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Abstract

We define the extension of the so-called ”martingales in the branching random walk”
in R or C to some Banach algebras B of infinite dimension and give conditions for their
convergence, almost surely and in LP norm. This abstract approach gives conditions for
the simultaneous convergence of uncountable families of such martingales constructed
simultaneously in C, the idea being to consider such a family as a function valued
martingale in a Banach algebra of functions. The approach is an alternative to those
of Biggins (1989, 1992) and Barral (2000), and it applies to a class of families on which
the previous approach did not.

We also show a result of continuity on these multiplicative processes.

Our results extend to a varying environment version of the usual construction :
instead of attaching i.i.d. copies of a given random vector to the nodes of the tree
U,>oN%, the distribution of the vector depends on the node in the multiplicative
cascade. In this context, when B = R and in the non-negative case, we generalize
the measure on the boundary of the tree usually related to the construction; then we
evaluate the dimension of this non statistically self-similar measure.

In the self-similar case, our convergence results make it possible to simultaneously
define uncountable families of such measures, and then to estimate their dimension
simultaneously.
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1 Introduction.

The processes we generalize in this paper are real or complex valued multiplicative cas-
cades, called “martingales in the branching random walk” (MBRW), that have been studied



by many authors during the last twenty five years (Mandelbrot (1974 a,b), Kingman (1975),
Kahane and Peyriere (1976), Peyriere (1977), Biggins (1977, 1979, 1989, 1992), Durrett and
Liggett (1983), Kahane (1987, 1991), Guivarc’h (1990), Collet and Koukiou (1992), Waymire
and Williams (1995), Molchan (1996), Liu and Rouault (1996), Liu (1997, 1998, 1999, 2000),
Barral (1999, 2000 a,b)). One of our purposes is to study the convergence of function valued
MBRW to answer some questions left open in the study of the simultaneous convergence of
uncountable families of C-valued MBRW defined simultaneously.

Let us describe these multiplicative cascades in the context in which they were mostly
investigated, namely the non-negative case. We follow the Ulam-Harris construction of such
a branching process:

Let (€2, A, P) stand for the probability space on which the random variables in this paper
are defined. Define N} = N\ {0}, T' = J,,», N}, the set of finite words on N, , equipped with
the concatenation operation (e stands for the empty word and N§. = {e}). Let A = (A4;)i>1
be a sequence of non negative random variables such that

Ny = Z 1{&'#0} < o0 (1)
i>1
almost surely,
Z A; is integrable (2)
i>1
and
E (Z A,) =1. (3)
i>1
Without loss of generality in Sections 1 to 4, except in the “i.i.d.” case, we assume that
the A; are ordered with the non-zero ones first: A;,..., Ay, are the non zero components
of Aif Ny > 0.

Fix (A(a)),cr a sequence of independent copies of A. Denote by (Mp,),>; the size of
the nth generation of the Galton Watson branching process with offspring distribution the
probability distribution of N4, and generated with the Ny, a € T', that is

n
My = Z Hl{lsajSNA(al...aj,l)}.

ai...an EN_",_ j=1

Denote by T the Galton-Watson subtree of T associated with M,: T = {a1...ap--- €
T;Vi>1,1<a; <N(ay...a; 1)}

Then for every n > 1 multiply the A; values together down each line of descent in 7'N N}
and sum the results over the nth generation to obtain

YVo=Yan= Y Au(€Au(a)... Ag, (a1 . an ). (4)

ai...an ETQN:‘_



It is easily verified that (Y}),>1 is a non-negative martingale with respect to the filtration
(Fn, = o(Ai(a);i > 1,a € U?;&Nﬁ)nzl, with mean 1. So it converges almost surely to a
random variable with mean < 1. To find a necessary and sufficient condition for (Y;,),; to
converge to a non trivial limit in L' or in L? (p > 1) has been one of the main problems
studied in the papers mentioned above. Final answers are given in Lyons (1996) and Liu
(1997, 2000).

The martingale (Y,),-, has an immediate extension to C if one allows the A; to belong
to C and replaces (2) by
E(Z | Aif) < oo
i>1
Biggins (1989 or 1992) gives a sufficient condition for the L? convergence (1 < p < 2), which
is the natural extension of the condition in the non-negative case. To do this he uses the
complex version of a result of von Bahr and Esseen (1965).

Then, it is natural to try to extend the construction of Y,, to more general Banach spaces
over R that are equipped with a multiplication operation having the property to respect the
multiplication in R, and equipped with a submultiplicative norm. Such spaces are Banach
algebras with unity (see Larsen (1973) for details).

Thus, let B be a separable Banach algebra over R with unity denoted by Ip (for all
U € B, Ulg = IgU) and equipped with a submultiplicative norm denoted by N: for every
U, V) € B?,
NOV) < NO)N (V). (5)
For z € R, and U € B, N(U)® or N¢(U) will denote (N (U))*.
Assume now that the A; are random variables taking values in the separable Banach
space B (equipped with the Borel o-algebra relative to N'). Replace (2) by

E (ZN(Ai)) < 0. (6)

i>1

This implies that the random variable ) .., A; is Bochner integrable with respect to the
probability P (cf. Diestel and Uhl (1977) for this extension of the Lebesgue integral theory
to separable Banach spaces valued functions). Then replace (3) by

E (Z AZ) = I. (7)

i>1
Then (4) defines a F,-martingale with mean Ip.

Define
Ep = {B™* —valued random variable A; (6) and (7) hold}. (8)

Our initial purpose is to show that the conditions for the LP convergence obtained in
Biggins (1989, 1992) in the case B = C can be naturally extended to B provided B satisfies
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the two following conditions: we need an extension to B (Lemma 1) of the essential von Bahr
and Esseen result used by Biggins, so B will be supposed to be of type p for some 1 < p < 2
(cf. Ledoux and Talagrand (1991), Chapter 9). Moreover from now B is supposed to satisfy
the Radon-Nikodym property (cf. Diestel and Uhl (1977)) in order to extend martingales
convergence theorems to B. Concrete examples of spaces of type p are finite dimensional
vector spaces over R and closed subspaces of LP. The Radon-Nikodym property is satisfied
by the closed subspaces of reflexive Banach spaces, in particular by finite dimensional vector
spaces and closed subspaces of I? (1 < p < o0). Two examples of the kind of B then
allowed are the space of square complex matrices of order k£ > 2 and certain Sobolev spaces
(described in Section 2.2).

