. For example there is one with coefficient ring

WFpm [[u1, ..., un−1]][u, u−1] for each multiple m of n. Let Enr
n be the colimit of these,

with Enr
n∗=W�Fp[[u1, ..., un−1]][u, u−1]. Then Gal(Enr

n /LK(n)S
0
p) is weakly equivalent to

an extension of Sn by the profinite integers Ẑ=Gal(�Fp/Fp). Let �En be a maximal
pro-étale covering of En, and thus of LK(n)S

0
p . What is the absolute Galois group

Gal(�En/LK(n)S
0
p) of LK(n)S

0
p ?

In the case of Abelian Galois extensions of rings of integers in number fields, class
field theory classifies these in terms of the ideal class group of the number field, which
is basically K0 of the given ring of integers. Optimistically, the algebraic K-theory of S-
algebras may likewise carry the corresponding invariants of a class theory for commutative
S-algebras. This gives us one motivation for considering algebraic K-theory.

Étale descent in algebraic K-theory . The p-complete chromatic tower of commutative
S-algebras induces a tower of algebraic K-theory spectra

K(S0
p)→ ...→K(LnS0

p)→ ...→K(Jp)→K(Qp)

studied in the p-local case by Waldhausen [Wa2]. The natural map

K(S0
p)→holim

n
K(LnS0

p)

may well be an equivalence, see [MS2]. We are thus led to study the spectra K(LnS0
p),

and their relatives K(LK(n)S
0
p). (More precisely, Waldhausen studied finite localization

functors Lf
n characterized by their behavior on finite CW-spectra. However, for n=1 the

localization functors L1 and Lf
1 agree, and this is the case that we will explore in the

body of this paper. Hence we will suppress this distinction in the present discussion.)
Granting that LK(n)S

0
p→En qualifies as an étale covering in the category of com-

mutative S-algebras, the descent question concerns whether the natural map

K(LK(n)S
0
p)→K(En)hGn (0.1)

induces an isomorphism on homotopy in sufficiently high dimensions. We conjecture that
it does so after being smashed with a finite p-local CW-spectrum of chromatic type n+1.
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To analyze K(En) we expect to use a localization sequence in algebraic K-theory
to reduce to the algebraic K-theory of connective commutative S-algebras, and to use
the Bökstedt–Hsiang–Madsen cyclotomic trace map to topological cyclic homology to
compute these [BHM]. The ring spectra En and E(n)p are closely related, and for n�1
we expect that there is a cofiber sequence of spectra

K(BP 〈n−1〉p)→K(BP 〈n〉p)→K(E(n)p) (0.2)

analogous to the localization sequence K(Fp)→K(Zp)→K(Qp) in the case n=0. Some-
thing similar should work for En.

The cyclotomic trace map

trc:K(BP 〈n〉p)→TC(BP 〈n〉p; p)�TC(BP 〈n〉; p)

induces a p-adic homotopy equivalence from the source to the connective cover of the tar-
get [HM1]. Hence a calculation of TC(BP 〈n〉; p) is as good as a calculation of K(BP 〈n〉p),
after p-adic completion. In this paper we present computational techniques which are
well suited for calculating TC(BP 〈n〉; p), at least when BP 〈n〉p is a commutative S-
algebra and the Smith–Toda complex V (n) exists as a ring spectrum. In the algebraic
case n=0, with BP 〈0〉=HZ(p), these techniques simultaneously provide a simplification
of the argument in [BM1], [BM2] computing TC(Z; p) and K(Zp) for p�3. Presumably
the simplification is related to that appearing in different generality in [HM2].

It is also plausible that variations on these techniques can be made to apply when
V (n) is replaced by another finite type n+1 ring spectrum, and the desired commutative
S-algebra structure on BP 〈n〉p is weakened to the existence of an S-algebra map from a
related commutative S-algebra, such as MU or BP .

Algebraic K-theory of topological K-theory . The first non-algebraic case occurs for
n=1. Then E1�KUp has an action by G1=Z×

p
∼=Γ×∆. Here Zp

∼=Γ=1+pZp⊂Z×
p ,

Z/(p−1)∼=∆⊂Z×
p and k∈Z×

p acts on E1 like the p-adic Adams operation ψk acts on
KUp.

Let Lp=Eh∆
1 be the p-complete Adams summand with coefficient ring (Lp)∗=

Zp[v1, v
−1
1 ], so Lp�E(1)p. Then Γ acts continuously on Lp with Jp�LhΓ

p . Let lp be the p-
complete connective Adams summand with coefficient ring (lp)∗=Zp[v1], so lp�BP 〈1〉p.
We expect that there is a cofiber sequence of spectra

K(Zp)→K(lp)→K(Lp).

The previous calculation of TC(Z; p) [BM1], [BM2], and the calculation of TC(l; p)
presented in this paper, identify the p-adic completions of K(Zp) and K(lp), respectively.
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Given an evaluation of the transfer map between them, this presumably identifies K(Lp).
The homotopy fixed points for the Γ-action on K(Lp) induced by the Adams operations
ψk for k∈1+pZp should then model K(Jp)=K(L1S

0
p).

This brings us to the contents of the present paper. In §1 we produce two useful
classes λK

1 and λK
2 in the algebraic K-theory of lp. In §2 we compute the V (1)-homotopy

of the topological Hochschild homology of l, simplifying the argument of [MS1]. In §3 we
present notation concerning topological cyclic homology and the cyclotomic trace map
of [BHM]. In §4 we make preparatory calculations in the spectrum homology of the S1-
homotopy fixed points of THH(l). These are applied in §5 to prove that the canonical
map from the Cpn fixed points to the Cpn homotopy fixed points of THH(l) induces an
equivalence on V (1)-homotopy above dimension 2p−2, using [Ts] to reduce to checking
the case n=1. In §6 we inductively compute the V (1)-homotopy of all these (homotopy)
fixed-point spectra, and their homotopy limit TF (l; p). The action of the restriction map
on this limit is then identified in §7. The pieces of the calculation are brought together
in Theorem 8.4 of §8, yielding the following explicit computation of the V (1)-homotopy
of TC(l; p):

Theorem 0.3. Let p�5. There is an isomorphism of E(λ1, λ2)⊗P (v2)-modules

V (1)∗TC(l; p)∼= E(λ1, λ2, ∂)⊗P (v2)⊕E(λ2)⊗P (v2)⊗Fp{λ1t
d | 0<d<p}

⊕E(λ1)⊗P (v2)⊗Fp{λ2t
dp | 0<d<p}

with |λ1|=2p−1, |λ2|=2p2−1, |v2|=2p2−2, |∂|=−1 and |t|=−2.

The p-completed cyclotomic trace map

K(lp)p →TC(lp; p)�TC(l; p)

identifies K(lp)p with the connective cover of TC(l; p). This yields the following expres-
sion for the V (1)-homotopy of K(lp), given in Theorem 9.1 of §9:

Theorem 0.4. Let p�5. There is an exact sequence of E(λ1, λ2)⊗P (v2)-modules

0→Σ2p−3Fp −→V (1)∗K(lp)
trc−−→V (1)∗TC(l; p)→Σ−1Fp → 0

taking the degree 2p−3 generator in Σ2p−3Fp to a class a∈V (1)2p−3K(lp), and taking
the class ∂ in V (1)−1TC(l; p) to the degree −1 generator in Σ−1Fp.

Chromatic red-shift . The V (1)-homotopy of any spectrum is a P (v2)-module, but we
emphasize that V (1)∗TC(l; p) is a free finitely generated P (v2)-module, and V (1)∗K(lp)
is free and finitely generated except for the summand Fp{a} in degree 2p−3. Hence both
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K(lp)p and TC(l; p) are fp-spectra in the sense of [MR], with finitely presented mod p

cohomology as a module over the Steenrod algebra. They both have fp-type 2, because
V (1)∗K(lp) is infinite while V (2)∗K(lp) is finite, and similarly for TC(l; p). In particular,
K(lp) is closely related to elliptic cohomology.

More generally, at least if BP 〈n〉p is a commutative S-algebra and p is such that
V (n) exists as a ring spectrum, similar calculations to those presented in this paper
show that V (n)∗TC(BP 〈n〉; p) is a free P (vn+1)-module on 2n+2+2n(n+1)(p−1) gen-
erators. So algebraic K-theory takes such fp-type n commutative S-algebras to fp-type
n+1 commutative S-algebras. If our ideas about localization sequences are correct then
also K(En)p will be of fp-type n+1, and if étale descent holds in algebraic K-theory for
LK(n)S

0
p→En with cdp(Gn)<∞ then also K(LK(n)S

0
p)p will be of fp-type n+1. The

moral is that algebraic K-theory in many cases increases chromatic complexity by one,
i.e., that it produces a constant red-shift of one in stable homotopy theory.

Notations and conventions. For an Fp vector space V let E(V ), P (V ) and Γ(V ) be
the exterior algebra, polynomial algebra and divided power algebra on V , respectively.
When V has a basis {x1, ..., xn} we write E(x1, ..., xn), P (x1, ..., xn) and Γ(x1, ..., xn) for
these algebras. So Γ(x)=Fp{γj(x) | j�0} with γi(x)·γj(x)=(i, j)γi+j(x). Let Ph(x)=
P (x)/(xh=0) be the truncated polynomial algebra of height h. For a�b�∞ let P b

a(x)=
Fp{xk |a�k�b} as a P (x)-module.

By an infinite cycle in a spectral sequence we mean a class x such that dr(x)=0
for all r. By a permanent cycle we mean an infinite cycle which is not a boundary, i.e.,
a class that survives to represent a nonzero class at E∞. Differentials are often only
given up to multiplication by a unit.

Acknowledgements . The first author thanks the Mathematics Department of the
University of Oslo for its very friendly hospitality. He is also indebted to John Rognes
for introducing him to the present subject during numerous conversations. Both authors
thank the referee for useful comments.

1. Classes in algebraic K-theory

1.1. E∞ ring spectrum models. Let p be an odd prime. Following the notation of [MS1],
let l=BP 〈1〉 be the Adams summand of p-local connective topological K-theory. Its
homotopy groups are l∗∼=Z(p)[v1], with |v1|=q=2p−2.

Its p-completion lp with lp∗∼=Zp[v1] admits a model as an E∞ ring spectrum, which
can be constructed as the algebraic K-theory spectrum of a perfect field k′. Let g be
a prime power topologically generating the p-adic units and let k′=colimn�0 Fgpn⊂ k̄
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be a Zp-extension of k=Fg. Then lp=K(k′)p is an E∞ ring spectrum model for the
p-completed connective Adams summand [Qu1, p. 585].

Likewise jp=K(k)p and kup=K(k̄)p are E∞ ring spectrum models for the p-com-
pleted connective image-of-J spectrum and the p-completed connective topological K-
theory spectrum, respectively. The Frobenius automorphism σg(x)=xg induces the
Adams operation ψg on both lp and kup. Then k is the fixed field of σg, and jp is
the connective cover of the homotopy fixed-point spectrum for ψg acting on either one
of lp or kup.

The E∞ ring spectrum maps S0
p→jp→lp→kup→HZp induce E∞ ring spectrum

maps on algebraic K-theory:

K(S0
p)−→K(jp)−→K(lp)−→K(kup)−→K(Zp).

In particular, these are H∞ ring spectrum maps [Ma].

1.2. A first class in algebraic K-theory . The Bökstedt trace map

tr:K(Zp)→THH(Zp)

maps onto the first p-torsion in the target, which is THH2p−1(Zp)∼=Z/p{e} [BM1, 4.2].
Let eK∈K2p−1(Zp) be a class with tr(eK)=e.

