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Abstract. Let {xn}n∈N be a sequence in [0, 1]d, {λn}n∈N a sequence of pos-

itive real numbers converging to 0, and δ > 1. The classical ubiquity results
are concerned with the computation of the Hausdorff dimension of limsup-sets

of the form S(δ) =
T
N∈N

S
n≥N B(xn, λδn).

Let µ be a positive Borel measure on [0, 1]d, ρ ∈ (0, 1] and α > 0. Consider
the finer limsup-set

Sµ(ρ, δ, α) =
\
N∈N

[
n≥N :µ(B(xn,λ

ρ
n))∼λραn

B(xn, λ
δ
n).

We show that, under suitable assumptions on the measure µ, the Hausdorff
dimension of the sets Sµ(ρ, δ, α) can be computed. Moreover, when ρ < 1, a yet

unknown saturation phenomenon appears in the computation of the Hausdorff

dimension of Sµ(ρ, δ, α). Our results apply to several classes of multifractal
measures, and S(δ) corresponds to the special case where µ is a monofractal

measure like the Lebesgue measure.

The computation of the dimensions of such sets opens the way to the study
of several new objects and phenomena. Applications are given for the Dio-

phantine approximation conditioned by (or combined with) b-adic expansion

properties, by averages of some Birkhoff sums and branching random walks,
as well as by asymptotic behavior of random covering numbers.

1. Introduction

Since the famous result of Jarnik [34] concerning Diophantine approximation
and Hausdorff dimension, the following problem has been widely encountered and
studied in various mathematical situations.

Let {xn}n∈N be a sequence in a compact metric space E and {λn}n∈N a sequence
of positive real numbers converging to 0. Let us define the limsup set

S =
⋂
N∈N

⋃
n≥N

B(xn, λn),

and let D be its Hausdorff dimension. Let δ > 1. What can be said about the
Hausdorff dimension of the subset S(δ) of S defined by

S(δ) =
⋂
N∈N

⋃
n≥N

B(xn, λδn) ?

Intuitively one would expect the Hausdorff dimension of S(δ) to be lower bounded
by D/δ. This has been proved to hold in many cases which can roughly be separated
into two classes:
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• when the sequence {(xn, λn)}n forms a sort of “regular system” [3, 18, 19],
which ensures a strong uniform repartition of the points {xn}n.
• when the sequence {(xn, λn)}n forms an ubiquitous system [22, 23, 33, 15]

with respect to a monofractal measure carried by the set S.
Let us mention that similar results are obtained in [47] when E is a Julia set.
When dimS(δ) < D, such subsets S(δ) are often referred to as exceptional sets
[21]. Another type of exceptional sets arises when considering the level sets of
well-chosen functions:

• the function associating with each point x ∈ [0, 1] the frequency of the digit
i ∈ {0, 1, . . . , b− 1} in the b-adic expansion of x,
• more generally the function associating with each point x the average of

the Birkhoff sums related to some dynamical systems,
• the function x 7→ hf (x), when f is either a function or a measure on Rd and
hf (x) is a measure of the local regularity (typically an Hölder exponent) of
f around x.

It is a natural question to ask whether these two approaches can be combined
to obtain finer exceptional sets. Let us take an example to illustrate our purpose.

On one side, it is known since Jarnik’s results [34] that if the sequence {(xn, λn)}n
is made of the rational pairs {(p/q, 1/q2)}p,q∈N∗2, p≤q, then for every δ > 1 the subset
S(δ) of [0, 1] has a Hausdorff dimension equal to 1/δ. In the ubiquity’s setting, this
is a consequence of the fact that the family {(p/q, 1/q2)}p,q∈N∗2 forms an ubiquitous
systems associated with the Lebesgue measure [22, 23].

On the other side, given (π0, π1, . . . , πb−1) ∈ [0, 1]b such that
∑b−1
i=0 πi = 1,

Besicovitch and later Eggleston [24] studied the sets Eπ0,π1,...,πb−1 of points x such
that the frequency of the digit i ∈ {0, 1, . . . , b − 1} in the b-adic expansion of x is
equal to πi. More precisely, for any x ∈ [0, 1], let us consider the b-adic expansion of
x =

∑∞
m=1 xmb

−m, where ∀m, xm ∈ {0, 1, . . . , b− 1}. Let φi,n(x) be the mapping

(1) x 7→ φi,n(x) =
#{m ≤ n : xm = i}

n
.