This abstract point of view is motivated by the following problem: consider an open sub-
set A of R¥ or C¥, X\ — A()) a stochastic process taking values in CV+, and (A — A(\)(a))aer
a sequence of independent copies of A — A()). Then assume that for every A € A, A()\) € &
(see (8)) so that (Ya(x),n)n>1 is the martingale defined by (4). A natural question is to deter-
mine whether Yy, converges for every A almost surely, and if so, whether the convergence
holds almost surely simultaneously for all A. Then, if the random function A\ — A())
possesses some regularity, a companion question is to determine whether or not the limit
process A — limy, o Ya(r),, POssesses some related regularity (by the regularity of A — A(\)
we mean the regularity of its components, the A — A;(1)).

Satisfactory answers to these questions in particular cases are given in Joffe, Le Cam
and Neveu (1973) when A C C and A — A()) is analytic; in Biggins (1989) when A C R
and A — A()) is non-negative and is differentiable, and also when A C C and A — A(}) is
analytic; in Biggins (1992) when A C C* and A — A()) is analytic; in Barral (2000) when
A C R and A — A(A) is non-negative and continuously differentiable. Roughly speaking
these results conclude that there is simultaneous and even uniform convergence, and that
the limit possesses the same ( or almost the same) regularity as A — A(}).

But the approach used in these papers does not work if A C R*¥ (k > 2) and A — A(\)
is not analytic. It then appears that using Sobolev spaces is a good way forward in solving
the problems of convergence and regularity (Theorem 3). Moreover our approach makes it

possible to obtain in another way some results in the papers mentioned above (see Section
2.2 and Section 4).

The next purpose of the paper (Section 5) is to generalize the usual construction by
changing the distribution of A(a) at each node a of 7. This is the varying environment
counterpart of the usual construction. Indeed, the offspring distribution of N4(a) depends
upon the node a, thus the multiplications defining the martingale is made down the line of
descent of a varying environment branching process (see Liu (1996) or D’Souza and Hambly
(1997)). Results obtained in the Galton-Watson case possess immediate extensions to this
context. Then, in the non-negative one dimensional case, we define the varying environment
counterpart of the measure on the boundary of T, naturally associated with (Y4,),>1. Re-
sults on LP convergence yield conditions for this measure to be non-degenerate, and we give
bounds for its dimension. This generalizes results by Peyriere (1977) and Liu and Rouault



(1996). Then, our result in Section 2.2 allows us to define and describe (via their dimen-
sion), simultaneously, uncountable families of such measures in the self-similar case (i.e. in
the Galton-Watson case).

The results on the continuity of the generalized process (Theorem 7) and the dimension
of the generalized limit measure (Theorem 8) are interesting because they give information
on the difference between the usual statistically self-similar construction and a perturbation
thereof.

We end this section by giving three areas in which the martingales we deal with are used
to construct some models. They are used to construct a model for turbulence in Mandelbrot
(1974 a) where the distribution of the energy in a turbulent fluid is described by certain of the
random measures mentioned above. Certain of these martingales depending on the inverse
temperature are used to model the free energy of spin glasses and directed polymers via a
partition function (see Koukiou (1997) and references therein). Also in mathematical finance
the associated measures are used to produce a model of price variations with multifractal
trading time (see Mandelbrot, Calvet and Fisher (1997)). Results like Theorem 3 give
information on the dependence of these models with respect to some parameters.

The paper is organized as follows. Section 2, and 3, are devoted to the proofs of L?
convergence (p > 1) of (Y,)n,>1 in B, with the application to the study of simultaneous
convergence of uncountable families of such martingales taking values in C, using a Banach
algebra of functions for B. Section 4 deals with the continuity of the multiplicative process
which defines the limit martingale. Section 5 extends the results of previous sections to the
generalized process obtained when one retains the independence between the A(a) but one
allows the distribution of A(a) to depend upon the node a of T in the process of multiplica-
tions and addition yielding the martingale (Y,),>1. In the non-negative case the associated
measure, (4, on the boundary of 7" is defined, and we give almost surely p-almost everywhere
the liminf and the limsup of the logarithmic density of x4, and so a lower bound and a upper
bound for the dimension of the measure p. The paper ends with the same estimates for
uncountable families of measures in the self-similar case.

2 [P convergence of (Y,),>1 and application.

2.1 [P convergence.

For z € Ry, n € Ny and (A(a) = (4i(a))i>1) ,or @ sequence of random elements of B™+
define

San@) =E| > N(Ag()As(a1)... Ag,(a1...an_1))"| , Saplz) =1,

a1 ...anENi

va(e) =EN (Y Ai(e))7],

i>1



and

x

Yan(r) =E > N (Aa (04 (a1) ... Ag, (a1 ... an_1))

a1...anEN1

In this subsection, we write S,(z), ¥ (x) and ¥, (z) for Sa,(x), ¥a(z) and P4, (z) res-
pectively and we define )
Ip = (1{i=13IB)i>1-

Theorem 1 Fiz p > 1. Suppose one of the three following assertions holds.
i) p €]1,2|, B is of type p, Zn>1(5”(p))1/p < oo (satisfied as soon as S1(p) < 1) and
¥(p) < oo; )
i) peN, p>3, (Y,)n>1 is bounded in LP~1, S,(p) < 1 and ¢, (p) < co for some n > 1;
i11) p denotes the integer such that p <p <p+1;
a) p>2, (Yy)n>1 is bounded in LP, esssup Ny < 0o, Sp(p) < 1 for somen > 1;
b) p > 2, (Ya)n>1 is bounded in LP, S,(p) < 1 and S,(ph) < oo for some n € N and

_ by,
h>1, and ]E(NXDH)”’IJF ) < oo for some e > 0.

Then the martingale (Y, )n>1 converges, almost surely, and in LP norm to a random variable
Y =Y, with mean Ig. Moreover

Y =) Aie)Y (). (E)

i>1

where (Y (i))i>1 s a sequence of independent copies of Y, which are also independent of A(e).