There is a (2p−2)-connected linearization map lp→HZp of E∞ ring spectra, which
induces a (2p−1)-connected map K(lp)→K(Zp) [BM1, 10.9].

Definition 1.3. Let λK
1 ∈K2p−1(lp) be a chosen class mapping to eK∈K2p−1(Zp) un-

der the map induced by linearization lp→HZp.

The image tr(λK
1 )∈THH2p−1(lp) of this class under the trace map

tr:K(lp)→THH(lp)

will map under linearization to e∈THH2p−1(Zp).

Remark 1.4. The class λK
1 ∈K2p−1(lp) does not lift further back to K2p−1(S0

p), since
eK has a nonzero image in π2p−2 of the homotopy fiber of K(S0

p)→K(Zp) [Wa1]. Thus
λK

1 does not lift to K2p−1(jp) either, because the map S0
p→jp is (pq−2)-connected. It

is not clear if the induced action of ψg on K(lp) leaves λK
1 invariant.

1.5. Homotopy and homology operations. For a spectrum X, let DpX=EΣp�Σp X∧p

be its pth extended power. Part of the structure defining an H∞ ring spectrum E is a
map ξ:DpE→E. Then a mod p homotopy class θ∈πm(DpS

n;Fp) determines a mod p

homotopy operation
θ∗:πn(E)−→πm(E;Fp)
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natural for maps of H∞ ring spectra E. Its value θ∗(x) on the homotopy class x repre-
sented by a map a:Sn→E is the image of θ under the composite map

πm(DpSn;Fp)
Dp(a)−−−−→πm(DpE;Fp)

ξ−→πm(E;Fp).

Likewise the Hurewicz image h(θ)∈Hm(DpSn;Fp) induces a homology operation

h(θ)∗:Hn(E;Fp)−→Hm(E;Fp),

and the two operations are compatible under the Hurewicz homomorphisms.
For Sn with n=2k−1 an odd-dimensional sphere, the two lowest cells of DpSn are

in dimensions pn+(p−2) and pn+(p−1), and are connected by a mod p Bockstein,
cf. [Br2, 2.9(i)]. Hence the bottom two mod p homotopy classes of DpSn are in these
two dimensions, and are called βP k and P k, respectively. Their Hurewicz images induce
the Dyer–Lashof operations denoted βQk and Qk in homology, cf. [Br2, 1.2].

For Sn with n=2k an even-dimensional sphere, the lowest cell of DpSn is in dimen-
sion pn. The bottom homotopy class of DpSn is called P k and induces the pth power
operation P k(x)=xp for x∈π2k(E). Its Hurewicz image is the Dyer–Lashof operation Qk.

We shall make use of the following mod p homotopy Cartan formula.

Lemma 1.6. Let E be an H∞ ring spectrum and let x∈π2i(E) and y∈π2j−1(E) be
integral homotopy classes. Then

(P i+j)∗(x·y)= (P i)∗(x)·(P j)∗(y)

in π2p(i+j)−1(E;Fp). Here (P i)∗(x)=xp.

Proof. This is a lift of the Cartan formula for the mod p homology operation Qi+j

to mod p homotopy near the Hurewicz dimension. We use the notation in [Br1, §7].
Let δ:Dp(S2i∧S2j−1)→DpS2i∧DpS2j−1 be the canonical map. Then for α=P i+j∈
π2p(i+j)−1(Dp(S2i∧S2j−1);Fp) we have δ∗(α)=P i∧P j in the image of the smash product
pairing

π2piDpS
2i⊗π2pj−1(DpS

2j−1;Fp)
∧−→π2p(i+j)−1(DpS2i∧DpS2j−1;Fp).

This is because the same relation holds in mod p homology, and the relevant mod p

Hurewicz homomorphisms are isomorphisms in these degrees. The lemma then follows
from [Br1, 7.3(v)]. �

1.7. A second class in algebraic K-theory . We use the H∞ ring spectrum structure
on K(lp) to produce a further element in its mod p homotopy.
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Definition 1.8. Let λK
2 =(P p)∗(λK

1 )∈K2p2−1(lp;Fp) be the image under the mod p

homotopy operation
(P p)∗:K2p−1(lp)−→K2p2−1(lp;Fp)

of λK
1 ∈K2p−1(lp) .

Since the trace map tr:K(lp)→THH(lp) is an E∞ ring spectrum map, it follows that
tr(λK

2 )∈THH2p2−1(lp;Fp) equals the image of tr(λK
1 )∈THH2p−1(lp) under the mod p

homotopy operation (P p)∗. We shall identify this image in Proposition 2.8, and show
that it is nonzero, which then proves that λK

2 is nonzero.

Remark 1.9. It is not clear whether λK
2 lifts to an integral homotopy class in

K2p2−1(lp). The image of eK∈K2p−1(Zp) in K2p−1(Qp;Fp) is v1d log p for a class d log p∈
K1(Qp;Fp) that maps to the generator of K0(Fp;Fp) in the K-theory localization se-
quence for Zp, cf. [HM2]. It appears that the image of λK

2 in V (1)2p2−1K(Lp) is v2d log v1

for a class d log v1∈V (1)1K(Lp) that maps to the generator of V (0)0K(Zp) in the ex-
pected K-theory localization sequence for lp. The classes λK

1 and λK
2 are therefore related

to logarithmic differentials for poles at p and v1, respectively, which partially motivates
the choice of the letter ‘λ’.

2. Topological Hochschild homology

Hereafter all spectra will be implicitly completed at p, without change in the notation.
The topological Hochschild homology functor THH(−), as well as its refined versions

THH(−)Cpn, THH(−)hS1
, TF (−; p), TR(−; p) and TC(−; p), preserve p-adic equiva-

lences. Hence we will tend to write THH(Z) and THH(l) in place of THH(Zp) and
THH(lp), and similarly for the refined functors.

Algebraic K-theory does certainly not preserve p-adic equivalences, so we will con-
tinue to write K(lp) and K(Zp) rather than K(l) and K(Z).

2.1. Homology of THH(l). The ring spectrum map l→HFp induces an injection on
mod p homology, identifying H∗(l;Fp) with the subalgebra

H∗(l;Fp)=P (ξ̄k | k � 1)⊗E(τ̄k | k � 2)

of the dual Steenrod algebra A∗. Here ξ̄k=χξk and τ̄k=χτk, where ξk and τk are Milnor’s
generators for A∗ and χ is the canonical involution. The degrees of these classes are
|ξ̄k|=2pk−2 and |τ̄k|=2pk−1.

There is a Bökstedt spectral sequence

E2
∗∗ =HH∗(H∗(l;Fp)) =⇒ H∗(THH(l);Fp) (2.2)
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with

E2
∗∗ =H∗(l;Fp)⊗E(σξ̄k | k � 1)⊗Γ(στ̄k | k � 2).

See [HM1, §5.2]. Here σx∈HH1(−) is represented by the cycle 1⊗x in degree 1 of
the Hochschild complex. The inclusion of 0-simplices l→THH(l) and the S1-action on
THH(l) yield a map S1

+∧l→THH(l), which when composed with the unique splitting of
S1

+∧l→S1∧l∼=Σl yields a map σ: Σl→THH(l). The induced degree 1 map on homology
takes x to σx.

By naturality with respect to the map l→HFp, the differentials

dp−1(γj(στ̄k))=σξ̄k+1·γj−p(στ̄k)

for j�p, found in the Bökstedt spectral sequence for THH(Fp), lift to the spectral
sequence (2.2) above. See also [Hu]. Hence

Ep
∗∗ =H∗(l;Fp)⊗E(σξ̄1, σξ̄2)⊗Pp(στ̄k | k � 2),

and this equals the E∞-term for bidegree reasons.
In H∗(THH(l);Fp) there are Dyer–Lashof operations acting, and (στ̄k)p=Qpk

(στ̄k)=
σ(Qpk

(τ̄k))=στ̄k+1 for all k�2 [St]. Thus as an H∗(l;Fp)-algebra,

H∗(THH(l);Fp)∼= H∗(l;Fp)⊗E(σξ̄1, σξ̄2)⊗P (στ̄2). (2.3)

Here |σξ̄1|=2p−1, |σξ̄2|=2p2−1 and |στ̄2|=2p2. Furthermore Qp(σξ̄1)=σ(Qp(ξ̄1))=σξ̄2.

2.4. V (1)-homotopy of THH(l). Let V (n) be the nth Smith–Toda complex, with
homology H∗(V (n);Fp)∼=E(τ̄0, ..., τ̄n). Thus V (0) is the mod p Moore spectrum and V (1)
is the cofiber of the multiplication-by-v1 map ΣqV (0)→V (0), where q=2p−2. There are
cofiber sequences

S0 p−→S0 i0−→V (0)
j0−→S1

and

ΣqV (0) v1−→V (0) i1−→V (1)
j1−→Σq+1V (0)

defining the maps labeled i0, j0, i1 and j1. When p�5, V (1) is a commutative ring
spectrum [Ok].

For a spectrum X the rth (partially defined) v1-Bockstein homomorphism β1,r is
defined on the classes x∈V (1)∗(X) with j1(x)∈V (0)∗(X) divisible by vr−1

1 . Then for
y∈V (0)∗(X) with vr−1

1 ·y=j1(x) let β1,r(x)=i1(y)∈V (1)∗(X). So β1,r decreases degrees
by rq+1.
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Definition 2.5. Let r(n)=0 for n�0, and let r(n)=pn+r(n−2) for all n�1. Thus
r(2n−1)=p2n−1+...+p (n odd powers of p) and r(2n)=p2n+...+p2 (n even powers of p).
Note that (p2−1)r(2n−1)=p2n+1−p, while (p2−1)r(2n)=p2n+2−p2.

Proposition 2.6 (McClure–Staffeldt). There is an algebra isomorphism

V (1)∗THH(l)∼=E(λ1, λ2)⊗P (µ)

with |λ1|=2p−1, |λ2|=2p2−1 and |µ|=2p2. The mod p Hurewicz images of these classes
are h(λ1)=1∧σξ̄1, h(λ2)=1∧σξ̄2 and h(µ)=1∧στ̄2−τ̄0∧σξ̄2. There are v1-Bocksteins
β1,p(µ)=λ1, β1,p2(µp)=λ2 and generally β1,r(n)(µpn−1

) �=0 for n�1.

Proof. One proof proceeds as follows, leaving the v1-Bockstein structure to the more
detailed work of [MS1].

H∗(THH(l);Fp) is an A∗-comodule algebra over H∗(l;Fp). The A∗-coaction

ν:H∗(THH(l);Fp)→A∗⊗H∗(THH(l);Fp)

agrees with the coproduct ψ:A∗→A∗⊗A∗ when both are restricted to the subalgebra
H∗(l;Fp)⊂A∗. Here

ψ(ξ̄k)=
∑

i+j=k

ξ̄i⊗ξ̄pi

j and ψ(τ̄k)=
∑

i+j=k

τ̄i⊗ξ̄pi

j +1⊗τ̄k.

Furthermore ν(σx)=(1⊗σ)ψ(x) and σ acts as a derivation. It follows that ν(σξ̄1)=
1⊗σξ̄1, ν(σξ̄2)=1⊗σξ̄2 and ν(στ̄2)=1⊗στ̄2+τ̄0⊗σξ̄2.

Since V (1)∧THH(l) is a module spectrum over V (1)∧ l�HFp, it is homotopy equi-
valent to a wedge of suspensions of HFp. Hence V (1)∗THH(l) maps isomorphically to
its Hurewicz image in

H∗(V (1)∧THH(l);Fp)∼= A∗⊗E(σξ̄1, σξ̄2)⊗P (στ̄2),

which consists of the primitive classes for the A∗-coaction. Let λ1, λ2 and µ in
V (1)∗THH(l) map to the primitive classes 1∧σξ̄1, 1∧σξ̄2 and 1∧στ̄2−τ̄0∧σξ̄2, respec-
tively. Then by a degree count, V (1)∗THH(l)∼=E(λ1, λ2)⊗P (µ), as asserted. �

Corollary 2.7. V (0)tTHH(l)=0 and πtTHH(l)=0 for all t �≡0, 1 mod 2p−2,
t<2p2+2p−2.

