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Therefore, by the compactness of [0,1], there exist a finite sequence of
numbers 0 = fy <, < +++ <, = 1 and open neighborhoods /() of b in
B such that £ | (U(7) X [tia,2:]) is trivial for | £ ¢ £ n. Let U = n U().

1=2{=Zn
Then the bundle ¢ | (U X [0,1]) ig trivial by an application of Lemma
(4.1) » — 1 times, Therefore, there is an open covering {U;}, ¢ € I, of B
such that £ | (U; X I) is trivial.
The next theorem is the first important step in the development of the
homotopy properties of vector bundles.

4.3 Theorem. Letr: B X I — B X I be defined by r{(b,t) = (b,1)
for (bt) € B X I, and let & = (E, p, B X I) be a vector bundle over
B X I, where B is a paracompact space. There iy a map u: E — F such
that (u,r): & — £ is a morphism of vector bundles and w is an isomorphism
on each fibre.

Proof. Let {U.}, ¢ € I, be a locally finite open ecovering of B such that
| (U: X I) is trivial. This covering exists by (4.2) and the paracompact-
ness of B. Let {n}, ¢ € I, be an envelope of unity subordinate to the open
covering {U,}, ¢ € I, that is, the support of »; is a subset of U7; and
1 = maxicmi(b) foreach b € B.Let hi: U, X I X Fi' 5 p1(U; X I) be a
(U: X I-isomorphism of vector bundles.

We define a morphism (u,r): £ — £ by the relations »:(b) =
(b,max(n:(b),t)), u: is the identity outside p~1(U; X I), and u.{h:(b,t2)) =
he(bymax(n:(b) £),x) for each (btx) € U; X I X F*. We well order the
set I. For each b € B, there is an open neighborhood U(#} of & such that
U; n U(b) is nonempty for ¢ € I(b), where I(b) is a finite subset of I.
On U(b) X I, wedefine r = rypmy- - -7iqy, and on p~1(U(b) X I}, we define
U = Uimy© - U, Where T(b) = {i(1),...,i(n)} and (1) < i(2) <
<+e < ¢(n). Since r; on Ub) X I and u; on p~(U(b) X I} are identitics
for ¢ ¢ I(b), the maps r and u are infinite compositions of maps where all
but a finite number of terms are identities near a point. Since each wu, is
an isomorphism on each fibre, the composition % is an isomerphism on
each fibre,

4.4 Corollary. With the notations of Theorem (4.3), & =
r*(£| (B X 1)) over B X I

Proof. This result is a direct application of Theorem (3.2) to Theorem
(4.3).

Let £ = (Ep,B) be a vector bundle, and let ¥ be a space. We use the
notation £ X ¥ for the vector bundle (F X ¥, p X 1y, B X ¥). The fibre
over (by} € B X Y is p~2(b) X y, which has a natural vector space struc-
ture that it derives from p=1(b). If h: U X F* — p~1(U/) is a U-isomorphism,
the h X 1y: U X Y X FFop{U) XY = (p X 1) WU X V)isa
(U X Y)-isomorphism, Consequently, £ X ¥ is a vector bundle, and this
leads to the following version of (4.3).
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4,5 Corollary. With the notations of Theorem (4.3),
t= (B X)) XTI

are veetor bundles over B X I.

Proof. For this, it suffices to observe that r*(¢| (B X 1)) =
(¢] B X 1) X I.In both cases the total space of the bundles is the sub-
space of (bt,x) ¢ B X I X E(£| (B X 1)) such that (b,1) = p(z}, and
the projection is the map (btx) = (bi).

4.6 Corollary. With the notations of Theorem (4.3), there exists,
after restriction, an isomorphism (u,): &| (B X 0) — £| (B X 1). .

Proof. This is a direct application of Theorem (2.5) to the situation
deseribed in (4.3) wherer = 1on B X0 =8 X1 = B.

Finally, we have the following important application of (4.6) in the
framework of homotopy theory.

4.7 Theorem., Let f,g: B — B’ be two homotopic maps, where B
is a paracompact space, and let & be a vector bundle over B'. Then f*(£)
and g*(£) are B-isomorphie.