Remark 1 1) The conditions involved in ¢) are the natural extension of those of Liu (2000)
or Biggins (1989, 1992) which need S;(p) < oo and ¥ (p) < oo when N is the usual norm on
R or C.

2) 4i) and i7i) are the extensions of results in Liu (1997), and they really apply, via ),
if B is of type 2. It is not possible to apply the approach used in Liu (2000) to completely
solve the problem of LP convergence when B = R and the A;’s are non-negative, because
it is based on the equality N'(Y) = Y., N(A;(¢))N (Y (7)) which holds only under strong
hypotheses in the general case. -

3) If we assume that B is a space of square matrices and that their exists a non-random
invertible matrix M such that almost surely the M A; M ~! are diagonal, then the problem is
reduced to the study of a finite number of martingales of this kind, but in dimension 1. So in
the case of non-negative diagonals, necessary and sufficient conditions for the LP convergence
(p > 1) are easily deduced from Lyons (1996) and Liu (2000).

4) Given A, if one considers equation (F) as an equality between distribution laws (then
one speaks of a "fixed point of a generalized smoothing transformation”), as in Biggins
(1977), Durrett and Liggett (1983), Guivarc’h (1990) and Liu (1998), it is natural to ask
whether Y is the unique non trivial solution of (E). This is false in general since when
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B=Rand A= (%1{19-52}),21, the Cauchy law and the law ¢; are solutions. This raises the
question of whether restrictions on A can insure the uniqueness of the solution.

_ Ry,
5) As we shall see in the proof of Theorem 1, the condition C;: ]E(NX)H)”’1+ ) < oo

for some & > 0 in 474)b) could be replaced by the weaker condition Cy: -, , &#F'P(M,

E)% < 00. To see this apply the result in Liu (2000) on positive moments of MBRW to the
martingale M, /(E(N4))". This shows that if E(N%) < oo for some § > 1 then E(M?) < co.
So if C; holds the Chebitshev inequality yields C;. Unfortunately Co is not easy to verify

without using the moments of the offspring distribution.

We now give similar but more precise results in the so called "i.i.d. case”. We assume
that A = (A4, A, ..., An,,0,0,...) possesses a Bellman-Harris like structure where the A,
are identically distributed and independent conditionally on N 4. More precisely, there exists
a Bochner integrable random variable W € B with mean Ig, a positive measurable function
¢ and a random integer N € N, such that

*(om) =

W;
A= (Ay)i>1 = (1{19’5N}m>i>1

where the W;’s are identically distributed and independent of one another and of V.

and

Thus for every a € T, A(a) = (1{19-51\/(@)}%)121-
We shall need the following proposition.

Proposition 1 Fiz h > 1 a real number and assume that E(N (W)") < co.
1) The sequence +log BN (W, W, ... W,)") converges to a limit p(h) > 0.

2) The mapping h' — p(h') is convex non decreasing on [1, h].
3) If p(h) + log E(N/g"(N)) < 0 then 37,5, (Sn(h)/" < oo.

Proof. 1) By the assumption on the W;’s the sequence s, = log B(N (W, Ws...W,)") is
subadditive and so s, /n converges to p(h) € RU{—o0c}. Moreover E(N (W, W, ... W,
N(EW, W, ... W) = N(Ip)". So p(h) > 0.

2) Follows from the log-convexity of h + E(N (W, W,...W,)") for every n > 1.
3) In this context, we have
1 a ai...a;
Sn(h) — Z H {1< ]<N 1a j )1))h )E(N(Wl Ws... Wn)h))
aj-. anENn j= 1 j—1

= (E(N/g"(N))" E(N(Wlwz--wm")

from which the conclusion follows.

We can now state our result in this situation.
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Theorem 2 (The i.i.d. case) Fizp > 1. Assume one of the following assertions:

i) p €]1,2], p(p) +log B(N/g?(N)) < 0, B(N?/gP(N)) < oo and B is of type p;

i) p €N, p > 3, maxpeqz,) p(h) + log E(N/g"(N)) < 0, E(N?/¢?(N)) < oo and B is of
type 2;

i) p > 2, maxpe(apy p(h) + log E(N/g"(N)) < 0, E(N?*!/gP(N)) < co where p denotes
the integer such that p < p < p+ 1, and B is of type 2.

Then the conclusion of Theorem 1 holds.

Remark 2 i) and 7i) are direct consequences of Theorem 1. Part 7ii) needs some additional
argument; it implies i) and generalizes the corresponding result of Peyriere (1977) where
B =R, the W;’s are non negative, g(N) = N and p(p) = log E(W?P).

2.2 Application to uniform convergence of complex valued mar-
tingales in the branching random walk.

Fix k > 1 and let A be an open subset of R¥. Consider a stochastic process A € A — A()\)
such that every A(\) belongs to & (see (8)). Such families appear naturally (see Biggins
(1989, 1992), Barral (1999, 2000 b) and references therein). Let us give a simple example
in the i.i.d case described in Section 2.1: if W is almost surely positive and satisfies the
assumption i) of Theorem 2 for some p > 1, and if f is a continuous function from a
neighbourhood U of 0 in R* to C such that f(0) = 1, taking an open set A C U small
enough yields the family

W/ 1 gfO ()
A= AN = (1{1§z’§N}]E(Wf(k))]E(iV/gf(’\) (N))> >1.

As we said in Section 1, it is natural to seek conditions under which the associated martingales
(Y4(x),n)n>1 converge almost surely simultaneously and then if the A +— A;(A\) possess some
regularity almost surely , to know whether the limit martingale A — Y4()) possesses a
related regularity.

Our aim is essentially to deal with the case where k£ > 2 and the A — A;()\) are not
analytic when k is an even integer. This is the case where the approach developed until now
does not apply. See Section 1 for details.

The key idea is to imbed the A — A;()\) in a convenient Sobolev space. Moreover, this
approach also yields Biggins (1992) results in certain cases when the A — A;(\) are analytic,
and it gives an alternative to the Biggins (1989) and Barral (2000) approach when k& = 1
(see Section 4).

To state our result some preliminaries are needed.