Then Eπ0,π1,...,πb−1 = {x : ∀i ∈ {0, 1, . . . , b − 1}, limn→+∞ φi,n(x) = πi}. They
found that dimEπ0,π1,...,πb−1 =

∑b−1
i=0 −πi logb πi.

We address the problem of the computation of the Hausdorff dimension of the
subsets Eπ0,π1,...,πb−1

δ of [0, 1] defined by

E
π0,π1,...,πb−1
δ =

x ∈ (0, 1) :


∃ (pn, qn)n ∈ (N∗2)N such that qn → +∞,
|x− pn/qn| ≤ 1/q2δ

n and ∀i ∈ {0, . . . , b− 1},
limn→+∞ φi,[logb(q

2
n)] (pn/qn) = πi


([x] denotes the integer part of x). In other words, we seek in this example for
the Hausdorff dimension of the set of points of [0, 1] which are well-approximated
by rational numbers fulfilling a given Besicovitch condition (i.e. having given digit
frequencies in their b-adic expansion). This problem is not covered by the works
mentioned above. The main reason is the heterogeneity of the repartition of the ra-
tional numbers satisfying the Besicovitch conditions. As a consequence of Theorems
2.1 and 2.2 of this paper, we obtain

(2) dimE
π0,π1,...,πb−1
δ =

∑b−1
i=0 −πi logb πi

δ
.
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The key point to achieve this work is to see the Besicovitch condition as a scaling
property derived from a multinomial measure. More precisely, the computation of
the Hausdorff dimensions of the sets Eπ0,π1,...,πb−1

δ proves to be a particular case of
the following problem: Let µ be a positive Borel measure on the compact metric
space E considered above. Given α > 0 and δ ≥ 1, what is the Hausdorff dimension
of the set of points x of E that are well-approximated by points of {(xn, λn)}n at
rate δ, i.e. such that for an infinite number of integers n, |x−xn| ≤ λδn, conditionally
to the fact that the corresponding sequence of pairs (xn, λn) satisfy

(3) lim
n→∞

logµ
(
B(xn, λn)

)
log(λn)

= α?

In other words, if ε = (εn)n≥1 is a sequence of positive numbers converging to 0,
what is the Hausdorff dimension of

(4) Sµ(δ, α, ε) =
⋂
N≥0

⋃
n≥N :λα+εn

n ≤µ(B(xn,λn))≤λα−εnn

B(xn, λδn) ?

We study the problem in Rd (d ≥ 1). An upper bound for the Hausdorff dimen-
sion of Sµ(δ, α, ε) is given by Theorem 2.1 for weakly redundant systems {(xn, λn)}n
(see Definition 2.1). Its proof uses ideas coming from multifractal formalism for
measures [17, 43].

Theorem 2.2 (case ρ = 1) gives a precise lower bound for the Hausdorff dimension
of Sµ(δ, α, ε) when the family {(xn, λn)}n forms a 1-heterogeneous ubiquitous system
with respect to the measure µ (see Definition 2.2 for this notion, which generalizes
the notion of ubiquitous system mentioned above). It can be applied to measures
µ that enjoy some statistical self-similarity property, and to any family {(xn, λn)}n
as soon as the support of µ is covered by lim supn→∞B(xn, λn).

To fix ideas, let us state a corollary of Theorems 2.1 and 2.2. This result uses the
Legendre transform τ∗µ of the “dimension” function τµ considered in the multifractal
formalism studied in [17] (see Section 2.2 and Definition 8).

Theorem 1.1. Let µ be a multinomial measure on [0, 1]d. Suppose that the fa-
mily {(xn, λn)}n forms a weakly redundant 1-heterogeneous ubiquitous system with
respect to

(
µ, α, τ∗µ(α)

)
.

There is a positive sequence ε = (εn)n≥1 converging to 0 at ∞ such that

∀ δ ≥ 1, dim Sµ(δ, α, ε) = τ∗µ(α)/δ.