Proof. This follows easily by a v1-Bockstein spectral sequence argument applied to
V (1)∗THH(l) in low degrees. �
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Proposition 2.8. The classes λK
1 ∈K2p−1(lp) and λK

2 ∈K2p2−1(lp;Fp) map under
the trace map to integral and mod p lifts of

λ1∈V (1)2p−1THH(l) and λ2∈V (1)2p2−1THH(l),

respectively.

Proof. The Hurewicz and linearization maps

V (1)2p−1THH(l)→H2p−1(V (1)∧THH(l);Fp)→H2p−1(V (1)∧THH(Z);Fp)

are both injective. The mod p and v1 reduction of the trace image tr(λK
1 ) and λ1 are

equal in V (1)2p−1THH(l), because both map to 1∧σξ̄1 in H2p−1(V (1)∧THH(Z);Fp).
The Hurewicz image in H2p2−1(THH(l);Fp) of tr(λK

2 )=(P p)∗(tr(λK
1 )) equals the

image of the homology operation Qp on the Hurewicz image σξ̄1 of tr(λK
1 ) in

H2p−1(THH(l);Fp), which is Qp(σξ̄1)=σQp(ξ̄1)=σξ̄2. So the mod v1 reduction of tr(λK
2 )

in V (1)2p2−1THH(l) equals λ2, since both classes have the same Hurewicz image 1∧σξ̄2

in H2p2−1(V (1)∧THH(l);Fp). �

3. Topological cyclotomy

We now review some terminology and notation concerning topological cyclic homology
and the cyclotomic trace map. See [HM1] and [HM2] for more details.

3.1. Frobenius, restriction, Verschiebung. As already indicated, THH(l) is an S1-
equivariant spectrum. Let Cpn⊂S1 be the cyclic group of order pn. The Frobenius maps
F :THH(l)Cpn→THH(l)Cpn−1 are the usual inclusions of fixed-point spectra that forget
part of the invariance. Their homotopy limit defines

TF (l; p)=holim
n,F

THH(l)Cpn.

There are also restriction maps R:THH(l)Cpn→THH(l)Cpn−1, defined using the cyclo-
tomic structure of THH(l), cf. [HM1]. They commute with the Frobenius maps, and
thus induce a self-map R:TF (l; p)→TF (l; p). Its homotopy equalizer with the identity
map defines the topological cyclic homology of l, which was introduced in [BHM]:

TC(l; p) π �� TF (l; p)
R ��

1
�� TF (l; p).

Hence there is a cofiber sequence

Σ−1TF (l; p) ∂−→TC(l; p) π−→TF (l; p) 1−R−−−→TF (l; p),
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which we shall use in §8 to compute V (1)∗TC(l; p). There are also Verschiebung maps
V :THH(l)Cpn−1→THH(l)Cpn, defined up to homotopy in terms of the S1-equivariant
transfer.

3.2. The cyclotomic trace map. The Bökstedt trace map admits lifts

trn:K(lp)→THH(l)Cpn

for all n�0, with tr=tr0, which commute with the Frobenius maps and homotopy com-
mute with the restriction maps up to preferred homotopy. Hence the limiting map
trF :K(lp)→TF (l; p) homotopy equalizes R and the identity map, and the resulting lift

trc:K(lp)→TC(l; p)

is the Bökstedt–Hsiang–Madsen cyclotomic trace map [BHM].

3.3. The norm-restriction sequences. For each n�1 there is a homotopy commuta-
tive diagram

K(lp)

trn

��

trn−1

���
�
�
�
�
�
�
�
�
�
�
�
�

THH(l)hCpn
N �� THH(l)Cpn R ��

Γn

��

THH(l)Cpn−1

Γ̂n

��

THH(l)hCpn
Nh

�� THH(l)hCpn Rh
�� Ĥ(Cpn, THH(l)).

(3.4)

The lower part is the map of cofiber sequences that arises by smashing the S1-equivariant
cofiber sequence ES1

+→S0→ẼS1 with the S1-equivariant map

THH(l)→F (ES1
+, THH(l))

and taking Cpn fixed-point spectra. For closed subgroups G⊆S1 recall that THH(l)hG=
F (ES1

+, THH(l))G is the G homotopy fixed-point spectrum of THH(l), and

Ĥ(G,THH(l))= [ẼS1∧F (ES1
+, THH(l))]G

is the G Tate construction on THH(l). The remaining terms of the diagram are then
identified by the canonical homotopy equivalences

THH(l)hCpn � [ES1
+∧THH(l)]Cpn � [ES1

+∧F (ES1
+, THH(l))]Cpn
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and
THH(l)Cpn−1 � [ẼS1∧THH(l)]Cpn .

(In each case there is a natural map which induces the equivalence.)
We call N , R, Nh and Rh the norm, restriction, homotopy norm and homotopy

restriction maps, respectively. We call Γn and Γ̂n the canonical maps. The middle
and lower cofiber sequences are the norm-restriction and homotopy norm-restriction se-
quences, respectively.

We shall later make particular use of the map

Γ̂1:THH(l)� [ẼS1∧THH(l)]Cp −→ [ẼS1∧F (ES1
+, THH(l))]Cp = Ĥ(Cp, THH(l)).

We note that Γ̂1 is an S1-equivariant map, and induces Γ̂n+1=(Γ̂1)Cpn upon restriction
to Cpn fixed points.

By passage to homotopy limits over Frobenius maps we also obtain a limiting dia-
gram

K(lp)

trF

��

trF

���
�
�
�
�
�
�
�
�
�
�
�
�

ΣTHH(l)hS1
N �� TF (l; p) R ��

Γ

��

TF (l; p)

Γ̂
��

ΣTHH(l)hS1
Nh

�� THH(l)hS1 Rh
�� Ĥ(S1, THH(l)).

(3.5)

Implicit here are the canonical p-adic homotopy equivalences

ΣTHH(l)hS1 � holim
n,F

THH(l)hCpn ,

THH(l)hS1
� holim

n,F
THH(l)hCpn,

Ĥ(S1, THH(l))� holim
n,F

Ĥ(Cpn, THH(l)).

4. Circle homotopy fixed points

4.1. The circle trace map. The circle trace map

trS1 = Γ�trF :K(lp)→THH(l)hS1
=F (ES1

+, THH(l))S1

is a preferred lift of the trace map tr:K(lp)→THH(l). We take S∞ as our model for ES1.
Let

Tn =F (S∞/S2n−1, THH(l))S1
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for n�0, so that there is a descending filtration {T n}n on T 0=THH(l)hS1
, with layers

Tn/Tn+1∼=F (S2n+1/S2n−1, THH(l))S1∼=Σ−2nTHH(l).

4.2. The homology spectral sequence. Placing T n in filtration s=−2n and applying
homology, we obtain a (not necessarily convergent) homology spectral sequence

E2
s,t =H−s(S1;Ht(THH(l);Fp)) =⇒ Hs+t(THH(l)hS1

;Fp) (4.3)

with
E2

∗∗ =P (t)⊗H∗(l;Fp)⊗E(σξ̄1, σξ̄2)⊗P (στ̄2).

Here t has bidegree (−2, 0) while the other generators are located on the vertical axis.
(No confusion should arise from the double usage of t as a polynomial cohomology class
and the vertical degree in this or other spectral sequences.)

Lemma 4.4. There are differentials d2(ξ̄1)=t·σξ̄1, d2(ξ̄2)=t·σξ̄2 and d2(τ̄2)=t·στ̄2

in the spectral sequence (4.3).

Proof. The d2-differential

d2
0,t:E

2
0,t

∼=Ht(THH(l);Fp){1}−→E2
−2,t+1

∼= Ht+1(THH(l);Fp){t}

is adjoint to the S1-action on THH(l), hence restricts to σ on Ht(l;Fp). See [Ro1, 3.3]. �

4.5. The V (1)-homotopy spectral sequence. Applying V (1)-homotopy to the filtra-
tion {Tn}n, in place of homology, we obtain a conditionally convergent V (1)-homotopy
spectral sequence

E2
s,t(S

1)=H−s(S1;V (1)tTHH(l)) =⇒ V (1)s+tTHH(l)hS1
(4.6)

with
E2

∗∗(S
1)=P (t)⊗E(λ1, λ2)⊗P (µ).

Again t has bidegree (−2, 0) while the other generators are located on the vertical axis.

Definition 4.7. Let

α1∈π2p−3(S0), β′
1∈π2p2−2p−1V (0) and v2∈π2p2−2V (1)

be the classes represented in their respective Adams spectral sequences by the cobar
1-cycles h10=[ξ̄1], h11=[ξ̄p

1 ] and [τ̄2]. So j1(v2)=β′
1 and j0(β′

1)=β1∈π2p2−2p−2(S0).

Consider the unit map S0→K(lp)→THH(l)hS1
, which is well defined after p-adic

completion.
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Proposition 4.8. The classes i1i0(α1)∈π2p−3V (1), i1(β′
1)∈π2p2−2p−1V (1) and

v2∈π2p2−2V (1) map under the unit map V (1)∗S0→V (1)∗THH(l)hS1
to nonzero classes

represented in E∞(S1) by tλ1, tpλ2 and tµ, respectively.

Proof. Consider first the filtration subquotient T 0/T 2=F (S3
+, THH(l))S1

. The unit
map V (1)→V (1)∧(T 0/T 2) induces a map of Adams spectral sequences, taking the per-
manent 1-cycles [ξ̄1] and [τ̄2] in the source Adams spectral sequence to infinite 1-cycles
with the same cobar names in the target Adams spectral sequence. These are not 1-
boundaries in the cobar complex

H∗(T 0/T 2;Fp)
d0

−−→ Ā∗⊗H∗(T 0/T 2;Fp)
d1

−−→ ...

for the A∗-comodule H∗(T 0/T 2;Fp), because of the differentials d2(ξ̄1)=t·σξ̄1 and
d2(τ̄2)= t·στ̄2 that are present in the 2-column spectral sequence converging to
H∗(T 0/T 2;Fp). In detail, H2p−2(T 0/T 2;Fp)=0 and H2p2−1(T 0/T 2;Fp) is spanned by
the primitives σξ̄2 and ξ̄p

1 ·σξ̄1.
Thus [ξ̄1] and [τ̄2] are nonzero infinite cycles in the target Adams E2-term. They

have Adams filtration one, hence cannot be boundaries. Thus they are permanent
cycles, and are nonzero images of the classes i1i0(α1) and v2 under the composite
V (1)∗→V (1)∗(T 0)→V (1)∗(T 0/T 2). Thus they are also detected in V (1)∗(T 0), in fil-
tration s�−2. For bidegree reasons the only possibility is that i1i0(α1) is detected in
the V (1)-homotopy spectral sequence E∞(S1) as tλ1, and v2 is detected as tµ.

Next consider the filtration subquotient T 0/T p+1=F (S2p+1
+ , THH(l))S1

. Restriction
across S2p+1

+ →ES1
+ yields the second of two E∞ ring spectrum maps:

S0 ι−→THH(l)hS1 �−→T 0/T p+1.

