Vektorbündel I

Im Folgenden sei immer $F = \mathbb{R}$, \mathbb{C} oder \mathbb{H} .

1 Definition und Grundeigenschaften

1.1 Definition

Ein k-dimensionales Vektorbündel ξ über F ist ein Bündel (E, p, B) mit folgenden Eigenschaften:

- 1. Jede Faser $p^{-1}(b)$ trägt eine k-dimensionale F-Vektorraumstruktur
- 2. Zu jedem $b \in B$ existiert eine offene Umgebung U und ein Homöomorphismus $h: U \times F^k \longrightarrow p^{-1}(U)$ mit $p_1 = p \circ h$, so dass die Einschränkung $\{b\} \times F^k \longrightarrow p^{-1}(b)$ für alle $b \in U$ ein Vektorraum-Isomorphismus ist (lokale Trivialität).

1.2 Beispiele

- 1. Das k-dimensionale Produktbündel über B ist das Bündel $(B \times F^k, p_1, B)$, wobei die Vektorraumstruktur auf $\{b\} \times F^k = p^{-1}(b)$ durch diejenige auf F^k definiert ist. Um die lokale Trivialität einzusehen setze U := B und $h := id : B \times F^k \longrightarrow B \times F^k$
- 2. Das Tangentialbündel $\tau(S^n) = (T, \pi, S^n)$ der n-dimenionalen Einheitskugel im \mathbb{R}^{n+1} ist ein n-dimensionales Vektorbündel: Für jedes $x \in S^n$ ist $\pi^{-1}(x) = T_x S^n$ der Tangentialraum der Sphäre im Punkt x, also ein n-dimensionaler Vektorraum. Zur lokalen Trivialtät: Für $x \in S^n$ sei U_x die offene Halbsphäre, die x enthält und durch die n-dimensionale Hyperebene durch den Ursprung, die senkrecht zu x steht, begrenzt ist und sei η_x die orthogonale Projektion auf $\pi^{-1}(x) = T_x S^n$. Definiere $h_x : \pi^{-1}(U_x) \longrightarrow U_x \times \pi^{-1}(x) \cong U_x \times \mathbb{R}^n$ durch $h_x(y,v) = (y,\eta_x(v))$, wobei $y \in S^n$, $v \in T_y S^n$. Für $b \in U_x$ ist die Einschränkung $\pi^{-1}(b) \longrightarrow \{b\} \times \pi^{-1}(x) \cong \{b\} \times \mathbb{R}^n$ ein Vektorraum-Isomorphismus.

1.3 Beispiel: Kanonisches Bündel auf Grassmanscher Mannigfaltigkeit

Sei $V_k(\mathbb{R}^n) = \left\{ (v_1, \dots, v_k) \in (S^{n-1})^k | (v_i, v_j) = \delta_{i,j} \right\}$ die Stiefel Mannigfaltigkeit der k-Rahmen im \mathbb{R}^n . Jeder k-Rahmen $(v_1, \dots, v_k) \in V_k(\mathbb{R}^n)$ induziert einen k-dimensionalen Untervektorraum $< v_1, \dots, v_k >$. Insbesondere ist jeder k-dimensionale Untervektorraum des \mathbb{R}^n von dieser Form. Die Grassmannsche Mannigfaltigkeit $G_k(\mathbb{R}^n)$ ist die Menge der k-dimensionalen Unterräume des \mathbb{R}^n versehen mit der Quotiententopologie, die durch die Abbildung $(v_1, \dots, v_k) \mapsto < v_1, \dots, v_k >$ gegeben ist.

Bemerkung: Die Grassmannsche Mannigfaltigkeit ist eine Verallgemeinerung der Konstruktuon des Projektiven Raums $\mathbb{R}P^n = G_1(\mathbb{R}^{n+1})$.

Das kanonische k-dimensionale Vektorbündel γ_k^n auf $G_k(\mathbb{R}^n)$ erhält man als Teilbündel des Produktbündels $(G_k(\mathbb{R}^n) \times \mathbb{R}^n, p, G_k(\mathbb{R}^n))$: Der Totalraum ist die Menge aller Paare $(V, x) \in G_k(\mathbb{R}^n) \times \mathbb{R}^n$ mit $x \in V$ und p die Projektion auf die erste Komponente. Dann ist $p^{-1}(V) = \{V\} \times V \subset G_k(\mathbb{R}^n) \times \mathbb{R}^n$ ein k-dimensionaler Vektorraum mit der gegeben VR-Struktur von $V \subset \mathbb{R}^n$.