Examples of remarkable families {(xn, λn)}n are discussed in Section 6, as well
as examples of suitable statistically self-similar measures µ. There, the measures
µ are chosen so that the property (3) has a relevant interpretation (for instance in
terms of the b-adic expansion of the points xn).

The formula (4) defining the set Sµ(δ, α, ε) naturally leads to the question of
conditioned ubiquity into the following more general form: Let ρ ∈ (0, 1]. What is
the Hausdorff dimension of

(5) Sµ(ρ, δ, α, ε) =
⋂
N≥0

⋃
n≥N :λ

ρ(α+εn)
n ≤µ(B(xn,λ

ρ
n))≤λρ(α−εn)

n

B(xn, λδn) ?

We remark that, in (4) and (5), if µ equals the Lebesgue measure and if α = d,
the conditions on B(xn, λρn) are empty, since they are independent of xn, λn and ρ.
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This remains true for a strictly monofractal measure µ of index α, that is such that
∃C > 0, ∃ r0 such that ∀x ∈ supp(µ), ∀ 0 < r ≤ r0, C−1rα ≤ µ(B(x, r)) ≤ Crα.

Again, an upper bound for the Hausdorff dimension of Sµ(ρ, δ, α, ε) is found in
Theorem 2.1 for weakly redundant systems.

Theorem 2.2 (case ρ < 1) yields a lower bound for the Hausdorff dimension of
Sµ(ρ, δ, α, ε) when ρ < 1, as soon as the family {(xn, λn)}n forms a ρ-heterogeneous
ubiquitous system with respect to µ in the sense of Definition 2.3. The introduction
of this dilation parameter ρ substantially modifies Definition 2.2 and the proofs of
the results in the initial case ρ = 1.

As a consequence of Theorem 2.2, a new saturation phenomenon occurs for
systems that are both weakly redundant and ρ-heterogeneous ubiquitous systems
when ρ < 1. This points out the heterogeneity introduced when considering ubiq-
uity conditioned by measures that are not monofractal. The following result is also
a corollary of Theorems 2.1 and 2.2.

Theorem 1.2. Let µ be a multinomial measure on [0, 1]d. Let ρ ∈ (0, 1). Suppose
that {(xn, λn)}n forms a weakly redundant ρ-heterogeneous ubiquitous system with
respect to

(
µ, α, τ∗µ(α)

)
.

There is a positive sequence ε = (εn)n≥1 converging to 0 at ∞ such that

∀ δ ≥ 1, dim Sµ(ρ, δ, α, ε) = min
(d(1− ρ) + ρτ∗µ(α)

δ
, τ∗µ(α)

)
.

Under the assumptions of Theorem 1.2, when τ∗µ(α) < d, although δ starts
to increase from 1, dim Sµ(ρ, δ, α, ε) remains constant until δ reaches the critical

value d(1−ρ)+ρτ∗µ(α)

τ∗µ(α) > 1. When δ becomes larger than d(1−ρ)+ρτ∗µ(α)

τ∗µ(α) , the dimension
decreases. This is what we call a saturation phenomenon.

It turns out that conditioned ubiquity as defined in this paper is closely related
to the local regularity properties of some new classes of functions and measures
having dense sets of discontinuities. In particular, Theorem 2.2 is a crucial tool to
analyze measures constructed as the measures νρ,γ,σ

νρ,γ,σ =
∑
n≥0

λγn µ
(
B(xn, λρn)

)σ
δxn ,

where δxn is the probability Dirac mass at xn, ρ ∈ (0, 1], and γ, σ are real numbers
which make the series converge. Conditioned ubiquity is also essential to perform
the multifractal analysis of Lévy processes in multifractal time. These objects have
multifractal properties that were unknown until now. Their study is achieved in
other works [9, 10, 11, 12].

The definitions of weakly redundant and ρ-heterogeneous ubiquitous systems
are given in Section 2. The statements of the main results (Theorems 2.1 and 2.2)
then follow. The proofs of Theorem 2.1, Theorem 2.2 (case ρ = 1) and Theorem
2.2 (case ρ < 1) are respectively achieved in Sections 3, 4 and 5. Finally, our
results apply to suitable examples of systems {(xn, λn)}n and measures µ that are
discussed in Section 6.
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2. Definitions and statement of results

It is convenient to endow Rd with the supremum norm ‖ · ‖∞ and with the
associated distance (x, y) ∈ Rd×Rd 7→ ‖x−y‖∞ = max1≤i≤d(|xi−yi|). Throughout
the paper, for a set S, |S| denotes then the diameter of S.