Assume that A is bounded and possesses the cone property (see Adams (1975)). This
holds, for example, if A is an open ball. Fix p €]1,2] and an integer m > 1 such that
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mp > k. These conditions are needed to get a Sobolev space with the property to be a
Banach algebra:

Let W™P(A) be the Sobolev space of complex valued functions m times weakly differ-
entiable on A and with weak partial derivatives of order < m belonging to LP(A, £), where
¢ denotes the restriction of Lebesgue measure to A. Then for f € W™P(A), with standard
notations \p

Wlwmsy =3 S 1Dl

0<|a|<m

By Theorem 5.23 of Adams (1975), the hypothesis made on the geometry of A and the
inequality mp > k are sufficient for W™P(A) to be a Banach algebra with unity Id,. In
particular there exists a constant C' > 0 depending upon A, p and m only such that

Y o9 € WHP(A), || fallwmany < C|F [wmemllglhymaa)- (9)

This property yields the two following norms on W™P(A), both equivalent to || ||yym.r(2) and
satisfying (5):
N feW™(A) = C|lf llwmra

and

Noo feW™(A)—=  sup  [[fgllwmaa/llgllwma)-

gewm-r(A)\{0}

We compare these norms in Remark 3.
Here W™P(A) is a closed subset of (L?(A, £))?, which is separable and reflexive. So by Cor.
I11.2.13 and Thm II1.3.2. of Diestel and Uhl (1977) it satisfies the Radon-Nikodym property.
Moreover, by Ledoux and Talagrand (1991, p. 247), since it is a closed subset of (LP(A,£))?,
Wm™P(A) is of type p. So it is possible to apply Theorem 1 and 2 with B = W™P(A) and
N = N; or N = N,. This leads to the following result.

Theorem 3 Assume that: i) for everyi € Ny, A; : A € A — A;(\) is a random variable
taking values in W™P(A) that is almost surely continuous;

it) A = (A;)i>1 belongs to Eyymnp(n);

ii1) A satisfies one of the assumptions of Theorem 1 or 2 with B = W™P(A) and N €
{N1, N>}

Then Y4, converges in W™P(A) almost surely and in LP norm. Consequently the mar-
tingales (Yao)n)n>1, A € A, converge almost surely simultaneously, and uniformly on the
compact subsets of A; almost surely the limit function A — Yy is continuous and belongs
to W™P(A). Moreover if k is an even integer, R¥ is identified with C*/2, and the X — A;()\)
are almost surely analytic then A — Y4y is almost surely analytic.

Remark 3 1) The main reason for introducing the second norm N, is the following. To
apply Theorem 1, we need to check conditions like S;(p) < 1. If N'= N and the mapping



A = A()) is almost surely equal to a constant A € &c, it is easily seen that the condition
S1(p) < 1 does not coincide with the usual condition Sz,(p) < 1 for the convergence in L?
of Y3 ,. Indeed, in this case

&@=0%W{§]Mﬂ<l

i>1

So, as C'¢(A) > 1, which can be seen from (9), this yields a more restrictive sufficient
condition than SA’I(p) =K (Zz‘21 ‘Ai|p) <1

On the other hand, when N' = N, one checks that Si(p) = Sz,(p). Moreover, even if
A — A(A) is not constant, the condition Si(p) < 1 implies that for all A\g € A, the usual
condition for LP convergence of Yy, holds, and Sy(y),1(p) < 1.

To see this, consider g # 0 an element of C§°(RF). Then fix Ay € A and for € > 0 define
Do) = g(’\"g_ ). It follows from the definitions of gy, . and N, that for i > 1, almost surely

19202 (-) Ai () [ym.s ()

|A;(Xo)[P = lim
||9/\o,6||wm,p(A)

e—0

. So by the Fatou Lemma

1930 ¢ () Ai () [y (a)

E[|A; (Ao)P] < lim inf E( )) < BN (A4i()].

Grose ”Wm,p(A)

In particular,

sup Sa,1(p) < Si(p), so sup Sapm,1(p) < 1. (10)
AEA A€A

We end this comparison by noting that under the assumption i) of Theorem 1 with
Si(p) < 1 and N = Ny, at least if the A;(\) are non-negative, since Id, is the mean of the
limit function A = Yy, for every A € A, we have Ss0\)1(p) <1 by Thm 5.1 of Liu (1997).
But the definition of A; implies that C' [, San),1(p)€(dX) < 1. So the set of X’s such that
Sama(p) < C~1(¢(A))~" is of positive f-measure.

2) We have to produce sufficient conditions on the A — A;(\) for the condition S;(p) < 1
to be satisfied under N; or Ms. A condition like 1(p) < oo is easily satisfied.

Example 1. Once )y € A is fixed, natural conditions are the following (7), (#i) and (ii7)
or (i'), (i7) and (4i7'):

(1) N =Ni and Sapg),1(p) < CH(E(A))
(Z,) N = NQ and SA()\O),I(p) <1,
For i > 1 define
gt A= 8Z(/\) = Az()\) — AZ(A())

and define ¢ = (¢;);>1. In particular

(1) e(Xo) = 0;

(iti) N = N; and esssup SUD1 i< 4 ), AeA\L(— and S.;(p) are small enough so that
Sa1(p) <1 holds;
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i
(#13") N' = N3 and ess sup SUD1 i< Ny 1) AEA % and esssup ;51 D o< |a<m SUPAea | DEi(A)]

are small enough so that S41(p) < 1 holds.

In other words one can generate an example to which Theorem 3 applies by considering
for every A € A, A(\) = A(X\o) + €(\) where A()\g) € & and ¢ is a random variable with
mean 0 taking values in W™?(A)™* | such that (z), (i), (iii) or ('), (i), (iid') are satisfied.

Here is a type of family on which these conditions can be verified. Assume that A is
a neighbourhood of \; € RF. Fix A= (Az’)iZI € &g such that the A; are non-negative
and for every ¢ > 1, fix f; € W™P(A) with f;(A\¢) = 1 and positive values. Then define
for every i > 1, A € A — A;(N) = flf()‘)/]E(Zpl flf"(’\)). The derivatives of the A; can
be explicited in terms of the A; and the derivatives of the fi, and simple conditions yield
e=Am— [A{"(’\)/E(Zpl A?j(’\))] — A;)i>1 and A()\g) = A satisfying the previous conditions.