Für $V \in G_k(\mathbb{R}^n)$ sei $\pi_V : \mathbb{R}^n \longrightarrow V$ die orthogonale Projektion und $U_V := \{V' \in G_k(\mathbb{R}^n) | dim(\pi_V(V')) = k\}$. Es gilt: $V \in U_V$ und U_V ist offen in $G_k(\mathbb{R}^n)$, denn:

 U_V ist offen genau dann, wenn sein Urbild unter der Quotientenabbildung q in $V_k(\mathbb{R}^n)$ offen ist. Definiere eine Abbildung $g:V_k(\mathbb{R}^n)\longrightarrow V^k, (v_1,\ldots,v_k)\mapsto (\pi_V(v_1),\ldots,\pi_V(v_k)).$ Dann ist g stetig, da π_V stetig ist. Sei weiterhin $det:V^k\longrightarrow \mathbb{R}$ die Determinante, welche ebenfalls stetig ist. Dann ist $q^{-1}(U_V)$ das Urbild von $\mathbb{R}-\{0\}$, da für alle $V'\in U_V$ mit $V'=< v_1,\ldots,v_k>$ gilt: $\pi_V(v_1),\ldots,\pi_V(v_k)$ sind linear unabhängig.

Definiere $h: p^{-1}(U_V) \longrightarrow U_V \times V \cong U_V \times F^k$ durch $h(V', x) = (V', \pi_V(x))$. Dann gilt:

- $p(V',x) = V' = p_1(V',\pi_V(x)) = p_1(h(V',x))$
- $h^{-1}(V',x) = (V',\pi_V^{-1}(x))$, denn $\pi_V|V':V' \longrightarrow V$ ist ein Isomorphismus.
- $p^{-1}(V') = \{V'\} \times V' \xrightarrow{h} \{V'\} \times V \cong \{V'\} \times \mathbb{R}^k$ ist ein Vektorraum- Isomorphismus

1.4 Definition+Lemma

Seien $\xi_1 = (E_1, p_1, B)$, $\xi_2 = (E_2, p_2, B)$ zwei Vektorbündel über B. Die Whitney-Summe $\xi_1 \oplus \xi_2 = (E_1 \oplus E_2, q, B)$ von ξ_1 und ξ_2 ist das Faser-Produkt der beiden Bündel. Das heisst: $E_1 \oplus E_2 := \{(x_1, x_2) \in E_1 \times E_2 | p_1(x_1) = p_2(x_2) \}$ und $q(x_1, x_2) := p_1(x_1) = p_2(x_2)$ und die Faser über $b \in B$ ist $q^{-1}(b) = p_1^{-1}(b) \times p_2^{-1}(b)$. Dann ist $\xi_1 \oplus \xi_2$ selbst ein Vektorbündel über B.

Beweis:

Für jedes $b \in B$ trägt $q^{-1}(b) = p_1^{-1}(b) \times p_2^{-1}(b)$ die Vektorraumstruktur der direkten Summe zweier Vektorräume und sind $h_1 : U \times F^n \longrightarrow p_1^{-1}(U)$ und $h_2 : U \times F^m \longrightarrow p_2^{-1}(U)$ lokale Trivialisierungen von ξ_1 bzw. ξ_2 , so ist $h_1 \oplus h_2 : U \times F^{n+m} \longrightarrow q^{-1}(U)$, $(b, x, y) \mapsto (h_1(b, x), h_2(b, y))$ eine lokale Trivialisierung von $\xi_1 \oplus \xi_2$.

1.5 Beispiel

Seien $\tau(S^n)$ das Tangentialbündel und $N(S^n)$ das Normalbündel der n-Sphäre. Dabei ist $N(S^n)$ wie folgt definiert: Der Totalraum ist definiert als $E(N(S^n)) = \{(x,v) \in S^n \times \mathbb{R}^{n+1} | \exists t \in \mathbb{R} : v = tx \}$ und p ist die Projektion auf die erste Komponente. Dann hat die Whitney-Summe $\tau(S^n) \oplus N(S^n)$ den Totalraum $E = \{(x,v,tx) \in S^n \times \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} | x \bot v \}$. Wir werden später sehen, dass $\tau(S^n) \oplus N(S^n)$ ein triviales Bündel ist.

1.6 Definition

Ein Schnitt eines Vektorbündels (E, p, B) ist eine stetige Abbildung $s: B \longrightarrow E$ mit $s(b) \in p^{-1}(b)$ oder anders ausgedrückt: $p \circ s = id_B$.