We briefly recall the definition of the generalized Hausdorff measures and Haus-
dorff dimension in Rd. Let ξ be a gauge function, i.e. a non-negative non-decreasing
function on R+ such that limx→0+ ξ(x) = 0. Let S be a subset of Rd. For η > 0,
let us define

Hξη(S) = inf
{Ci}i∈I :S⊂

S
i∈I Ci

∑
i∈I

ξ (|Ci|) , (the family {Ci}i∈I covers S)

where the infimum is taken over all countable families {Ci}i∈I such that ∀i ∈ I,
|Ci| ≤ η. As η decreases to 0, Hξη(S) is non-decreasing, and Hξ(S) = limη→0Hξη(S)
defines a Borel measure on Rd, called Hausdorff ξ-measure.

Defining the family ξα(x) = |x|α (α ≥ 0), there exists a unique real number
0 ≤ D ≤ d, called the Hausdorff dimension of S and denoted dim S, such that
D = sup

{
α ≥ 0 : Hξα(S) = +∞

}
= inf

{
α : Hξα(S) = 0

}
(with the convention

sup ∅ = 0). We refer the reader to [40, 26] for instance for more details on Hausdorff
dimensions.

Let µ be a positive Borel measure with a support contained in [0, 1]d. The
analysis of the local structure of the measure µ in [0, 1]d may be naturally done
using a c-adic grid (c ≥ 2). This is the case for instance for the examples of
measures of Section 6. We shall thus need the following definitions.

Let c be an integer ≥ 2. For every j ≥ 0, ∀ k = (k1, . . . , kd) ∈ {0, 1, . . . , cj − 1}d,
Icj,k denotes the c-adic box [k1c

−j , (k1 + 1)c−j)× . . .× [kdc−j , (kd + 1)c−j). Then,
∀x ∈ [0, 1)d, Icj (x) stands for the unique c-adic box of generation j that contains
x, and kcj,x is the unique (multi-)integer such that Icj (x) = Icj,kcj,x

. If both k =

(k1, . . . , kd) and k′ = (k′1, . . . , k
′
d) belong to Nd, ‖k − k′‖∞ = maxi |ki − k′i|. The

set of c-adic boxes included in [0, 1)d is denoted by I.
Finally, the lower Hausdorff dimension of µ, dim(µ), is defined, as usual, as

inf
{

dim E : E ∈ B([0, 1]d), µ(E) > 0
}

.

2.1. Weakly redundant systems. Let {xn}n∈N be a family of points of [0, 1]d

and {λn}n∈N a non-increasing sequence of positive real numbers converging to 0.
For every j ≥ 0, let

(6) Tj =
{
n : 2−(j+1) < λn ≤ 2−j

}
.

The following definition introduces a natural property from which an upper bound
for the Hausdorff dimension of limsup-sets (4) and (5) can be derived. Weak re-
dundancy is slightly more general than sparsity in [27].

Definition 2.1. The family {(xn, λn)}n∈N is said to form a weakly redundant sys-
tem if there exists a sequence of integers (Nj)j≥0 such that
(i) limj→∞ logNj/j = 0.
(ii) for every j ≥ 1, Tj can be decomposed into Nj pairwise disjoint subsets (denoted
Tj,1, . . . , Tj,Nj ) such that for each 1 ≤ i ≤ Nj, the family

{
B(xn, λn) : n ∈ Tj,i

}
is

composed of disjoint balls.
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We have
⋃Nj
i=1 Tj,i = Tj . Since the Tj,i are pairwise disjoint, any point x ∈ [0, 1]d

is covered by at most Nj balls B(xn, λn), n ∈ Tj . Moreover, for every i and j,
the number of balls of Tj,i is bounded by Cd · 2dj , where Cd is a positive constant
depending only on d. Indeed, if two integers n 6= n′ are such that λn and λn′ belong
to Tj,i, then ‖xn − xn′‖∞ ≥ 2−j .