The composite map �ι takes α1∈π2p−3(S0) to a product t·λ1 in π2p−3(T 0/T p+1), where
t∈π−2(T 0/T p+1) and λ1∈π2p−1(T 0/T p+1). Here t and λ1 are represented by the classes
with the same names in the integral homotopy spectral sequence:

E2
s,t =

{
H−s(S1;πtTHH(l)), −2p� s� 0,

0, otherwise,
=⇒ πs+t(T 0/T p+1).

By Proposition 2.6 and Corollary 2.7 we have πtTHH(l)=0 for 0<t<2p−2 and for
2p−1<t<4p−4, so the class t is a permanent cycle for bidegree reasons, and the fac-
torization �ι(α1)=t·λ1 holds strictly, not just modulo lower filtrations. We know from
Proposition 2.8 that λ1=trS1(λK

1 ) is an integral homotopy class.
Now we apply naturality and the mod p homotopy Cartan formula in Lemma 1.6,

to see that β′
1=(P p−1)∗(α1) in π2p2−2p−1(S0;Fp) maps under �ι to

(P p−1)∗(t·λ1)= (P−1)∗(t)·(P p)∗(λ1)= tp·λ2
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in π2p2−2p−1(T 0/T p+1;Fp). Hence i1(β′
1) maps to the infinite cycle tpλ2 in E∞(S1),

which cannot be a boundary for bidegree reasons. Thus tpλ2 is a permanent cycle. �

5. The homotopy limit property

5.1. Homotopy fixed-point and Tate spectral sequences. For closed subgroups G⊆S1 we
will consider the (second quadrant) G homotopy fixed-point spectral sequence

E2
s,t(G)=H−s(G,V (1)tTHH(l)) =⇒ V (1)s+tTHH(l)hG.

We also consider the (upper half-plane) G Tate spectral sequence

Ê2
s,t(G)= Ĥ−s(G,V (1)tTHH(l)) =⇒ V (1)s+tĤ(G,THH(l)).

When G=S1 we have

E2
∗∗(S

1)=E(λ1, λ2)⊗P (t, µ)

since H∗(S1;Fp)=P (t), and

Ê2
∗∗(S

1)=E(λ1, λ2)⊗P (t, t−1, µ)

since Ĥ∗(S1;Fp)=P (t, t−1). When G=Cpn we have

E2
∗∗(Cpn)=E(un, λ1, λ2)⊗P (t, µ)

since H∗(Cpn;Fp)=E(un)⊗P (t), while

Ê2
∗∗(Cpn)=E(un, λ1, λ2)⊗P (t, t−1, µ)

since Ĥ∗(Cpn;Fp)=E(un)⊗P (t, t−1). In all cases un has bidegree (−1, 0), t has bidegree
(−2, 0), λ1 has bidegree (0, 2p−1), λ2 has bidegree (0, 2p2−1) and µ has bidegree (0, 2p2).

All of these spectral sequences are conditionally convergent by construction, and are
thus strongly convergent by [Boa, 7.1], since the E2-terms are finite in each bidegree.

The homotopy restriction map Rh induces a map of spectral sequences

E∗(Rh):E∗(G)→ Ê∗(G),

which on E2-terms inverts t, identifying E2(G) with the restriction of Ê2(G) to the
second quadrant.
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The Frobenius and Verschiebung maps F and V are compatible under Γ̂n+1 and Γ̂n

with homotopy Frobenius and Verschiebung maps F h and V h that induce maps of Tate
spectral sequences

Ê∗(Fh): Ê∗(Cpn+1)→ Ê∗(Cpn)

and

Ê∗(V h): Ê∗(Cpn)→ Ê∗(Cpn+1).

Here Ê2(Fh) is induced by the natural map Ĥ∗(Cpn+1;Fp)→Ĥ∗(Cpn;Fp) taking t to t

and un+1 to 0. It thus maps the even columns isomorphically and the odd columns
trivially. On the other hand, Ê2(V h) is induced by the transfer map Ĥ∗(Cpn;Fp)→
Ĥ∗(Cpn+1 ;Fp) taking t to 0 and un to un+1. It thus maps the odd columns isomorphically
and the even columns trivially.

This pattern persists to higher Er-terms, until a differential of odd length appears
in either spectral sequence. More precisely, we have the following lemma:

Lemma 5.2. Let dr(G) denote the differential acting on Êr(G). Choose n0�1, and
let r0�3 be the smallest odd integer such that there exists a nonzero differential

dr0
s,∗(Cpn0): Êr0

s,∗(Cpn0)−→ Êr0
s−r0,∗(Cpn0)

with s odd. (If Ê∗
∗∗(Cpn0) has no nonzero differentials of odd length from an odd column,

let r0=∞.) Then:
(a) For all 2�r�r0 and n�n0 the terms Êr(Cpn) and Êr(Cpn+1) are abstractly

isomorphic. Indeed, F =Êr(Fh): Êr
s,∗(Cpn+1)→Êr

s,∗(Cpn) is an isomorphism if s is even
and is zero if s is odd, while V =Êr(V h): Êr

s,∗(Cpn)→Êr
s,∗(Cpn+1) is an isomorphism if

s is odd and is zero if s is even.
(b) For all odd r with 3�r�r0 and n�n0 the differential dr

s,∗(Cpn) is zero, unless
r=r0, n=n0 and s is odd.

Proof. We consider the two (superimposed) commuting squares

Êr
s,∗(Cpn+1)

F ��

dr
s,∗(Cpn+1 )

��

Êr
s,∗(Cpn)

V
��

dr
s,∗(Cpn)

��

Êr
s−r,∗(Cpn+1)

F ��
Êr

s−r,∗(Cpn).
V

��

The following statements then follow in sequence by increasing induction on r, for
2�r�r0 and n�n0.
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(1) F : Êr
s,∗(Cpn+1)→Êr

s,∗(Cpn) is an isomorphism for all s even, and is zero for s

odd.
(2) V : Êr

s,∗(Cpn)→Êr
s,∗(Cpn+1) is an isomorphism for all s odd, and is zero for s

even.
(3) dr

s,∗(Cpn)�F =F �dr
s,∗(Cpn+1) with F an isomorphism for all s even and r<r0

even.
(4) dr

s,∗(Cpn+1)�V =V �dr
s,∗(Cpn) with V an isomorphism for all s odd and r<r0

even.
(5) dr

s,∗(Cpn)=0 for all s even and r�r0 odd.
(6) dr

s,∗(Cpn+1)=0 for all s odd and r�r0 odd. �

The lemma clearly also applies to the system of homotopy fixed-point spectral se-
quences E∗(Cpn).

5.3. Input for Tsalidis’ theorem.

Definition 5.4. A map A∗→B∗ of graded groups is k-coconnected if it is an isomor-
phism in all dimensions greater than k and injective in dimension k.

Theorem 5.5. The canonical map

Γ̂1:THH(l)→ Ĥ(Cp, THH(l))

induces a (2p−2)-coconnected map on V (1)-homotopy, which factors as the localization
map

V (1)∗THH(l)−→µ−1V (1)∗THH(l)∼= E(λ1, λ2)⊗P (µ, µ−1),

followed by an isomorphism

µ−1V (1)∗THH(l)∼= V (1)∗Ĥ(Cp, THH(l)).

Proof. Consider diagram (3.4) in the case n=1. The classes i1i0(α1), i1(β′
1)

and v2 in V (1)∗ map through V (1)∗K(lp) and Γ1�tr1 to classes in V (1)∗THH(l)hCp

that are detected by tλ1, tpλ2 and tµ in E∞(Cp), respectively. Continuing by Rh to
V (1)∗Ĥ(Cp, THH(l)) these classes factor through V (1)∗THH(l), where they pass
through zero groups. Hence the images of tλ1, tpλ2 and tµ in Ê∞(Cp) must be zero, i.e.,
these infinite cycles in Ê2(Cp) are boundaries. For dimension reasons the only possibili-
ties are

d2p(t1−p) = tλ1,

d2p2
(tp−p2

) = tpλ2,

d2p2+1(u1t
−p2

) = tµ.
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The classes i1i0(λK
1 ) and i1(λK

2 ) in V (1)∗K(lp) map by Γ1�tr1 to classes in
V (1)∗THH(l)hCp that have Frobenius images λ1 and λ2 in V (1)∗THH(l), and hence
survive as permanent cycles in E∞

0,∗(Cp). Thus their images λ1 and λ2 in Ê∗(Cp) are
infinite cycles.

Hence the various Er-terms of the Cp Tate spectral sequence are

Ê2(Cp) =E(u1, λ1, λ2)⊗P (t, t−1, tµ),

Ê2p+1(Cp) =E(u1, λ1, λ2)⊗P (tp, t−p, tµ),

Ê2p2+1(Cp) =E(u1, λ1, λ2)⊗P (tp
2
, t−p2

, tµ),

Ê2p2+2(Cp) =E(λ1, λ2)⊗P (tp
2
, t−p2

).

For bidegree reasons there are no further differentials, so Ê2p2+2(Cp)=Ê∞(Cp) and the
classes λ1, λ2 and t±p2

are permanent cycles.
On V (1)-homotopy the map Γ̂1:THH(l)→Ĥ(Cp, THH(l)) induces the homomor-

phism
E(λ1, λ2)⊗P (µ)−→E(λ1, λ2)⊗P (tp

2
, t−p2

)

that maps λ1 �→λ1, λ2 �→λ2 and µ �→t−p2
. For the classes i1i0(λK

1 ) and i1(λK
2 ) in

V (1)∗K(lp) map by tr to λ1 and λ2 in V (1)∗THH(l), and by Rh
�Γ1�tr1 to the classes

in V (1)∗Ĥ(Cp, THH(l)) represented by λ1 and λ2. The class µ in V (1)∗THH(l) must
have nonzero image in V (1)∗Ĥ(Cp, THH(l)), since its pth v1-Bockstein β1,p(µ)=λ1 has
nonzero image there. Thus µ maps to the class represented by t−p2

, up to a unit
multiple which we ignore. So V (1)∗ Γ̂1 is an isomorphism in dimensions greater than
|λ1λ2tp

2 |=2p−2, and is injective in dimension 2p−2. �

5.6. The homotopy limit property .

Theorem 5.7. The canonical maps

Γn:THH(l)Cpn →THH(l)hCpn,

Γ̂n:THH(l)Cpn−1 → Ĥ(Cpn, THH(l))

and

Γ:TF (l; p)→THH(l)hS1
,

Γ̂:TF (l; p)→ Ĥ(S1, THH(l))

all induce (2p−2)-coconnected maps on V (1)-homotopy.

Proof. The claims for Γn and Γ̂n follow from Theorem 5.5 and a theorem of Tsa-
lidis [Ts]. The claims for Γ and Γ̂ follow by passage to homotopy limits, using the p-adic
homotopy equivalence THH(l)hS1�holimn,F THH(l)hCpn and its analogue for the Tate
constructions. �
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6. Higher fixed points

Let [k]=1 when k is odd, and [k]=2 when k is even. Let λ′
[k]=λ[k+1], so that {λ[k], λ

′
[k]}=

{λ1, λ2} for all k. We write vp(k) for the p-valuation of k, i.e., the exponent of the
greatest power of p that divides k. By convention, vp(0)=+∞. Recall the integers r(n)
from Definition 2.5.

Theorem 6.1. In the Cpn Tate spectral sequence Ê∗(Cpn) there are differentials

d2r(k)(tp
k−1−pk

)=λ[k]t
pk−1

(tµ)r(k−2)

for all 1�k�2n, and
d2r(2n)+1(unt−p2n

)= (tµ)r(2n−2)+1.

The classes λ1, λ2 and tµ are infinite cycles.

We shall prove this by induction on n, the case n=1 being settled in the previous
section. Hence we assume that the theorem holds for one n�1, and we will establish its
assertions for n+1.