1.7 Beispiel: Nullschnitt

Zu jedem Vektorbündel gibt es einen kanonischen Schnitt s, der jedem $b \in B$ den Ursprung $0_{p^{-1}(b)}$ in $p^{-1}(b)$ zuordnet.

1.8 Proposition

Sei $\xi = (E, p, B)$ ein k-dimensionales Vektorbündel. Dann gilt:

- 1. p ist offen.
- 2. Die Abbildungen $E \oplus E \longrightarrow E$, $(x,x') \mapsto x+x'$ und $F \times E \longrightarrow E$, $(k,x) \mapsto kx$ sind stetig.

Beweis:

zu 1): Sei $h: U \times F^k \longrightarrow p^{-1}(U)$ eine lokale Trivialisierung. Dann ist p via h durch die Projektion p_1 auf die erste Komponente gegeben. Da p_1 offen und h ein Homöomorphismus ist, ist somit auch p offen. Da die Familie der $p^{-1}(U)$ eine offene Überdeckung von E sind gilt dies auch global.

zu 2) Via lokaler Trivialisierung entspricht die Addition der Abbildung $U \times F^k \oplus U \times F^k \longrightarrow U \times F^k$, $((b,x),(b,x')) \mapsto (b,x+x')$, also der Addition in F^k , welche stetig ist. Analoges gilt für die skalare Multiplikation.

1.9 Corollar

Sind s und s' zwei Schnitte eines Vektorbündels $\xi = (E, p, B)$ und $\phi : B \longrightarrow F$ eine stetige Abbildung, so sind die Abbildungen $s + s' : B \longrightarrow E$, (s + s')(b) = s(b) + s'(b) und $\phi s : B \longrightarrow E$, $(\phi s)(b) = \phi(b)s(b)$ Schnitte von ξ . Mit anderen Worten: Die Menge der Schnitte von ξ ist ein $C_F(B)$ -Modul und wird mit $\Gamma(\xi)$ bezeichnet.

Beweis: Folgt direkt aus der Stetigkeit der Addition und Skalarmultiplikation (1.6).

2 Morphismen von Vektorbündeln

2.1 Definition

Sind $\xi = (E, p, B)$ und $\xi' = (E', p', B')$ zwei Vektorbündel, so ist $(u, f) : \xi \longrightarrow \xi'$ ein Morphismus von Vektorbündeln, falls (u, f) ein Morphismus von Bündeln ist (d.h.: p'u = fp) und die Einschränkung $u : p^{-1}(b) \longrightarrow (p')^{-1}(f(b))$ für alle $b \in B$ linear ist. Ein Morphismus von Vektorbündeln (u, f) ist ein Isomorphismus, falls ein Morphismus von Vektorbündeln $(v, g) : \xi' \longrightarrow \xi$ exisitiert mit $vu = id_E$, $uv = id_{E'}$ und $gf = id_B$, $fg = id_{B'}$.

Gilt B = B', so heisst $u : \xi \longrightarrow \xi'$ ein B-Morphismus von Vektorbündeln, falls (u, id_B) ein Morphismus von Vektorbündeln ist.

2.2 Satz

Sei $u: \xi \longrightarrow \xi'$ ein B-Morphismus von Vektorbündeln. Dann sind äquivalent:

- 1. u ist ein B-Isomorphismus
- 2. Für alle $b \in B$ ist $u_{|p^{-1}(b)}: p^{-1}(b) \longrightarrow (p')^{-1}(b)$ ein Vektorraumisomorphismus

Beweis:

- 1) \Rightarrow 2) ist klar.
- 2) \Rightarrow 1): Nach Voraussetzung ist u bijektiv und stetig. Es bleibt zu zeigen: u^{-1} ist stetig. Seien dazu $h: U \times F^k \longrightarrow p^{-1}(U), h': U \times F^k \longrightarrow (p')^{-1}(U)$ lokale Trivialisierungen von ξ bzw. ξ' . Mittels dieser lokalen Koordinaten hat u die Form: $u: U \times F^k \longrightarrow U \times F^k$, $(b,x) \mapsto (b,f_b(x))$ mit $f_b \in GL_k(F)$ stetig. Insbesondere gilt: Betrachtet man f_b als Matrix , so hängt jeder Eintrag stetig von b ab. Dann lässt sich f_b^{-1} durch $\frac{1}{\det(f_b)}$ mal der adjungierten Matrix von f_b berechnen. Also hängt auch f_b^{-1} stetig von b ab und damit ist $u^{-1}(b,x) = (b,f_b^{-1}(x))$ stetig.