Example 2. Fix a random variable f taking values in W™?(A) with mean Id,, and inde-

pendently (4;);>1 € Ec with S5, (p) < coand ¥4(p) < co. Assume that EINT(f)]S;,(p) <1
(j =1 or j =2) and define for every i > 1, A € A — A4;(\) = f(\) A,

3) The result in the analytic case is of the same nature as Theorem 2 and Corollary
3 of Biggins (1992). Our conditions are more restrictive because we deal with W™P(A),
which is largest than the space of bounded analytic functions, and we do not work finely
with the Cauchy formula as Biggins (1992). When N = N, we see via (10) that the main
assumption of Theorem 2 of Biggins (1992) is satisfied if S1(p) < 1. Moreover under N> the
same argument as the one leading to (10) shows that the condition ¢4 (p) < oo implies the
second assumption of Theorem 2 of Biggins (1992), namely supyc, ) (p) < oo.

Proof of Theorem 3. It is an immediate consequence of the convergence of Yy, in B
using Theorem 1 and the Sobolev imbedding W™?(A) — C°(A) (see Lemma 5.15 of Adams

(1975)) that the elements of W™P(A) are essentially bounded and there exists a constant C
depending only upon A, k, p, and m such that for every f € W™P(A)

esssup |f| < Cy || fllwmr(a)-

The result in the analytic case is a consequence of the uniform convergence.

3 Proofs of the results of Section 2.1.

We shall need an extension to B of the fundamental Lemma 1 used in Biggins (1992) for
the case B = C. It is given by the following immediate consequence of Proposition 9.11 of
Ledoux and Talagrand (1991).

Lemma 1 Fiz p €]1,2]. Assume that B is of type p. Then there ezists a constant C, such
that for any sequences (U;)i>o and (Vi)i>o of Radon r. v. in B such that o(U;; i > 0) and
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o(Vi; i > 0) are independent, Y .. Liu,v, 20y < 00 almost surely, and the Vi’s are mutually
independent, integrable and with mean 0,

EW (Y UVi)") < Cp ) EWN(U:)))EW (V)P).

i>0 i>0

Proof of Theorem 1. i) Forn > 1 and a;...a, € N}, define
Uy .ap, = Aay (6)Ag,(a1) ... Ay, (a1 ... ap_1)

and
Val...an = [z Az‘(a1 .- an)] — Ip.

i>1
The sequences (U, ..q,) and (V4,..a,), 7 > 1, a1 ... a, € N}, satisfy the hypotheses of Lemma
1 and
Yn—|—1 - Yn = Z Ual...an Val...an-

al...anEN’j_

So by Lemma 1 and by taking into account the fact that the V,, ,,’s are identically dis-
tributed
EWN (Yot1 — Yo)P) < CpSp(p)¥a_i, ()

Since ¥4_1, (p) < 271 ((p) + N(Ip)P), we have > o [E(N (Y1 — Ya)?)]Y/? < 0o by the
hypotheses of the Theorem and so (Y,),>1 is bounded in L? norm. The conclusion comes
then from Corollary V.2.4 and Theorem V.2.8 of Diestel and Uhl (1977).

In particular we obtain

BN (Y = IgP) " < Creil”. () 817 (p). (11)

n>0

i1), 1i1)a)b): as in Liu (1997), the proof is based on the approach of Kahane and Peyriére
(1976).

Fix n as in the statement. It is easily seen by definition (see also the proof of Theorem
4) that for every m > n+ 1, Y,, can be written

Y= Y Au(0)Au(a1).. Ay (1. an 1)V (a1 ... ay)

ai...an ETONQ’_

where the Y, (a1 ...a,)’s are independent copies of Y,, ,, and are independent of the o-
algebra F;,. Thus

N, < Y N(Au(€)Aw(ar) .. Ag (a1 .. an_1))

a1...anefﬂN1

NV nlar...ay)). (12)

12



Let p stand for the integer such that p < p < p+ 1. We shall use the fact that by the
subadditivity of the function x ++ x?/P*! on [0, col, for all integer M > 1 and non negative
real numbers zq, ..., T,

M p M
(Z x,) < fo + Z Qjy g (] )P/ (13)
i=1 i=1

where in the last sum the j;’s are < p, j1+--+7yp = p+1, ji > 0and Y oy, 5, = MPT1 =M.

In order to simplify the mathematical expressions for every i > 1 define A; and Yi—n,i
the random variables equal to 0 if 7 > M,, and equal to A,, (62Aa2(a1) A (ay .. ay—1) and
Yi_n(ai...ay) respectively if a; ... a, is the i'® element of T NN, in lexicographical order.

By using (12) and (13), the independencies between random variables, the equidistribu-

tion of the Y,,_,;’s given M,,, and the fact that given ji,...,jum, asin (13) one has _]jrpl <p

and 50 E(N (Yy,_p )5P/PH1) < (E(N (Yonn )P))?P/P8+) for every 1 < i < M, we obtain

BN (Y)) < B(Y N (AJEN (V)

E (3 sy V(A - N (A, Y PIP4) BN (Voo )PP

As (N (Y;n)P)m>1 is a submartingale and E(3. M N'(A;)?) = S,,(p), this yields

EWN (Y ") (1 = Sa(p)) < B} @jy.cas, W (A1) . N (Apg, Y110 )PP (EWN (Y )7))P/P.

Now if p is an integer, that is p = p + 1,

B>y g N(A) . N (Ap,)Mn) < B = n(p)-

o)

If p is not an integer, define
I'= E(Z Oy gy, (N(A))7 .. N (A, )vn PP
= Z E (I{Mn:M} Z%‘l...jz (N (A7 .. ,/\/’(AM)J'M)p/ﬁH)

M>1

If esssup N4 < oo we have esssup M, < My < oo for some M, € N, and

T < f_: > s (WA N (At

13



If esssup N4 = oo, we use an Holder inequality and obtain for any A > 1

. . N\ 1/h
DS 37 37 g P = M) (WA A poe )
M>1
By the generalized Holder inequality, for every integer M > 1 and h > 1,
M
B (WD N A pe) < T

=1
< H ZN Ph Ji/p+1 <S8, (ph)
=1 =1

By using the fact that Y «a;,.;, < MP™ we conclude that if esssup M, < M, then
we have I' < MI*2S,(p) and elsewhere ' < 32,0, MPHP(M, = M)"='/2SY" (ph) for any
h > 1. -

Thus, in all the cases i), i17)a) and #i)b) (see remark 1.5)), we have

E(N (Y)?) (1 = Sa(p)) < T(p) sup(E(WN (Y,)7))"/2.

g1

with 1— S, (p) > 0 and T(p) sup,, (E(N (Y,)?))P/? < 0. So (Yim)m>1 is bounded in LP norm
and the conclusion comes again from Corollary V.2.4 and Theorem V.2.8 of Diestel and Uhl
(1977).