Proof. Let h: B X I — B’ be a map with ~2(z,0) = f(x) and h(z,1)
g(x). Then f*(§) = h*(£) | (B X 0) over B, and g*(&) = h*(8) | (B X 1)
over B. By (4.6), h*(£) | (B X 0) and k*(&) | (B X 1) are B-isomorphic,
and, therefore, f*(&) and ¢*(%) are B-isomorphic.

4.8 Corollary. Ivery vector bundle over a contractible paracompact
space B is trivial.

Proof. Let f: B — B be the identity, and let ¢: B — B be a constant
map. For each vector bundle £ over B, f*(¢) is B-isomorphic to £ and g*(§)
is B-isomorphic to the product bundle (B X F* p, B). Since f and g are
homotopie, £ is isomorphic to the product bundle (B X F¥, p, B}, by (4.7).

Theorem (4.7) is the first of the three main theorems on the homotopy
classification of vector bundles.

5. CONSTRUCTION OF GAUSS MAPS

5.1 Definition. A Gauss map of a vector bundle #in F= (k £ m =
+ ) is a map g: E(&) — F~ such that ¢ is a linear monomorphism when
restricted to any fibre of £.

Recall that E(y;™) is the subspace of {V,z) € Gp(F™) X Frwithx € ﬁ\
Then the projection g: E{y™) — Fm, given by the relation ¢(V,2) ==
is a Gauss map. In the next proposition, we see that every GGauss map can
be constructed from this map and vector bundle morphisms.

5.2 Proposition. If (u,f): & — v™ is a vector bundle morphism
that is an isomorphism when restricted to any fibre of £, then qu: E(§) —
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Fm i a Gauss map. Conversely, if g: E(£) — F» is a Gauss map, there
exists a vector bundle morphism (u,f): # — ™ such that qu = ¢.

Proof. The first statement is clear. For the second, let f(b) =
glp72(b}) € Gu(Fm), and let u(z) = (f(p(z))g(x)) € E(ypm) for
x € E(&). We see that f is continuous by looking at a local coordinate
of £ and from this w is also continuous.

5.3 Corollary. There exists a Gauss map g: E(¢) — F» (k. = m =
o) if and only if £ is B(%)-isomorphic with f*(vy™) for some map f:

Proof. This follows from Proposition. (5.2) and Theorem (3.2).

In Theorem (5.53), we construct a Gauss map for each vector bundle
over a paracompact space. First, we need a preliminary result coneerning

the open sets over which a vector bundle is trivial,

5.4 Proposition. Let  be a vector bundle over a paracompact space
B such that ¢ [ Uy, ¢ € I, is trivial, where {U,}, 1 € I, is an open eovering.
Then there exists a countable open covering {W,}, 1 < 7, of B such that
£| W;is trivial, Moreover, if each b € B is a member of at most » sets U,
there exists a finite open covering {W;}, 1 < 7 < n, of B such that £ | W;
is trivial,

Proof. By paracompactness, let {5;}, 2 € I, be a partition of unity
with V; = #71(0,1] C U.. For each b € B, let S(b) be the finite get of
1 € I with 7:(b) > 0. For each finite subset S C I, let W(S) be the open
subset of all b € B such that ;(b) > #;(b) for each ¢ € Sandj ¢ 8.

If 8§ and § are two distinct subsets of 7 each with m elements, then
W{(S) nW(8) is empty. In effect, there exist ¢ € Swiths ¢ S"andj £ §
with 7 £ 8. Tor b € W(J8) we have 9:{b) > 5;{(b), and for b ¢ W (")
we have n;(b) > 7:(b). Therefore, W(S) n W (8"} is empty.

Let W., be the union of all W(.8()) such that S(b) has m elements.
Since 7 € S(b) yields the relation W(.S(b)) C V,, the bundle £ | W{S(b))
is trivial, and since W, is a disjoint union, ¢ | W,, is trivial. Finally, under
the last hypothesis, W; is empty for n < 7.