2.3 Beispiel

Wir wollen zeigen, dass die Whitney-Summe $\tau(S^n) \oplus N(S^n)$ aus Beispiel 1.5 trivial ist. Definiere dazu $f: E \longrightarrow S^n \times \mathbb{R}^{n+1}$ durch f(x,v,tx) := (x,v+tx). Dann ist f offenbar ein S^n -Morphismus von Vektorbündeln. Ist $x \in S^n$, so ist die Einschränkung $p_1^{-1}(x) \longrightarrow p_1^{-1}(x)$ ein Vektorraum-Isomorphismus, denn ist $w \in \mathbb{R}^{n+1}$, so wissen wir aus der linearen Algebra, dass w eine eindeutige Darstellung w = u + rx besitzt mit $u \in x >^{\perp}$ und $x \in \mathbb{R}$. Also kann man leicht eine Umkehrabbildung $(x,w) = (x,u+rx) \mapsto (x,u,rx)$ definieren. Nach Satz 2.2 ist f dann ein S^n -Isomorphismus.

3 Homotopie-Eigenschaften von Vektorbündeln

3.1 Lemma

Sei $\xi = (E, p, B \times [a, b])$ ein Vektorbündel und $c \in (a, b)$. Dann gilt: Sind $\xi | B \times [a, c]$ und $\xi | B \times [c, b]$ trivial, so auch ξ .

Beweis:

Bezeichne $E_1 = p^{-1}(B \times [a, c])$ den Totalraum von $\xi | B \times [a, c]$ und $E_2 = p^{-1}(B \times [c, b])$ den Totalraum von $\xi | B \times [c, b]$ und seien $h_1 : B \times [a, c] \times F^n \longrightarrow E_1$ und $h_2 : B \times [c, b] \times F^n \longrightarrow E_2$ Trivialisierungen von E_1 bzw. E_2 . Sei weiterhin $g_i = h_i | B \times \{c\} \times F^n$ für i = 1, 2. Definiere nun $g := g_2^{-1} \circ g_1 : B \times \{c\} \times F^n \longrightarrow B \times \{c\} \times F^n$. Dann ist g ein $B \times \{c\}$ -Isomorphismus der Form g(x, c, y) = (x, c, f(y)) wobei $f \in GL_n(F)$ eine stetige Abbildung ist. Erweitere g nun zu einem Isomorphismus $\tilde{g} : B \times [c, b] \times F^n \longrightarrow B \times [c, b] \times F^n$ durch $\tilde{g}(x, t, y) = (x, t, f(y))$. Dann sind h_1 und $h_2\tilde{g}$ gleich auf $B \times \{c\} \times F^n$: $h_2(\tilde{g}(x, c, y)) = h_2(g(x, c, y)) = h_2(g_2^{-1}(g_1(x, c, y))) = g_1(x, c, y) = h_1(x, c, y)$ und definieren damit eine Trivialisierung von ganz E.

3.2 Lemma

Sei ξ ein Vektorbündel über $B \times I$. Dann existiert eine offene Überdeckung $(U_{\alpha})_{\alpha}$ von B, so dass $\xi|(U_{\alpha} \times I)$ trivial ist.

Beweis:

Sei $b \in B$. Dann existiert zu jedem $t \in I$ eine offene Umgebung $U_t \subseteq B$ von b und $V_t \subseteq I$ von t, so dass $\xi | U_t \times V_t$ trivial ist. Da I = [0,1] kompakt ist, existieren $0 = t_0 < t_1 < \ldots < t_k = 1$ und offene Umgebungen U_{t_i} von b und V_{t_i} von t_i mit $[0,1] \subseteq \bigcup_{i=0}^k V_{t_i}$ und $t_{i-1} \in V_{t_{i-1}} \cap V_{t_i}$ (also insbesondere $[t_{i-1},t_i] \subseteq V_{t_i}$). Als Einschränkung von $\xi | U_{t_i} \times V_{t_i}$ ist auch $\xi | U_{t_i} \times [t_{i-1},t_i]$ trivial. Setze nun $U_{\alpha} := \bigcap_{i=0}^k U_{t_i}$. Dann ist U_{α} eine offene Umgebung von b und $\xi | U_{\alpha} \times [t_{i-1},t_i]$ ist trivial für alle $i=1,\ldots,k$. Mit Lemma 3.1 folgt, dass $\xi | U_{\alpha} \times [0,1]$ trivial ist.