Proof of Theorem 2. Since the mapping h — p(h) + E(N/g"(N)) is convex, i) and ii)
(by induction on p) are direct consequences of Theorem 1)ii) and Proposition 1, if we show
that ¥, (p) < oo for every n > 1 (¢(p) < ¢1(p)). Write

Zo= Y H1{1<a]<N<a1 a- N Wa, (a1 .. aj1))

ey N(ay...a; 1)) ’

Un(p) < E(ZP) and Z, = Zi]\;(f) /\ggmg)))Zn_l(i) where the Z,_1(7) ’s are independent copies
of Z, and are also independent of N(e) and the W;(e)’s. So the independencies and a

convexity inequality yield

B(Z) < E|(N@P™)

B ( s ) BVONPEZ ) <E () BN orpy

i17) With the notations of the proof of Theorem 1, for every 1 < i < M,, the offspring

A

distribution being the one of N, A; is of the form

1() a2(a1) Wan(al---an—l)
g(N(€)g(N(a1))...g(N(a1...an1))
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Then if we denote the product g(N(e))g(N(a1))-..g(N(as...an 1)) by g4, and the norm
N W (€)Way(ar) ... W, (a1 ...a, 1)) by wy , by using the independencies between r. v.’s
and the generalized Holder inequality to get ]E((wiil1 . .wi{jl P < BN (W ... W,)P), we
obtain

E(D | recgag, WAL N (Apg, )70 /P4

< DY B o (97" g PPE((w] it PP
M>1
< ZE i, = M}Zaﬂ Jm QAl ---QAM )p/p+1)E(N(W1---Wn)p)
M>1
p+1
_ 1{1<aJ<N(a1 -aj— 1)} p
= E(| Y ng/pﬂ ) YEWN (W ... W,)P).

ai.. aEN"]l

1
Define L,, = E H {1<a]<N o=} Ay argument similar to the one giving the
p/PHL(N ;1))
ai.. anENW j=1 ) j—1

bound for B(Z2) yields E(L5*!) < E(Np+1/gp(N))”. Then the conclusion (by induction on
p) is obtained as for 7).

4 Continuity of the process.

In this section, we extend the results obtained in Barral (1999, 2000 a) on the continuity
of the mapping ”A + Y,”. If a pair (4, A') € BN x BN+ is chosen in such a way that A
and A’ belong to Ep and (A(a), A'(a)).er is a sequence of independent copies of (4, A'), we
obtain two martingales Yy, and Y4/, which under some conditions converge almost surely
and in I” norm respectively to Y4 and Y4, and we show that the LP norm of Y, — Yy is
controlled by that of A — A’. What we mean by the I” norm of A — A’ is made explicit in
the statement of the theorem.

For, if p €]1,2] and B is of type p define

S(A, A, p) = max(D " (San(®) 7, " (Sarm(p)?),

n>0 n>0

(A, A',p) = max (a1, (p), Y1, (P))

and then
auurp = max[CPS(A, A, p)*)'/P (A, A',p),CM/PS(A, A, p)).

We obtain the following result which when B = R improves the corresponding results ob-
tained in Barral (1999, 2000 a) for the non-negative case:

15



Theorem 4 Fiz p €]1,2]; assume that B is of type p and

Ya(p) + Yar(p) + D (San(®)’? + (Sarn(p)'? < 0.

n>0

Then

[EN (Ya = Ya)")]'?

E (ZN(A,- - A;)P>

i>1

1/p

< aaay +

(el

Theorem 5 (Application) Let I be a compact subinterval of R.

Let (A(t))ser be a stochastic process taking values in BN+, such that every A(t) € Ep.
Consider a sequence ((A(t)(a))ier), er of independent copies of (A(t))iwer. Fiz p €]1,2] and
assume that B is of type p,

supawm (p) + Y (Sawa(p))'/? < 00 (14)

tel w1

and that there exists q €]1,p| and K > 0 such that for all t,t' € I

E(Y L N(Ai(t) — A(t)P)]7 + [EWN (Y Ai(t) WOIP < Klt =97 (15)

i>1 i>1

Then

i) all the processes (A ( Nier, © > 1, possess a continuous modification with Holder ex-
ponent 7y for every vy €]0, 1[ and the lzmzt process (Yau)ier also possesses such a version
with the same exponent;

it) if B =C, q = p, N is the usual norm and the t — A;(t) are supposed to be dif-
ferentiable and absolutely continuous, then t — Yau), converges almost surely uniformly to
t = Yap) which is absolutely continuous.

Remark 4 The proof of Theorem 5¢) is a simple consequence of Theorem 4 and an extension
of the Kolmogorov-Tchentov Theorem (Tchentov (1956)). It is possible to state more general
versions of Theorem 57) by using results on regularity of processes in Ledoux and Talagrand
(1991, Chapter 11).

The approach leading to Theorem 5i3) is an alternative to those of Biggins (1989) and
Barral (2000 a).