The terms of the Tate spectral sequence are

Ê2r(m)+1(Cpn)=E(un, λ1, λ2)⊗P (tp
m

, t−pm

, tµ)

⊕
m⊕

k=3

E(un, λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}

for 1�m�2n. To see this, note that the differential d2r(k) only affects the summand
E(un, λ1, λ2)⊗P (tµ)⊗Fp{ti |vp(i)=k−1}, and here its homology is

E(un, λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}.

Next

Ê2r(2n)+2(Cpn) =E(λ1, λ2)⊗Pr(2n−2)+1(tµ)⊗P (tp
2n

, t−p2n

)

⊕
2n⊕

k=3

E(un, λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}.

For bidegree reasons the remaining differentials are zero, so Ê2r(2n)+2(Cpn)=Ê∞(Cpn),
and the classes t±p2n

are permanent cycles.

Proposition 6.2. The associated graded of V (1)∗Ĥ(Cpn, THH(l)) is

Ê∞(Cpn)=E(λ1, λ2)⊗Pr(2n−2)+1(tµ)⊗P (tp
2n

, t−p2n

)

⊕
2n⊕

k=3

E(un, λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}.

Comparing E∗(Cpn) with Ê∗(Cpn) via the homotopy restriction map Rh, we obtain
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Proposition 6.3. In the Cpn homotopy fixed-point spectral sequence E∗(Cpn) there
are differentials

d2r(k)(tp
k−1

)=λ[k]t
pk+pk−1

(tµ)r(k−2)

for all 1�k�2n, and
d2r(2n)+1(un)= tp

2n

(tµ)r(2n−2)+1.

The classes λ1, λ2 and tµ are infinite cycles.

Let G be a closed subgroup of S1. We will also consider the (strongly convergent)
G homotopy fixed-point spectral sequence for Ĥ(Cp, THH(l)) in V (1)-homotopy

µ−1E2
s,t(G) =H−s(G;V (1)tĤ(Cp, THH(l))) =⇒ V (1)s+tĤ(Cp, THH(l))hG.

By Theorem 5.5 its E2-term µ−1E2(G) is obtained from E2(G) by inverting µ. Therefore
we shall denote this spectral sequence by µ−1E∗(G), and refer to it as the µ-inverted
spectral sequence, even though the later terms µ−1Er(G) are generally not obtained
from Er(G) by simply inverting µ. For each r the natural map Er(G)→µ−1Er(G) is an
isomorphism in total degrees greater than 2p−2, and an injection in total degree 2p−2.

Proposition 6.4. In the µ-inverted spectral sequence µ−1E∗(Cpn) there are differ-
entials

d2r(k)(µpk−pk−1
)=λ[k](tµ)r(k)µ−pk−1

for all 1�k�2n, and
d2r(2n)+1(unµp2n

)= (tµ)r(2n)+1.

The classes λ1, λ2 and tµ are infinite cycles.

The terms of the µ-inverted spectral sequence are

µ−1E2r(m)+1(Cpn)=E(un, λ1, λ2)⊗P (µpm

, µ−pm

, tµ)

⊕
m⊕

k=1

E(un, λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

j | vp(j)= k−1}

for 1�m�2n. Next

µ−1E2r(2n)+2(Cpn) =E(λ1, λ2)⊗Pr(2n)+1(tµ)⊗P (µp2n

, µ−p2n

)

⊕
2n⊕

k=1

E(un, λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

j | vp(j)= k−1}.

Again µ−1E2r(2n)+2(Cpn)=µ−1E∞(Cpn) for bidegree reasons, and the classes µ±p2n

are
permanent cycles.
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Proposition 6.5. The associated graded E∞(Cpn) of V (1)∗THH(l)hCpn maps by
a (2p−2)-coconnected map to

µ−1E∞(Cpn) =E(λ1, λ2)⊗Pr(2n)+1(tµ)⊗P (µp2n

, µ−p2n

)

⊕
2n⊕

k=1

E(un, λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

j | vp(j)= k−1}.

Proof of Theorem 6.1. By our inductive hypothesis, the abutment µ−1E∞(Cpn)
contains summands

Pr(2n−1)(tµ){λ1µ
p2n−2

}, Pr(2n)(tµ){λ2µp2n−1
} and Pr(2n)+1(tµ){µp2n

}

representing elements in V (1)∗THH(l)Cpn. By inspection there are no classes in
µ−1E∞(Cpn) in the same total degree and of lower s-filtration than (tµ)r(2n−1)·λ1µ

p2n−2
,

(tµ)r(2n)·λ2µp2n−1
and (tµ)r(2n)+1·µp2n

, respectively. So the three homotopy classes rep-
resented by λ1µ

p2n−2
, λ2µp2n−1

and µp2n

are v2-torsion classes of order precisely r(2n−1),
r(2n) and r(2n)+1, respectively.

Consider the commutative diagram

THH(l)hCpn

F n

��

THH(l)Cpn

F n

��

Γn��
Γ̂n+1

�� Ĥ(Cpn+1 , THH(l))

F n

��

THH(l) THH(l)
Γ0

=
��

Γ̂1 �� Ĥ(Cp, THH(l)).

Here Fn is the n-fold Frobenius map forgetting Cpn-invariance. The right-hand square
commutes because Γ̂n+1 is constructed as the Cpn-invariant part of an S1-equivariant
model for Γ̂1.

The three classes in V (1)∗THH(l)Cpn represented by λ1µ
p2n−2

, λ2µp2n−1
and µp2n

map by the middle Fn to classes in V (1)∗THH(l) with the same names, and by Γ̂1 to
classes in V (1)∗Ĥ(Cp, THH(l)) represented by λ1t

−p2n

, λ2t−p2n+1
and t−p2n+2

in Ê∞(Cp),
respectively. Hence they map by Γ̂n+1 to permanent cycles in Ê∗(Cpn+1) with these
images under the right-hand F n.

Once we show that there are no classes in Ê∞(Cpn+1) in the same total degree
and with higher s-filtration than λ1t

−p2n

, λ2t−p2n+1
and t−p2n+2

, then it will follow that
these are precisely the permanent cycles that represent the images of λ1µ

p2n−2
, λ2µp2n−1

and µp2n

under Γ̂n+1.
By Lemma 5.2 applied to the system of Tate spectral sequences Ê∗(Cpn) for

n�1, using the inductive hypothesis about Ê∗(Cpn), there are abstract isomorphisms
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Êr(Cpn)∼=Êr(Cpn+1) for all r�2r(2n)+1, by F in the even columns and V in the odd
columns. This determines the dr-differentials and Er-terms of Ê∗(Cpn+1) up to and
including the Er-term with r=2r(2n)+1:

Ê2r(2n)+1(Cpn+1)=E(un+1, λ1, λ2)⊗P (tp
2n

, t−p2n

, tµ)

⊕
2n⊕

k=3

E(un+1, λ
′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}.

By inspection there are no permanent cycles in the same total degree and of higher
s-filtration in Ê∗(Cpn+1) than λ1t

−p2n

, λ2t−p2n+1
and t−p2n+2

, respectively. So the equi-
valence Γ̂n+1Γ−1

n takes the homotopy classes represented by λ1µ
p2n−2

, λ2µp2n−1
and µp2n

to homotopy classes represented by λ1t
−p2n

, λ2t−p2n+1
and t−p2n+2

, respectively.
Since Γ̂n+1Γ−1

n induces an isomorphism on V (1)-homotopy in dimensions greater
than 2p−2, it preserves the v2-torsion order of these classes. Thus the infinite cycles

(tµ)r(2n−1)·λ1t
−p2n

, (tµ)r(2n)·λ2t−p2n+1
and (tµ)r(2n)+1· t−p2n+2

are all boundaries in Ê∗(Cpn+1). All these are tµ-periodic classes in Êr(Cpn+1) for r=
2r(2n)+1, hence cannot be hit by differentials from the tµ-torsion classes in this Er-term.

This leaves the tµ-periodic part E(un+1, λ1, λ2)⊗P (tp
2n

, t−p2n

, tµ), where all the
generators above the horizontal axis are infinite cycles. Hence the differentials hitting
(tµ)r(2n−1)·λ1t

−p2n

, (tµ)r(2n)·λ2t−p2n+1
and (tµ)r(2n)+1· t−p2n+2

must (be multiples of
differentials that) originate on the horizontal axis, and by inspection the only possibilities
are

d2r(2n+1)(t−p2n−p2n+1
)= (tµ)r(2n−1)·λ1t

−p2n

,

d2r(2n+2)(t−p2n+1−p2n+2
)= (tµ)r(2n)·λ2t−p2n+1

,

d2r(2n+2)+1(un+1t−2p2n+2
)= (tµ)r(2n)+1· t−p2n+2

.

The algebra structure on Ê∗(Cpn+1) lets us rewrite these differentials as the remaining
differentials asserted by case n+1 of Theorem 6.1. �

Passing to the limit over the Frobenius maps, we obtain

Theorem 6.6. The associated graded of V (1)∗Ĥ(S1, THH(l)) is

Ê∞(S1)=E(λ1, λ2)⊗P (tµ)

⊕
⊕
k�3

E(λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

i | vp(i)= k−1}.
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Theorem 6.7. The associated graded E∞(S1) of V (1)∗THH(l)hS1
maps by a

(2p−2)-coconnected map to

µ−1E∞(S1) =E(λ1, λ2)⊗P (tµ)

⊕
⊕
k�1

E(λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

j | vp(j)= k−1}.

For a bigraded Abelian group E∞
∗∗ let the (product) total group TotΠ∗ (E∞) be the

graded Abelian group with
TotΠn (E∞)=

∏
s+t=n

E∞
s,t.

Then each of the E∞-terms above compute V (1)∗TF (l; p) in dimensions greater than
2p−2, by way of the (2p−2)-coconnected maps

Γ̂:V (1)∗TF (l; p)→V (1)∗Ĥ(S1, THH(l))∼= TotΠ∗ (Ê∞(S1))

and
Γ:V (1)∗TF (l; p)→V (1)∗THH(l)hS1

→TotΠ∗ (µ−1E∞(S1)),

respectively.

7. The restriction map

In this section we will evaluate the homomorphism

R∗:V (1)∗TF (l; p)→V (1)∗TF (l; p)

induced on V (1)-homotopy by the restriction map R, in dimensions greater than 2p−2.
The canonical map from Cpn fixed points to Cpn homotopy fixed points applied to

the S1-equivariant map Γ̂1:THH(l)→Ĥ(Cp, THH(l)) yields a commutative square of
ring spectrum maps

THH(l)Cpn
Γn ��

Γ̂n+1

��

THH(l)hCpn

(Γ̂1)
hCpn

��

Ĥ(Cpn+1 , THH(l))
Gn �� Ĥ(Cp, THH(l))hCpn .

The right-hand vertical map (Γ̂1)hCpn induces the natural map

E∗(Cpn)→µ−1E∗(Cpn)

of Cpn homotopy fixed-point spectral sequences. By Theorem 5.7 and preservation of
coconnectivity under passage to homotopy fixed points, all four maps in this square
induce isomorphisms of finite groups on V (1)-homotopy in dimensions greater than 2p−2.

Regarding Gn, more is true:
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Lemma 7.1. Gn is a V (1)-equivalence.

Proof. We proceed as in [HM1, p. 69]. The d2r(2n)+1-differential in Theorem 6.1
implies a differential

d2r(2n)+1(unt−p2n

·(tµ)−r(2n−2)−1)= 1

in the Cpn Tate spectral sequence µ−1Ê∗(Cpn) for Ĥ(Cp, THH(l)). It follows that
µ−1Ê

2r(2n)+2
∗∗ (Cpn)=0, so V (1)∧Ĥ(Cpn, Ĥ(Cp, THH(l)))�∗.