5.5 Theorem. For each vector bundle & over a mgSooE@woa space
B there is a Gauss map g: E(£) — F=. Moreover, if B has an open covering
of sets {U;}, 1 £.7 £ n, such that #| U, is trivial, { has a Gauss map
g: B(E) — Fbn,

Proof.  Let { U4} be the countable or finite open covering of B such that
£| U is trivial, let Ay U; X F* — ¢| U; be Usisomorphisms, and let {x;}
be a partition of unity with closure of #,1({(0,17) C U, We define g:
B() - X Frasg = 2 g;, where g: | Bz | Us) is (n:p) (pohi™) and po:

U X F* — F* ig the projection on the second factor. Outside E(¢| U,
the map g; is zero.
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Since each g;: E(£) — F* is a monomorphism on the fibres of E(£) over
b with 9.(b) > 0, and since the images of g; are in complementary sub-
spaces, the map g is a Gauss map. In general, > F*ig F= but if there are
only n sets Uy, then > F*is Fkn,

Theorem (5.5) with Corollary (5.6) is the second main homotopy classi-
fication theorem for vector bundles. :

5.6 Corollary. Every <¢SE.,,U:D&m £ over a paracompact space B
is B-isomorphie to f*{y,) for some f: B — GL(F=).
The following concept was suggested by Theorem (5.5).

5.7 Definition. A vector bundle { is of finite type over B provided

‘there exists a finite open covering Uy, ..., U, of B such that £| U, is

trivia, 1 £ ¢ £ n.

In the next theorem we derive other formulations of the notion of finite
type. By 1(2.6) and (4.8) every vector bundle over a finite-dimensional
CW-complex is of the finite type.

5.8 Proposition. Tor a vector bundle £ over a space B, the following
are equivalent,

{1) ‘The bundle £ is of the finite type.

(2) There exists a map f: B — Gp(F™) for some m such that f*(v.™)
and £ are B-somorphie. -

(3) There exists a vector bundle 5 over B such that £ @ » is trivial.

Proof. By the construction in (5.5}, statement (1) implies (2). Since
it @ Fyem is trivial over GR(F™), then f*(vi™) @ f*(*ym) and 6™ are
B-isomorphic. Let n be f*(*y,™). Since f*(y;™ @ *y,”) is trivial, the bundle
£ @ 7 is trivial. Finally, the composition E(£) —» E{(t ® ) > B X F»— f»
1s a Gauss map. .

6. HOMOTOPIES O GAUSS MAPS

Let Fov denote the subspace of z € F® with xs1 = 0, and Fodd with x,; = 0
for ¢ = 0. For these subspaces, F* = Fe @ Fe?. Two homotopies g°:

Fr X I — F? and g°: F» X I — F*» are defined by the following formulas:

(1 — 1) (2o, 05, - ..) + ({z0,0,2:0,8s, . - -)

Qanmacuuﬁ:.ﬁmu - - v

it

g (wo, 21,22, . ..) (1 — ) (zg,x,20, . ..) + 1(0,20,0,2:0,22, ...)

The properties of these homotopies are contained in the following prop-
osition. In the above formulas and in the next proposition, we have
1E£n=E + «.
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6.1 Proposition. With the above notations, these homotopies have
the following properties:

(1) The maps g and g¢ each equal the inclusion F» — F*».

(2) Fort = 1,g°(F) = FnFe and ge(F»y = Fn Foid,

(3) There are vector bundle morphisms (u?,f¢) 1 v — w2 and (ue,f*) :
it — vi2* such that que = g, ¢ = g°-

(4) fe and f° are homotopic to the inclusion Gi(F™) — G (F™).

Proof. Statements (1) and (2) follow immediately from the formulas
for g¢ and go. For (3), we use (5.2). Finally, the homotopies ¢ and ¢/
define homotopies of f¢ and f° with 1.

The next theorem describes to what extent Gauss maps are unique in
terms of homotopy properties of their associated bundle morphisms. We
use the above notations.