Proof of Theorem 4. By the hypotheses and Theorem 1, Y; exists and has a finite L”
norm for A € {A, A’}. Moreover, by construction, for every n > 1

Yi= Z Ay (6)Ag,(a) ... Ay, (ay ... an_1)Y;3(a)

a=ai...an ENi
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where

Yi(a) = ll;rg Ay (a)Ay (aa)) .. ./Nla; (ad}...a; ;)
ay...a)eN,

and the (Y4(a),Ya(a))’s, a € N}, are independent copies of (Y4, Y4 ). They are also inde-
pendent of the (A(b), A'(b)), b € U7 N., and satisfy almost surely

@) = 3 Aa)Y(ai). (E.)
i>1
Now by using equations (E,) one shows by induction that for every integer m > 0

Yi—Yae =0 +—§£:}ﬁ + Ry
=0

with
=> ZA VAL (ar . ame1) Ai(a) (Ya(ai) — Yar(ai)),
R ZA;I ()AL, (ar) ... AL (a1 ...a-1)(Ai(a) — Aj(a))(Ya(ai) — Ip)

and

= > A, (A, (@) - A (a1 )Y (Ai(a) = Af(@)]:

i 1>1
aEN+ (24

Since E(Y4 (at) — Yar(ai)) = E(Ya(ai) —Ig) = E[Y .o, (Ai(a) — Aj(a))] = 0, by taking account
of the independencies between variables, we can apply Lemma 1 to Q,, R;, R, and obtain:

EWN(Qm)F) < CpSarm+1(p)EWN (Ya — Ya)P),

EWN (R1)") < CpSara(p)Sa—ar i (D)EWN (Ya — 1p)") (16)
and
EWN (R)?) < CpSarg(p)¥pa-a(p)- (17)
Then by hypotheses lim,, o, E(N(Qn)?) =0, so
BN Ve < SIBAN R Y1 + (N

and the conclusion results from (11), (16) and (17).

Proof of Theorem 5ii). First note that by assumption the sequence ¢t — Yy, is a
martingale in W' (Int()), which is a Banach algebra of type p which satisfies the Radon-
Nikodym property (see Section 2.2). Moreover it is well known (see Brezis 1983 Ch.8)
that continuous elements of W"?(Int([)) are absolutely continuous. So by using the same
imbedding as in the proof of Theorem 3, it is then enough to show that this martingale is
bounded in L” norm in WHP(Int([)):
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On the one hand by (14) and the computations made in the proof of Theorem 1 we have
SUDpeN, ter E(|Y @) l?) < oo.

On the other hand it follows from the differentiability of the ¢ — A;(t), (15), the Fatou
Lemma, the inequality E(N (Ya),n — Ya@)n))? < EWN (Yaw) — Yaw))? which holds for every
n>1and t,¢ € I, and Theorem 4 that

)<k

Then by using the Fubini Theorem, sup E / 1Ya@)nl”
I

neNy

d
sup E ( ‘ %YA(t),n

neNy el

d
—Y
+ |dt A(t)n

Pldt < oo.

5 A generalized construction relaxing the self-similarity.

In the construction of Section 1, we can decide that the distributions of the random
variables A(a) for a € N* depend on the word a itself. We denote it by A® and we continue
to assume that the A(®’s are independent. Then for every a € T

YXZ _ Z A(a)A(abl 'A(():bl...bn_l)

b1...bn €N}

defines a martingale with mean /.

5.1 Extended results on L? convergence and continuity.

Forz € Ry, n € N, (4@ = (Az(a))izl)aeT is a sequence of a random elements of BN+
and a € T define

San(z,a) = Y EN(AY AR LAY S0 (2,0) = 1,
b1...bnEN§”_

and

= E[}_ N (A)7]

i>1
Theorem 17) easily extends to:

Theorem 6 Fiz p €]1,2] and assume that B is of type p.
i) Ifa €T and

Zsil/ﬁ (p,a) + sup ¥ 4(p, ab) < oo

n>0 beT

then (ng(,lr)z)nzl converges almost surely, and in LP norm, to a r. v. Y( 9 with mean I.
it) If sup,er ano Si/,ﬁ(p, a) + Ya(p, a) < oo, then sup,cp IE(N(Y}X“))P) < 00.
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Now, we attach to each a € T a pair (A, A9)) of random elements of B+ in such a
way that the A(’s and the A"(“)’s belong to £p and the (A, A9)’s are independent, and
we define for p €]1,2], if B is of type p,

S(A, A, p) = supmax(Y (San(p,a)"?, Y (San(p,a))'?),

a€T n>0 n>0

(A, A',p) = supmax(¥4 g, (p,a), Yu 1, (p,a))

aeT

and
daup = max[Ca/PS(A, A',p)* /P (A, A, p), CA/PS(A, A',p)].

Theorem 4 extends to:

Theorem 7 Fiz p €]1,2] and assume that B is of type p and

sup{ta(p, a) + Y (p,a) + Y _ Sy (p,a) + Y S (p,a)} < co.

a€T n>0 n>0
Then
sup[B(V (V) = Y317
acT
< GaysuplB(YN(AY — AL+ BACE A — ALY,

a€T i>1 i>1

The proof of this result is deduced from the computations in the proof of Theorem 4.

Remark 5 As Theorem 4, Theorem 7 is a result of continuity; in particular it gives a
control of the impact on the martingale limit when one perturbs a self-similar cascade by a
non self-similar one.

5.2 Dimension of the related measure in the non-negative case.

We assume that B = R and the Ag“)’s are non-negative, and we define a measure on the
boundary of the tree T, related to the construction of Y4. This measure is an extension of
the generalized Mandelbrot measure considered in Liu and Rouault (1996) and Liu (2000)
for the statistically self-similar case (which corresponds to the construction of section 1):

It follows from our assumptions that with probability one, for every a € T, the non-

negative martingale Yf(l?,)l converges to a non-negative random variable Yf(la) = Y@ with
mean < 1 and the limits again satisfy the relations
v =3 Ay, (E.)
i>1

Denote by 0T the set Nljf. Forn > 1and a € N} define C(a) = {z € 0T; ...z, = a}.
Fix ¢ > 1 and define the standard ultrametric distance on 07T by d(z,y) = ¢ 177l where
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|z A y| denotes the length of the maximal common sequence of z and y, that is |[x A y| =
sup{n>1; 21 ... T, =Y1---Yn}-

The relations (F,) make it possible to define almost surely a unique measure y = p, on
0T equipped with 7, the o-algebra generated by the C,’s, by
1(C(a)) = AD Al [ Aler-en-)y (@) yp > 1 Ve e N
Recall that the Hausdorff dimension of y is

dim (1) = inf {dim (B); B € T, u(B) = |||},

where dim (B) denotes the Hausdorff dimension of B with respect to the distance d.