Hence the Cpn homotopy norm map for Ĥ(Cp, THH(l)) is a V (1)-equivalence, and
the canonical map Gn induces a split surjection on V (1)-homotopy. (Compare with (3.4).)
Its source and target have abstractly isomorphic V (1)-homotopy groups of finite type,
by Propositions 6.2 and 6.5, thus Gn induces an isomorphism of finite V (1)-homotopy
groups in all dimensions. �

By passage to homotopy limits over the Frobenius maps we obtain the commutative
square

TF (l; p) Γ ��

Γ̂

��

THH(l)hS1

(Γ̂1)
hS1

��

Ĥ(S1, THH(l))
G �� Ĥ(Cp, THH(l))hS1

.

Again, the map (Γ̂1)hS1
induces the natural map E∗(S1)→µ−1E∗(S1) of S1-homotopy

fixed-point spectral sequences. In each dimension greater than 2p−2 it follows that
V (1)∗TF (l; p)∼=limn,F V (1)∗THH(l)Cpn is a profinite group, and likewise for the other
three corners of the square. Thus Γ, Γ̂ and (Γ̂1)hS1

all induce homeomorphisms of profinite
groups on V (1)-homotopy in each dimension greater than 2p−2, while G=holimn,F Gn

induces such a homeomorphism in all dimensions by Lemma 7.1.
(An alternative proof that G is a V (1)-equivalence, not using Lemma 7.1, can be

given by using that G∗ is a ring homomorphism and an isomorphism in dimensions
greater than 2p−2.)

We can now study the restriction map R∗ by applying V (1)-homotopy to the com-
mutative diagram

TF (l; p) R ��

Γ

��

TF (l; p) Γ ��

Γ̂

��

THH(l)hS1

(Γ̂1)
hS1

��

THH(l)hS1 Rh
�� Ĥ(S1, THH(l))

G �� Ĥ(Cp, THH(l))hS1
.

The source and target of R∗ are both identified with V (1)∗THH(l)hS1
via Γ∗. Then R∗ is

identified with the composite homomorphism Γ∗� Γ̂−1
∗ �Rh

∗ . We shall consider the factors
Rh

∗ and (ΓΓ̂−1)∗ in turn.
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The homotopy restriction map Rh induces a map of spectral sequences

E∗(Rh):E∗(S1)→ Ê∗(S1),

where the E∞-terms are given in Theorems 6.6 and 6.7.

Proposition 7.2. In total dimensions greater than 2p−2 the homomorphism
E∞(Rh) maps

(a) E(λ1, λ2)⊗P (tµ) in E∞(S1) isomorphically to E(λ1, λ2)⊗P (tµ) in Ê∞(S1);
(b) E(λ′

[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ
−dpk−1} in E∞(S1) onto E(λ′

[k])⊗Pr(k−2)(tµ)⊗
Fp{λ[k]t

dpk−1} in Ê∞(S1), for k�3 and 0<d<p;
(c) the remaining terms in E∞(S1) to zero.

Proof. Case (a) is clear. For (b) and (c) note that E∞(Rh) maps the term

E(λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

−dpk−1
}

in E∞(S1) to the term

E(λ′
[k])⊗Pr(k−2)(tµ)⊗Fp{λ[k]t

dpk−1
}

in Ê∞(S1). Here d is prime to p. For d>p the source and target are in negative
total dimensions, while for d<0 the source and target are concentrated in disjoint total
dimensions. The cases 0<d<p remain, when the map is a surjection since r(k)−dpk−1>

r(k−2). �

This identifies the image of Rh
∗ , by the following lemma extracted from [BM1, §2].

Lemma 7.3. The representatives in E∞(S1) of the kernel of Rh
∗ equal the kernel

of E∞(Rh). Hence the image of Rh
∗ is isomorphic to the image of TotΠ∗ (E∞(Rh)) in

TotΠ∗ (Ê∞(S1)).

The composite equivalence ΓΓ̂−1 does not induce a map of spectral sequences.
Nonetheless it induces an isomorphism of E(λ1, λ2)⊗P (v2)-modules on V (1)-homotopy
in dimensions greater than 2p−2. Here v2 acts by multiplication in V (1)∗, while multi-
plications by λ1 and λ2 are realized by the images of λK

1 and λK
2 , since both Γ and Γ̂ are

ring spectrum maps.

Proposition 7.4. In dimensions greater than 2p−2 the composite map (ΓΓ̂−1)∗
takes all classes in V (1)∗Ĥ(S1, THH(l)) represented by λε1

1 λε2
2 (tµ)mti in Ê∞(S1) to

classes in V (1)∗THH(l)hS1
represented by λε1

1 λε2
2 (tµ)mµj in E∞(S1) with i+p2j=0.

Here ε1, ε2∈{0, 1} and m�0.

Proof. We prove that G∗ takes all classes represented by λε1
1 λε2

2 (tµ)mti to classes in
V (1)∗Ĥ(Cp, THH(l))hS1

represented by λε1
1 λε2

2 (tµ)mµj in µ−1E∞(S1), with i+p2j=0.
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The assertion then follows by restriction to dimensions greater than 2p−2, since the
natural map E∞(S1)→µ−1E∞(S1) is an isomorphism in these dimensions.

The source and target groups of G∗ are degreewise profinite P (v2)-modules. An
element in V (1)∗Ĥ(S1, THH(l)) is divisible by v2 (i.e., in the image of multiplication
by v2) if and only if it is represented by a class in Ê∞(S1) that is divisible by tµ, and
similarly for V (1)∗Ĥ(Cp, THH(l))hS1

and µ−1E∞(S1). Let (v2) and (tµ) denote the
closed subgroups of v2-divisible and tµ-divisible elements, respectively.

Then there are isomorphisms

V (1)∗Ĥ(S1, THH(l))/(v2)∼= TotΠ∗ Ê∞(S1)/(tµ)

=E(λ1, λ2)⊕
⊕
k�3

E(λ′
[k])⊗Fp{λ[k]t

i | vp(i)= k−1}

and

V (1)∗Ĥ(Cp, THH(l))hS1
/(v2)∼= TotΠ∗ µ−1E∞(S1)/(tµ)

=E(λ1, λ2)⊕
⊕
k�1

E(λ′
[k])⊗Fp{λ[k]µ

j | vp(j)= k−1}.

Clearly G∗ induces an isomorphism between these two groups, which by a dimension
count must be given by

λε1
1 λε2

2 ti �→λε1
1 λε2

2 µj

with i+p2j=0. Hence the same formulas hold modulo multiples of v2 on V (1)-homotopy.
Taking the P (v2)-module structure into account, the corresponding formulas including
factors (tµ)m must also hold. �

Lemma 7.5. In dimensions greater than 2p−2 the restriction map

R∗:V (1)∗TF (l; p)−→V (1)∗TF (l; p)

is continuous with respect to the profinite topology on V (1)∗TF (l; p).

Proof. The filtration topologies on V (1)∗THH(l)hS1
and V (1)∗Ĥ(S1, THH(l)) as-

sociated to the spectral sequences E∗(S1) and Ê∗(S1), respectively, are equal to the
profinite topologies, because both E∞-terms are finite in each bidegree and are bounded
to the right in each total dimension.

Since Rh induces a map of spectral sequences, Rh
∗ is continuous with respect to the

filtration topologies. Hence R∗=Γ̂−1
∗ �Rh

∗ �Γ∗ is continuous in dimensions greater than
2p−2, where Γ∗ and Γ̂∗ are homeomorphisms. �

We now decompose E∞(S1) as a sum of three subgroups.
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Definition 7.6. Let A=E(λ1, λ2)⊗P (tµ),

Bk =E(λ′
[k])⊗Pr(k)(tµ)⊗Fp{λ[k]µ

−dpk−1
| 0<d<p}∩E∞(S1)

=E(λ′
[k])⊗

⊕
0<d<p

Pr(k)−dpk−1(tµ)⊗Fp{λ[k]t
dpk−1

}

and B=
⊕

k�1Bk. Let C be the span of the remaining monomial terms λε1
1 λε2

2 tiµj in
E∞(S1). Then E∞(S1)=A⊕B⊕C.

Theorem 7.7. In dimensions greater than 2p−2 there are closed subgroups Ã=
E(λ1, λ2)⊗P (v2), B̃k and C̃ of V (1)∗TF (l; p) represented by A, Bk and C in E∞(S1),
respectively, such that

(a) R∗ is the identity on Ã;
(b) R∗ maps B̃k+2 onto B̃k for all k�1;
(c) R∗ is zero on B̃1, B̃2 and C̃.

In these dimensions V (1)∗TF (l; p)=Ã⊕B̃⊕C̃, with B̃=
∏

k�1 B̃k.

Proof. At the level of E∞(S1), the composite map (ΓΓ̂−1)∗�E∞(Rh) is the identity
on A, maps Bk+2 onto Bk for all k�1, and is zero on B1, B2 and C, by Propositions 7.2
and 7.4. The task is to find closed lifts of these groups to V (1)∗TF (l; p) such that R∗

has similar properties.
Let Ã=E(λ1, λ2)⊗P (v2)⊂V (1)∗TF (l; p) be the (closed) subalgebra generated by

the images of the classes λK
1 , λK

2 and v2 in V (1)∗K(lp). Then Ã lifts A and consists of
classes in the image from V (1)∗K(lp). Hence R∗ is the identity on Ã.

By Proposition 7.2 (c) we have C⊂ker E∞(Rh). Thus by Lemma 7.3 there is a closed
subgroup C̃ in ker(R∗)∼=ker(Rh

∗ ) represented by C. Then R∗ is zero on C̃.
The closed subgroups im(R∗) and ker(R∗) span V (1)∗TF (l; p). For by Proposi-

tion 7.2 the representatives of im(R∗) span A⊕B, and the representatives of the sub-
group C̃ in ker(R∗) span C. Thus the classes in im(R∗) and ker(R∗) have representatives
spanning E∞(S1). Both im(R∗) and ker(R∗) are closed by Lemma 7.5, hence they span
all of V (1)∗TF (l; p).

It follows that the image of R∗ on V (1)∗TF (l; p) equals the image of its restriction
to im(R∗).

Consider the finite subgroup

B0
k =Bk∩kerE∞(Rh)=E(λ′

[k])⊗
⊕

0<d<p

P
r(k)−dpk−1−1
r(k−2) (tµ)⊗Fp{λ[k]t

dpk−1
}

of E∞(S1) contained in the image of (ΓΓ̂−1)∗�E∞(Rh) and the kernel of E∞(Rh). It can
be lifted to im(R∗) by Proposition 7.2, and to ker(R∗) by Lemma 7.3. We claim that it
can be simultaneously lifted to a finite subgroup of im(R∗)∩ker(R∗).
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(It suffices to lift a monomial basis for B0
k to im(R∗)∩ker(R∗) and take its span in

V (1)∗TF (l; p). To lift a basis element x in B0
k, first lift it to a class x̃ in im(R∗), with Γ∗(x̃)

represented by x. Then R∗(x̃) might not be zero, but Γ̂∗R∗(x̃) is represented by a class
y∈Ê∞(S1) of strictly lower s-filtration than x. By Theorem 6.6 and Proposition 7.2 (b),
y is in the image of E∞(Rh), with y=E∞(Rh)(z) for a class z∈E∞(S1) of strictly lower
s-filtration than x. By Proposition 7.2 (b) and Proposition 7.4 we may assume that z is
in the image of E∞(Rh) followed by (ΓΓ̂−1)∗. Thus we can lift z to a class z̃∈ im(R∗).
Then Γ̂∗R∗(z̃) is represented by y. Replacing x̃ by x̃−z̃ keeps x̃ in im(R∗) as a lift of x,
and strictly reduces the s-filtration of R∗(x̃). Iterating, and using strong convergence of
E∞(S1), ensures that we can find a lift x̃ in im(R∗)∩ker(R∗), as desired.)