6.2 Theorem. Let 7, fi: B — G,(F") be two maps such that f*(vys")
and fi*(v,") are B-isomorphic and let j: G (F) — G(F) be the natural
inclusion. Then the maps jf and jfi are homotopic for 1 = n = 4w,

Proof. By hypothesis, there is a vector bundle ¢ over B and two mor-
phisms (w,f): £ = " and (ufi): & — %" which are isomorphisms when
restricted to the fibres of £ Let g = qu: E(£) — Frand g1 = quy: E(t) = Fr
be the associated Gauss maps. Composing with the above maps, we have
morphisms (uw,fof): & — 7™ with a Gauss map grg: E(§) — Fevn F™
and (wew,fof) : £ — v with a Gauss map ¢,°g.: E() — Fotn F We de-
fine a Gauss map h: E() X I — F* by the relation ho(z) = (1 — tgrglx) +
tgegi{x). For a fibre p~1(b) C E(%), the Linear maps g'g: p*(b) — Fev
and grogy: pi(b) — Fo4d are monomorphisms, and since Fev n Feid = 0,
the map h.: p~1(b) — F*™is a linear monomorphism. Therefore, there is a
Gauss map h: E(§) X I — F* which determines a bundle morphism
(w,k): £ — vi*r. The map k: B X I — G,(F?) is a homotopy from f°f to
f%,. Since f and f¢f are homotopic and f°f; and f are homotopic, f and f
are homotopic. This proves the theorem.

Theorem (6.2) is the third of the three raain homotopy classification
theorems.

7. FUNCTORIAL DESCRIPTION OF THE HOMOTOPY
CLASSIFICATION OF VECTOR BUNDLES

Let P denote the eategory paracompact spaces and homotopy classes of
maps. Let ens denote, as usual, the category of sets and functions.

Let Veety(B) denote the set of B-isomorphism classes of k-dimen-
sional vector bundles over B. For a k-dimensional bundle £ we denote
by {£} the class in Vect,(B) determined by & If [ f]: By — B is a homot-
opy class of maps between paracompact spaces, we define a {unction
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Vecti ([ f]) : Veety{B) — Vecty(B1) by the relation Vecty([
T =
{7¥{£)}. By the remarks at the end of Sec. 3 and Th ,
. . 4.
(LfD is a well-defined function. . _ corem (1), Vee

q.uwacvcmwnmoz.Hra?gm_%&?gﬁosm<mo§“w|vmsmmmp
cofunctor, .
Proof. Since 1*(£) and £ are B-isomorphi i i
. . phie, the function Vecti([17]) is
the Emﬁﬁuw%. W { f]: By— B and [¢]: B; — B are two homotopy classes of
maps, ¢*(f*(£)) and (fg)*(£) are Bisomorphic. Consequently,

<mi.i._u flgdy = Veetw([g]) Vect([ f]), and Vect; satisfies the axioms
for being a cofunctor.

For each B, we define a function ¢p: [B, Go{F®°)] — Ve

. , : [B, ot (B) by the
relation ﬁiﬁﬁ: = { () }. Agsin by Theorem (4.7), ¢p is a well-
defined funetion. The next theorem, together with the definition of Vect,

and ¢5, brings together all aspects of the homotopy classification theory of
vector bundles. ,

7.2 Theorem. The family ¢ of functions ¢5 defines an isomorphism
of cofunctors ¢: [ —, G, (F=)] — Vect,.
Proof. First, we prove that ¢ is a morphism of cofunctors. For this,

E [/ By — B be a homotopy class of maps. Then the following diagram
18 commutative.

3]
I'B, Gy (F=)] — Veet,(B)
(L7}, Gr(Fo)) Vectr ([ /1)

. DB:
[By, G (F=) 125 Veotu(By)

In effect, if [g] € [B,GL(F=)], we have
Veetr ([ D os(lg]) = Veetu ([ {g*(va)} = [ /*9* (v}
and ¢p,[[ f], Ge(F*) [gT = &5, (Lo /D = ({gf)*(v) }.

Finally, ¢ is an isomorphism because each ¢ is a bijection. The function

¢g 18 surjective by (5.5) and (5.6), and it is injective b i
g s Suriect] jective by (6.2). This proves

. 7.3 The isomorphism ¢: [ —, G.(F™) ] — Vecty is called a corepresenta-
tion of the cofunctor Vecti. The preceding four sections have been dedi-
cated to proving that the ecofunctor Vect, is corepresentable. In this way
the problem of classifying vector bundles, ie., of computing Vect(B),

has been reduced to the calculation of sets of h
! omoto 1
le., the sets [B,GL{F=)7]. by classes of maps