Now we obtain a result which generalizes those of Peyriere (1977) and Liu and Rouault
(1996) and shows that dim (x) depends only on the behaviour of the A)’s when the length
of a tends to oc:

Theorem 8 Assume that the hypothesis of Theorem 6ii) is satisfied for some p €]1,2] and
that
sup IE[Z Az(a) log” Az(-a)] < oo0. (18)
acT iENy

For every n > 1 define

n—1
Da=- Y B[ AR Y A% og, AL
k=1

a=ai...ap_1 EN:”__I an €ENL

Then E(||x]]) = 1 and with probability one, conditionally to pu # 0, for p-almost every x € 0T

lim inf log (p(C(z1 ... 2n)) = D_ =lim inf L Z Dy,
k=1

n—soo log |C(x1...12,)| n—00 M
and
) log (u(C(z1...25)) ) 1<
lim su =D, =lim sup — Dy,
,HEO log |C(z1...2,)| + n_fonz k

k=1

where |C(x1...x,)| = ¢, the diameter of C(z1 ... 1zy,); consequently D_ < dim (u) < D,..
In particular when D_ = D, | the exact value of dim (p) is obtained without a self-similarity
hypothesis.

Remark 6 Theorem 8 yields very precise information on the local dimension of one given
random measure, and it is easily seen that it makes it possible to derive such information
for countable families of such measures defined simultaneously. But the approach used in
the proof does not apply for uncountable families. We shall see in Theorem 9 how Theorem
3 makes it possible to remedy this for certain of these families in the self-similar case.
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Proof of Theorem 8. We have E(||¢||) = 1 by Theorem 6, and the result about dim () is a
consequence of the estimates on the logarithmic density and a generalization of a Billingsley
lemma (1965, p. 136-145) in Peyriere (1977).

Now we prove the results on the logarithmic density of x4 by noting that the approach in
Peyriére (1976, 1977), which is simplified in Liu and Rouault (1996) for the self-similar case,
is the right one in the present context.

Define on (Q x 0T, A® T) the probability measure Q given for every A € A® T by

o) =B [ i)

By definition ”for Q-almost every (w,z) € © x dT” means ”for P-almost every w € , for
py-almost every x € 0T”. Then for every n > 1 and (w,z) € Q x 0T define (with the
convention 0 X oo = 0)

Wn(w; .'L') = l{A;il"'m"*1)>0} (Ld) logc A(.’Elxn,l)(w)

In

and B
Vi (w,z) = Y@ ().

The same computations as those of Peyriére in Kahane and Peyriére (1976) show that
Eq(W,) = —-D,

and
Eo(Wy) = > E[H Alor-e=IE[ Y AL log? ALY
a:a1...an_1€N7+L 1 an€N+

for every n > 1, that the WW,,’s are independent of one another, and finally, that the martingale
(with respect to Q) Y p_, (W + Dy)/k is bounded in L*(Q x 9T, Q) by the assumption (18)
of the theorem. So the Kronecker Lemma yields

lim — Z Wi+ — Z Dy = 0 Q-almost surely. (19)

n—oo N

Now fix 7 €]0,p — 1] and 6 € {—1,1}. A similar computation yields for every n > 1,

EQ(l{ffn>0}?rfn) — Z HA(cu g 1)]]E[ )1—1—677]

a=aj...an €N}

By Theorem 6 we have sup,ep E[(Y@)?] < co. So sup,s; EQ(I{);PO}ﬁf") < oo and then
Q-almost surely

1 N
Z E(l{f’n>0}Yn T+ Y)) < oo,

n>1
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implying that lim, o0 1y, >0} = 0. This, together with (19), yields the conclusion.

Now consider the functions A € A — A;(\) of Section 2.2 and assume that they satisfy
the assumptions of Theorem 3. Assume moreover that for every A € A a. s. the A;(\)’s,
1 <4 < Ny are positive. Then we are given a family (ux)xea of measures on 91" defined
with probability one by

1A(C(a)) = Aq, (A)(€)Ag, (M) (a1) - - - Ao, (A) (a1 - - - an—1)Yar(a),
Vn > 1,Va € N}, A € A, and using the same approach as in Barral (2000 b) Corollary
5(i1)(8) yields uy # 0 almost surely for all A € A.

The following theorem gives conditions under which dim (u,) is determined almost surely
for the \’s in a subset of A of full Lebesgue measure, and it reveals, up to a set of null Lebesgue
measure, a relation between the regularity of the initial A € A — A;(\)’s and the one of
A € A — dim (py), namely that they are the same.

Theorem 9 Assume that for every compact subset K of A, for every A € K

log O (A:i(A)") = (& — DEY  Ai(N)log Ai(N)) + (z — Dea(z — 1), (20)

i>1 i>1

with lim,_,1 sup,ck [ex(z — 1)| = 0. Then with probability one there exists A' C A with
L(A") = £(A) such that for every A € A’, for px-almost every x € 0T

. log (uA(C(z1
lim =D, =E A;(N) log, A;(N)];
oo log |C($1 )| A [; @

consequently dim (u) = D,.

Remark 7 The completely satisfactory result would yield A’ = A a. s. This is achieved,
only when k£ = 1, in Barral (2000 b), which deals with a particular family of measures and
develops a different approach.

Proof of Theorem 9. We prove that the liminf of the logarithmic density of i, is at least
D,; the proof that its limsup is at most D) is similar.

Fix e > 0. For n > 1 and )\ € A define

log (uA(C(1 ... 2n))

Fn e = .’EeaT;
re =1 log |C(z1 ... 2,)]

< D)‘—&f}.

As ¢ is arbitrary, it is enough to prove that almost surely there exists A, C A with
£(Ac) = £(A) such that for every A € A, D7 o) pa(Fnpe) < 00

A simple computation using the definition of F;, 5 . shows that for every n > 1, A € A
and n >0

1+n " Dy—e¢
:u/\( n)\s Qn)\s,n Z/«L n(Dx )
a€NY
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So the result will be established if for every compact subset K of A, we have for some n > 0

SR /K Qrron £(dN) < 6. (21)

n>1

By the definition of u)y

E(Qnren) = PR (AT ONEY 4. (22)
i>1
Moreover if K is a fixed compact subset of A, by assumption (20), if 1 is small enough, for
every A\ € K andn > 1

MAIE (AT V)] < e (23)

i>1

Moreover E(N),m»(Ya)) < 0o by Theorem 3. So it follows from the Fubini Theorem that if
n is small enough then E( [, Yj(“;gﬁ(d/\)) < 00. Then (21) follows from (22), (23), and the
Fubini Theorem again.
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