Let B̃0
k⊂ im(R∗)∩ker(R∗) be such a lift.

Inductively for n�1 let Bn
k ⊂Bk+2n⊂E∞(S1) be the finite subgroup generated by

the monomials mapped by E∞(Rh) and (ΓΓ̂−1)∗ to the monomials generating Bn−1
k .

Then Bk is the span of all Bn
k−2n for n�0.

Suppose inductively that we have chosen a lift B̃n
k ⊂ im(R∗) of Bn

k which maps by
R∗ to B̃n−1

k for n�1, and to zero for n=0. Then choose monomial classes in im(R∗)
mapping by R∗ to generators of B̃n

k , and let B̃n+1
k be the finite subgroup they generate.

Then B̃n+1
k is a lift of Bn+1

k by Proposition 7.2 (b) and Proposition 7.4.
Let B̃k⊂V (1)∗TF (l; p) be the span of all B̃n

k−2n for n�0. Then B̃k is represented
by all of Bk, R∗ maps B̃k+2 onto B̃k for k�1, and B̃1 and B̃2 lie in ker(R∗). �

8. Topological cyclic homology

We apply V (1)-homotopy to the cofiber sequence in §3.1 to obtain a long exact sequence

...
∂−→V (1)∗TC(l; p) π−→V (1)∗TF (l; p) R∗−1−−−−→V (1)∗TF (l; p) ∂−→ ... . (8.1)

Proposition 8.2. In dimensions greater than 2p−2 there are isomorphisms

ker(R∗−1)∼= E(λ1, λ2)⊗P (v2)⊕E(λ2)⊗P (v2)⊗Fp{λ1t
d | 0<d<p}

⊕E(λ1)⊗P (v2)⊗Fp{λ2tdp | 0<d<p}

and

cok(R∗−1)∼= E(λ1, λ2)⊗P (v2).

Proof. By Theorem 7.7 the homomorphism R∗−1 is zero on Ã=E(λ1, λ2)⊗P (v2),
and an isomorphism on C̃. The remainder of V (1)∗TF (l; p) decomposes as

B̃ =
∏

k odd

B̃k ⊕
∏

k even

B̃k,
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and R∗ takes B̃k+2 to B̃k for k�1, forming two sequential limit systems. Hence there is
an exact sequence

0→ lim
k odd

B̃k →
∏

k odd

B̃k
R∗−1−−−−→

∏
k odd

B̃k → lim1

k odd
B̃k → 0,

and a corresponding one for k even. The right derived limit vanishes since each B̃k is
finite. Hence it remains to prove that in dimensions greater than 2p−2,

lim
k odd

B̃k
∼= E(λ2)⊗P (v2)⊗Fp{λ1t

d | 0<d<p}

and

lim
k even

B̃k
∼= E(λ1)⊗P (v2)⊗Fp{λ2tdp | 0<d<p}.

Each B̃k
∼=Bk is a sum of 2p−2 finite cyclic P (v2)-modules. The restriction homomor-

phisms R∗ respect this sum decomposition, and map each cyclic module surjectively onto
the next. Hence their limit is a sum of 2p−2 cyclic modules, and it remains to check
that these are infinite cyclic, i.e., not bounded above.

For k odd the ‘top’ class λ1λ2(tµ)r(k)−1µ−dpk−1
in Bk is in dimension 2pk+1(p−d).

For k even the corresponding class in Bk is in dimension 2pk+1(p−d)+2p−2p2. In both
cases the dimension grows to infinity for 0<d<p as k grows.

For k odd each infinite cyclic P (v2)-module is generated by a class in non-negative
degree with nonzero image in B̃1

∼=B1, namely the classes λ1t
d and λ1λ2td for 0<d<p.

Hence we take these as generators for limk odd B̃k. Likewise there are generators in non-
negative degrees for limk even B̃k with nonzero image in B̃2

∼=B2, namely the classes λ2tdp

and λ1λ2tdp for 0<d<p. �

Let e∈π2p−1TC(Z; p) be the image of eK∈K2p−1(Zp), and let ∂∈π−1TC(Z; p) be
the image of 1∈π0TF (Z; p) under ∂: Σ−1TF (Z; p)→TC(Z; p). We recall from [BM1],
[BM2] the calculation of the mod p homotopy of TC(Z; p).

Theorem 8.3 (Bökstedt–Madsen).

V (0)∗TC(Z; p)∼= E(e, ∂)⊗P (v1)⊕P (v1)⊗Fp{etd | 0<d<p}.

Hence

V (1)∗TC(Z; p)∼= E(e, ∂)⊕Fp{etd | 0<d<p}.
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The (2p−2)-connected map lp→HZp induces a (2p−1)-connected map K(lp)→
K(Zp), and thus a (2p−1)-connected map TC(l; p)→TC(Z; p) after p-adic completion,
by [Du]. This brings us to our main theorem.

Theorem 8.4. There is an isomorphism of E(λ1, λ2)⊗P (v2)-modules

V (1)∗TC(l; p)∼= E(λ1, λ2, ∂)⊗P (v2)⊕E(λ2)⊗P (v2)⊗Fp{λ1t
d | 0<d<p}

⊕E(λ1)⊗P (v2)⊗Fp{λ2tdp | 0<d<p}

with |λ1|=2p−1, |λ2|=2p2−1, |v2|=2p2−2, |∂|=−1 and |t|=−2.

Proof. This follows in dimensions greater than 2p−2 from Proposition 8.2 and the
exact sequence (8.1). It follows in dimensions less than or equal to 2p−2 from Theo-
rem 8.3 and the (2p−1)-connected map V (1)∗TC(l; p)→V (1)∗TC(Z; p). It remains to
check that the module structures are compatible for multiplications crossing dimension
2p−2.

The classes

E(λ1)⊕Fp{λ1t
d | 0<d<p}

in V (1)∗TC(l; p) map to

E(e)⊕Fp{etd | 0<d<p}

in V (1)∗TC(Z; p), and map by Γ�π to classes with the same names in the S1 homo-
topy fixed-point spectral sequence for THH(Z). By naturality, the given classes in
V (1)∗TC(l; p) map by Γ�π to classes with the same names in E∞(S1). Here these
classes generate free E(λ2)⊗P (tµ)-modules. For degree reasons multiplication by λ1 is
zero on each λ1t

d. Hence the E(λ1, λ2)⊗P (v2)-module action on the given classes is as
claimed.

Finally the class ∂ in V (1)−1TC(l; p) is the image under the connecting homo-
morphism ∂ of the class 1 in V (1)∗TF (l; p), which generates the free E(λ1, λ2)⊗P (v2)-
module cok(R∗−1) of Proposition 8.2. Hence also the module action on ∂ and λ1∂ is as
claimed. �

A very important feature of this calculational result is that V (1)∗TC(l; p) is a finitely
generated free P (v2)-module. Thus TC(l; p) is an fp-spectrum of fp-type 2 in the sense
of [MR]. Notice that V (1)∗TF (l; p) is not a free P (v2)-module. On the other hand, we
have the following calculation for the companion functor TR(l; p)=holimn,R THH(l)Cpn,
showing that V (1)∗TR(l; p) is a free but not finitely generated P (v2)-module.
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Theorem 8.5. There is an isomorphism of E(λ1, λ2)⊗P (v2)-modules

V (1)∗TR(l; p)∼= E(λ1, λ2)⊗P (v2)⊕
∏
n�1

E(u, λ2)⊗P (v2)⊗Fp{λ1t
d | 0<d<p}

⊕
∏
n�1

E(u, λ1)⊗P (v2)⊗Fp{λ2tdp | 0<d<p}.

The classes uδλ1λ
ε2
2 td and uδλε1

1 λ2tdp in the n-th factors, for δ, ε1, ε2∈{0, 1} and
0<d<p, are detected in V (1)∗THH(l)Cpn by classes that are represented by uδ

nλ1λ
ε2
2 td

and uδ
nλε1

1 λ2t
dp in E∞(Cpn), respectively.

We omit the proof. Compare [HM1, Theorem 5.5] and [HM2, 6.1.2] for similar
results.

9. Algebraic K-theory

We are now in a position to describe the V (1)-homotopy of the algebraic K-theory
spectrum of the p-completed Adams summand of connective topological K-theory, i.e.,
V (1)∗K(lp). We use the cyclotomic trace map to largely identify it with the correspond-
ing topological cyclic homology. Hence we will identify the algebraic K-theory classes λK

1

and λK
2 with their cyclotomic trace images λ1 and λ2, in this section.

Theorem 9.1. There is an exact sequence of E(λ1, λ2)⊗P (v2)-modules

0→Σ2p−3Fp −→V (1)∗K(lp)
trc−−→V (1)∗TC(l; p)→Σ−1Fp → 0

taking the degree 2p−3 generator in Σ2p−3Fp to a class a∈V (1)2p−3K(lp), and taking
the class ∂ in V (1)−1TC(l; p) to the degree −1 generator in Σ−1Fp. Hence

V (1)∗K(lp)∼= E(λ1, λ2)⊗P (v2)⊕P (v2)⊗Fp{∂λ1, ∂v2, ∂λ2, ∂λ1λ2}

⊕E(λ2)⊗P (v2)⊗Fp{λ1t
d | 0<d<p}

⊕E(λ1)⊗P (v2)⊗Fp{λ2tdp | 0<d<p}

⊕Fp{a}.

Proof. By [HM1] the map lp→HZp induces a map of horizontal cofiber sequences
of p-complete spectra:

K(lp)p
trc ��

��

TC(l; p) ��

��

Σ−1HZp

K(Zp)p
trc �� TC(Z; p) �� Σ−1HZp.
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Here V (1)∗Σ−1HZp is Fp in degrees −1 and 2p−2, and 0 otherwise. Clearly ∂ in
V (1)∗TC(l; p) maps to the generator in degree −1, since K(lp)p is a connective spectrum.
The connecting map in V (1)-homotopy for the lower cofiber sequence takes the generator
in degree 2p−2 to the nonzero class i1(∂v1) in V (1)2p−3K(Zp). By naturality it factors
through V (1)2p−3K(lp), where we let a be its image. �

Hence also K(lp)p is an fp-spectrum of fp-type 2. By [MR, 3.2] its mod p spectrum
cohomology is finitely presented as a module over the Steenrod algebra, hence is induced
up from a finite module over a finite subalgebra of the Steenrod algebra. In particular,
K(lp)p is closely related to elliptic cohomology.

9.2. The mod p homotopy of K(lp). We would now like to use the v1-Bockstein
spectral sequence to determine the mod p homotopy of K(lp) from its V (1)-homotopy,
and then to use the usual p-primary Bockstein spectral sequence to identify π∗K(lp)p.
We shall see in Lemma 9.3 that the P (v2)-module generators of V (1)∗K(lp) all lift to
mod p homotopy. In Lemma 9.4 this gives us formulas for the primary v1-Bockstein
differentials β1,1. But there also appear to be higher-order v1-Bockstein differentials, as
indicated in Lemma 9.5, which shows that the general picture is rather complicated.

For any X, classes in the image of i1:V (0)∗X→V (1)∗X are called mod p classes,
while classes in the image of i1i0:π∗Xp→V (1)∗X are called integral classes.

Lemma 9.3. The classes 1, ∂λ1, λ1 and λ1t
d for 0<d<p are integral classes both

in V (1)∗K(lp) and V (1)∗TC(l; p). Also ∂ is integral in V (1)∗TC(l; p), while a and ∂v2

are integral in V (1)∗K(lp).
The classes ∂λ2, λ2, ∂λ1λ2, λ1λ2, λ1λ2td, λ2tdp and λ1λ2tdp for 0<d<p are mod p

classes in both V (1)∗K(lp) and V (1)∗TC(l; p).