3.3 Satz

Sei $\xi = (E, p, B \times I)$ ein Vektorbündel und B parakompakt. Dann gilt:

$$\xi | B \times \{0\} \cong \xi | B \times \{1\}$$

Beweis:

Sei $(U_{\alpha})_{\alpha}$ eine offene Überdeckung von B, so dass ξ über jedem U_{α} trivial ist (existiert nach Lemma 3.2). Da B parakompakt ist, existiert eine abzählbare, offene, lokal-endliche Verfeinerung $(V_i)_{i\in\mathbb{N}}$. Weiterhin existiert eine Zerlegung der Eins $(\phi_i)_{i\in\mathbb{N}}$, die $(V_i)_{i\in\mathbb{N}}$ mit selber Indexmenge untergeordnet ist, also $supp(\phi_i) \subseteq V_i$. Dann ist ξ für alle $i \in \mathbb{N}$ trivial über $V_i \times I$. Bezeichne $h_i : V_i \times I \times F^k \longrightarrow p^{-1}(V_i \times I)$ für jedes i so eine Trivialisierung. Definiere nun $\psi_i := \phi_1 + \ldots + \phi_i$, $\psi_0 := 0$. Seien weiterhin $B_i = \{(b,t) \in B \times I | t = \psi_i(b)\}$

der Graph von ψ_i und $\chi_i: B_i \longrightarrow B_{i-1}$ definiert durch $(b, \psi_i(b)) \mapsto (b, \psi_{i-1}(b))$. Dann ist χ_i ein Homöomorphismus und für $b \notin V_i$ die Identität. Bezeichne nun $\xi_i = (E_i, p_i, B_i)$ die Einschränkung von ξ auf B_i . Definiere einen Homöomorphismus $f_i: E_i \longrightarrow E_{i-1}$ wie folgt: f_i ist die Idendität ausserhalb von $p^{-1}(V_i \times I)$ und $f_i(h_i(b, t, v)) = h_i(b, \psi_{i-1}(b), v)$ sonst. Es lässt sich leicht nachrechnen, dass (f_i, χ_i) ein Isomorphismus von Vektorbündeln ist. Ist dann $f := f_1 f_2 \dots$ und $\chi := \chi_1 \chi_2 \dots$, so ist $(f, \chi) : \xi | B \times \{1\} \longrightarrow \xi | B \times \{0\}$ ein wohldefinierter Isomorphismus, denn: Ist $b \in B$, so existiert wegen der lokalen Endlichkeit von $(V_i)_{i \in \mathbb{N}}$ eine Umgebung U von b, so dass $U \cap V_i = \emptyset$ für fast alle $i \in \mathbb{N}$. Also gilt $\phi_i = 0$ auf U für fast alle $i \in \mathbb{N}$ und damit sind χ_i und f_i für fast alle $i \in \mathbb{N}$ die Identität.

Erinnerung:

Sei ξ ein k-dimensionales Vektorbündel über B und $f: B_1 \longrightarrow B$ eine stetige Abbildung. Dann ist das induzierte Bündel von ξ unter f $f^*(\xi) = (E_1, p_1, B_1)$ wie folgt definiert: Der Basisraum ist $B_1, E_1 := \{(b_1, x) \in B_1 \times E | f(b_1) = p(x)\}$ und als Projektion $p_1(b_1, x) = b_1$.

3.4 Theorem

Seien $f, g: B \longrightarrow B'$ zwei homotope Abbildungen, wobei B parakompakt ist. Sei weiterhin ξ ein Vektorbündel über B'. Dann sind $f^*(\xi)$ und $g^*(\xi)$ B-Isomorph.

Beweis:

Sei $H: B \times [0,1] \longrightarrow B'$ eine Homotopie von f nach g, d.h.: h(x,0) = f(x) und h(x,1) = g(x). Dann ist $f^*(\xi)$ B-isomorph zu $h^*(\xi)|(B \times \{0\})$ und $g^*(\xi)$ ist B-isomorph zu $h^*(\xi)|(B \times \{1\})$. Da $h^*(\xi)$ ein Vektorbündel über $B \times I$ und B parakompakt ist folgt die Behauptung mit Satz 3.3

3.5 Corollar

Jedes Vektorbündel über einem zusammenziehbaren, parakompakten Raum B ist trivial. **Beweis:**

Sei $f: B \longrightarrow B$ eine konstante Abbildung. Für jedes Vektorbündel ξ über B ist $id_B^*(\xi)$ B-isomorph zu ξ und $f^*(\xi)$ ist B-isomorph zum Produktbündel $(B \times F^k, p, B)$. Da id_B und f homotop sind, folgt die Behauptung mit Theorem 3.4.