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FuncTIONS AND PrODUCTS

Any set § which is the union of connected sets A. and a connected set B
where BM A, # @ for each o must be connected since a separation of 8

would necessarily separate B. Since any finite product II X; of connected
i=1
n—1
sets X, can be written as the union of spaces homeomorphic to T X, and
i=1
X.,, a simple induction argument shows that any finite product of con-
nected spaces is connected. In fact, a straightforward argument by trans-

finite induction can be used to show that any product II X, of connected
aEA

spaces X, is connected. If the index set A is well ordered and if z = (za) €
X = 11X, is some fixed point, let Su = {(ys) € Xlys = z5 for all 8 > al.
Then S. is connected whenever S._, is since S, is homeomorphie to Sa—1 X

X,.If ¢is a limit ordinal, S, = uC Sp, so if each Sy is connected for B < a,
<a

S, must be also, since the collection {S,} is nested. Thus X = mﬁmn is

connected. Indeed we have proved more since the proof uses only the facts
that in the product topology the subsets X.Cn X. where X', =
({ys) € X|ys = s, B # } are homeomorphic to the X,’s and that

X = U S.. Thus this proof applies to the Cartesian product of the X,

at A
with any topology in which the sets X ' are copies of the corresponding Xa,
and X = U Sa.

a€ A
If X is connected and f is a continuous function on X, then f(X) must

e o (] 0 ana o separat 0 - - n .
Though the continuous image of a locally connected space need not be
locally connected, it is true that local connectedness is preserved under
continuous maps f from a compact space X onto a Hausdorff space Y.
For suppose E is a component of an open subset U of Y. Then each com-
ponent of f~!(E) is a component of f~(U) since if G is a component of
f-3(U), then f(G) is connected and thus either contained in E or disjoint
from it. But if X is locally connected, the components of the open set
f-1(U) are open, so f~(E) must be open. Its complement is closed, thus
compact, so f( X — f(E)) = Y — E is compact, hence closed (since Y is
Hausdorff). Thus E_is.ope : ocally connected.

DISCONNECTEDNESS
A space is totally pathwise disconnected if the only continuous maps

from the unit interval into X are constant, or, equivalently, if its path
components are single points. A space with single point components is said
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