We are not excluding the possibility that some of the mod p classes are actually
integral classes.

Proof. Each v1-Bockstein β1,r lands in a trivial group when applied to the classes
∂, 1, a and λ1t

d for 0<d<p in V (1)∗K(lp) or V (1)∗TC(l; p). Hence these are at least
mod p classes.

Since 1 maps to an element of infinite order in π0TC(Z; p)∼=Zp and the other classes
sit in odd degrees, all mod pr Bocksteins on these classes are zero. Hence they are integral
classes. The class λ1 is integral by construction, hence so is the product ∂λ1.

The primary v1-Bockstein β1,1 applied to ∂v2 in V (1)∗K(lp) is zero, because it
lands in degree 2p2−2p−2 of im(∂)=cok(R∗−1), which by Proposition 8.2 is zero in
this degree. The higher v1-Bocksteins β1,r(∂v2) all land in zero groups, so ∂v2 admits a
mod p lift. Again, all mod pr Bocksteins on this lift land in a zero group, so ∂v2 must
be an integral class.
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The mod p homotopy operation (P p−d)∗ takes λ1t
d in integral homotopy to λ2t

dp in
mod p homotopy, for 0<d<p. Hence these are all mod p classes, as is λ2 by construction.
The remaining classes listed are then products of established integral and mod p classes,
and are therefore mod p classes. �

The classes listed in this lemma generate V (1)∗K(lp) and V (1)∗TC(l; p) as P (v2)-
modules. But v2 itself is not a mod p class.

Lemma 9.4. Let x be a mod p (or integral ) class of V (1)∗K(lp) or V (1)∗TC(l; p),
and let t�0. Then

β1,1(vt
2·x)= tvt−1

2 i1(β′
1)·x.

In particular, i1(β′
1)·1=tpλ2 and i1(β′

1)·λ1=tpλ1λ2.

We expect that i1(β′
1)·tp

2−pλ2=∂λ2 and i1(β′
1)·tp

2−pλ1λ2=∂λ1λ2, by duality and
symmetry considerations.

Proof. The v1-Bockstein β1,1=i1j1 acts as a derivation by [Ok]. By definition
j1(v2)=β′

1=[h11], which is detected as tpλ2 by Proposition 4.8. Clearly j1(x)=0 for
mod p classes x. �

In V (1)∗ the powers vt
2 support nonzero differentials β1,1(vt

2)=tvt−1
2 i1(β′

1) for p � t.
The first nonzero differential on vp

2 is β1,p:

Lemma 9.5. β1,p(v
p
2)=[h12] �=0 in V (1)∗.

We refer to [Ra2, §4.4] for background for the following calculation.

Proof. In the BP -based Adams–Novikov spectral sequence for V (0) the relation
j1(v

p
2)=vp−1

1 β′
p/p holds, where β′

p/p is the class represented by h12+vp2−p
1 h11 in degree 1 of

the cobar complex. Its integral image βp/p=j0(β′
p/p) is represented by b11, and supports

the Toda differential d2p−1(βp/p)=α1β
p
1 . This differential lifts to d2p−1(β′

p/p)=v1β
p
1 in

the Adams–Novikov spectral sequence for V (0). Consider the image of β′
p/p under i1 in

the Adams–Novikov spectral sequence for V (1), which is represented by h12 in the cobar
complex. Then d2p−1(i1(β′

p/p))=i1(v1β
p
1)=0. By sparseness and the vanishing line there

are no further differentials, and i1(β′
p/p)=[h12] represents a nonzero element of V (1)∗.

Hence β1,p(v
p
2)=[h12], as claimed. �

To determine the mod p homotopy groups of TC(l; p) or K(lp) by means of the
v1-Bockstein spectral sequence we must first compute the remaining products i1(β′

1)·x
in Lemma 9.4. Next we must identify the image of β1,p(v

p
2)=[h12] in V (1)∗TC(l; p).

Imaginably this equals the generator vp−1
2 λ1t of V (1)∗TC(l; p) in this degree. If so, much

of the great complexity of the v1-Bockstein spectral sequence for the sphere spectrum
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also carries over to the v1-Bockstein spectral sequence for TC(l; p). We view this as
justification for stating the result of our calculations in terms of V (1)-homotopy instead.

References

[BHM] Bökstedt, M., Hsiang, W.-C. & Madsen, I., The cyclotomic trace and algebraic
K-theory of spaces. Invent. Math., 111 (1993), 465–539.

[BM1] Bökstedt, M. & Madsen, I., Topological cyclic homology of the integers. Astérisque,
226 (1994), 57–143.

[BM2] — Algebraic K-theory of local number fields: the unramified case, in Prospects in
Topology (Princeton, NJ, 1994), pp. 28–57. Ann. of Math. Stud., 138. Princeton
Univ. Press, Princeton, NJ, 1995.

[Boa] Boardman, J. M., Conditionally convergent spectral sequences, in Homotopy Invari-
ant Algebraic Structures (Baltimore, MD, 1998), pp. 49–84. Contemp. Math., 239.
Amer. Math. Soc., Providence, RI, 1999.

[Bou] Bousfield, A. K., The localization of spectra with respect to homology. Topology,
18 (1979), 257–281.

[Br1] Bruner, R. R., The homotopy theory of H∞ ring spectra, in H∞ Ring Spectra and
their Applications, pp. 88–128. Lecture Notes in Math., 1176. Springer-Verlag,
Berlin–Heidelberg, 1986.

[Br2] — The homotopy groups of H∞ ring spectra, in H∞ Ring Spectra and their Ap-
plications, pp. 129–168. Lecture Notes in Math., 1176. Springer-Verlag, Berlin–
Heidelberg, 1986.

[DH] Devinatz, E. S. & Hopkins, M. J., Homotopy fixed point spectra for closed sub-
groups of the Morava stabilizer groups. Preprint, 1999.

[Du] Dundas, B. I., Relative K-theory and topological cyclic homology. Acta Math., 179
(1997), 223–242.

[EKMM] Elmendorf, A. D., Kriz, I., Mandell, M. A. & May, J. P., Rings, Modules, and
Algebras in Stable Homotopy Theory. Math. Surveys Monographs, 47. Amer. Math.
Soc., Providence, RI, 1997.

[GH] Goerss, P. G. & Hopkins, M. J., Realizing commutative ring spectra as E∞ ring
spectra. Preprint, 2000.

[HM1] Hesselholt, L. & Madsen, I., On the K-theory of finite algebras over Witt vectors
of perfect fields. Topology, 36 (1997), 29–101.

[HM2] — On the K-theory of local fields. Preprint, 1999.
[HSS] Hovey, M., Shipley, B. E. & Smith, J. H., Symmetric spectra. J. Amer. Math.

Soc., 13 (2000), 149–208.
[Hu] Hunter, T. J., On the homology spectral sequence for topological Hochschild homo-

logy. Trans. Amer. Math. Soc., 348 (1996), 3941–3953.
[Li] Lichtenbaum, S., On the values of zeta and L-functions, I. Ann. of Math. (2 ), 96

(1972), 338–360.
[Ly] Lydakis, M. G., Smash products and Γ-spaces. Math. Proc. Cambridge Philos. Soc.,

126 (1999), 311–328.
[Ma] May, J. P., Extended powers and H∞ ring spectra, in H∞ Ring Spectra and their

Applications, pp. 1–20. Lecture Notes in Math., 1176. Springer-Verlag, Berlin–
Heidelberg, 1986.

[Mo] Morava, J., Noetherian localisations of categories of cobordism comodules. Ann. of
Math. (2 ), 121 (1985), 1–39.



38 CH. AUSONI AND J. ROGNES

[MR] Mahowald, M. & Rezk, C., Brown–Comenetz duality and the Adams spectral
sequence. Amer. J. Math., 121 (1999), 1153–1177.

[MS1] McClure, J. E. & Staffeldt, R. E., On the topological Hochschild homology
of bu, I. Amer. J. Math., 115 (1993), 1–45.

[MS2] — The chromatic convergence theorem and a tower in algebraic K-theory. Proc.
Amer. Math. Soc., 118 (1993), 1005–1012.

[Ok] Oka, S., Multiplicative structure of finite ring spectra and stable homotopy of spheres,
in Algebraic Topology (Aarhus, 1982), pp. 418–441. Lecture Notes in Math., 1051.
Springer-Verlag, Berlin, 1984.

[Qu1] Quillen, D., On the cohomology and K-theory of the general linear groups over a
finite field. Ann. of Math. (2 ), 96 (1972), 552–586.

[Qu2] — Higher algebraic K-theory, in Proceedings of the International Congress of Mathe-
maticians, Vol. I (Vancouver, BC, 1974), pp. 171–176. Canad. Math. Congress,
Montreal, QC, 1975.

[Ra1] Ravenel, D. C., Localization with respect to certain periodic homology theories.
Amer. J. Math., 106 (1984), 351–414.

[Ra2] — Complex Cobordism and Stable Homotopy Groups of Spheres. Pure Appl. Math.,
121. Academic Press, Orlando, FL, 1986.

[Ra3] — Nilpotence and Periodicity in Stable Homotopy Theory. Ann. of Math. Stud., 128.
Princeton Univ. Press, Princeton, NJ, 1992.

[Re] Rezk, C., Notes on the Hopkins–Miller theorem, in Homotopy Theory via Algebraic
Geometry and Group Representations (Evanston, IL, 1997), pp. 313–366. Contemp.
Math., 220. Amer. Math. Soc., Providence, RI, 1998.

[Ro1] Rognes, J., Trace maps from the algebraic K-theory of the integers. J. Pure Appl.
Algebra, 125 (1998), 277–286.

[Ro2] — Two-primary algebraic K-theory of pointed spaces. To appear in Topology.

[Ro3] — Étale maps and Galois extensions of S-algebras. In preparation.
[RW] Rognes, J. & Weibel, C. A., Two-primary algebraic K-theory of rings of integers

in number fields. J. Amer. Math. Soc., 13 (2000), 1–54.
[St] Steinberger, M., Homology operations for H∞ and Hn ring spectra, in H∞ Ring

Spectra and their Applications, pp. 56–87. Lecture Notes in Math., 1176. Springer-
Verlag, Berlin–Heidelberg, 1986.

[Ts] Tsalidis, S., Topological Hochschild homology and the homotopy descent problem.
Topology, 37 (1998), 913–934.

[Vo] Voevodsky, V., The Milnor conjecture. Preprint, 1996.
[Wa1] Waldhausen, F., Algebraic K-theory of spaces, a manifold approach, in Current

Trends in Algebraic Topology , Part 1 (London, ON, 1981), pp. 141–184. CMS
Conf. Proc., 2. Amer. Math. Soc., Providence, RI, 1982.

[Wa2] — Algebraic K-theory of spaces, localization, and the chromatic filtration of stable
homotopy, in Algebraic Topology (Aarhus, 1982), pp. 173–195. Lecture Notes in
Math., 1051. Springer-Verlag, Berlin, 1984.



ALGEBRAIC K-THEORY OF TOPOLOGICAL K-THEORY 39

Christian Ausoni

Department of Pure Mathematics
University of Sheffield
Hicks Building, Hounsfield Road
Sheffield S3 7RH
United Kingdom
c.ausoni@sheffield.ac.uk

John Rognes

Department of Mathematics
University of Oslo
P.O. Box 1053, Blindern
NO-0316 Oslo
Norway
rognes@math.uio.no

Received May 5, 2000
Received in revised form April 20, 2001