2.2. Upper bounds for Hausdorff dimensions of conditioned limsup sets.
Let µ be a finite positive Borel measure on [0, 1]d.

We let the reader verify that if supp µ = [0, 1]d, then the concave function

(7) τµ : q 7→ lim inf
j→∞

−j−1 logc
∑

k∈{0,...,cj−1}d
µ(Icj,k)q

does not depend on the integer c ≥ 2. This function is often considered when
performing the multifractal formalism for measures of [17]. Then, the Legendre
transform of τµ at α ∈ R+, denoted by τ∗µ , is defined by

(8) τ∗µ : α 7→ inf
q∈R

(
αq − τµ(q)

)
∈ R ∪ {−∞}.

Theorem 2.1. Let {xn}n∈N be a family of points of [0, 1]d and {λn}n∈N a non-
increasing sequence of positive real numbers converging to 0. Let µ be a positive
finite Borel measure with a support equal to [0, 1]d. Let {εn}n∈N be a positive se-
quence converging to 0, ρ ∈ (0, 1], δ ≥ 1 and α ≥ 0. Let us define

Sµ(ρ, δ, α, ε) =
⋂
N≥1

⋃
n≥N :λ

ρ(α+εn)
n ≤µ(B(xn,λ

ρ
n))≤λρ(α−εn)

n

B(xn, λδn).

Suppose that {(xn, λn)}n∈N forms a weakly redundant system. Then

(9) dim Sµ(ρ, δ, α, ε) ≤ min
( d(1− ρ) + ρτ∗µ(α)

δ
, τ∗µ(α)

)
.

Moreover, Sµ(ρ, δ, α, ε) = ∅ if τ∗µ(α) < 0.

The result does not depend on the precise value of the sequence {εn}n, as soon
as limn→+∞ εn = 0. The proof of Theorem 2.1 is given in Section 3.

2.3. Heterogeneous ubiquitous systems. Let α > 0 and β ∈ (0, d] be two real
numbers. They play the role respectively of the Hölder exponent of µ and of the
lower Hausdorff dimension of an auxiliary measure m.

The upper bound obtained by Theorem 2.1 is rather natural. Here we seek
for conditions that make the inequality (9) become an equality. The following
Definitions 2.2 and 2.3 provide properties guarantying this equality.

The notion of heterogeneous ubiquitous system generalizes the notion of ubiqui-
tous system in Rd considered in [22]. The abbreviation m-a.e. or µ-a.e. means as
usual m- or µ-almost every or m- or µ-almost everywhere.

Definition 2.2. The system {(xn, λn)}n∈N is said to form a 1-heterogeneous ubiq-
uitous system with respect to (µ, α, β) if conditions (1-4) are fulfilled.

(1) There exist two non-decreasing continuous functions φ and ψ defined on R+

with the following properties:
- ϕ(0) = ψ(0) = 0, r 7→ r−ϕ(r) and r 7→ r−ψ(r) are non-increasing near 0+,
- limr→0+ r−ϕ(r) = +∞, and ∀ ε > 0, r 7→ rε−ϕ(r) is non-decreasing near 0+,
- ϕ and ψ verify (2), (3) and (4).
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(2) There is a measure m with support [0, 1]d enjoying the following properties:
• m-a.e. y ∈ [0, 1]d belongs to lim supn→+∞B(xn, λn/2), i.e.

m
( ⋂
N≥1

⋃
n≥N

B
(
xn, λn/2

))
= ‖m‖.(10)

• We have:

(11)

{
For m-a.e. y ∈ [0, 1]d, ∃ j(y), ∀j ≥ j(y),
∀ k such that ‖k− kcj,y‖∞ ≤ 1, P1

1 (Icj,k) holds,

where P1
M (I) is said to hold for the set I and for the real number M ≥ 1 when

(12) M−1|I|α+ψ(|I|) ≤ µ
(
I
)
≤M |I|α−ψ(|I|).

• We have:

(13)

{
For m-a.e. y ∈ [0, 1]d, ∃ j(y), ∀j ≥ j(y),
∀ k such that ‖k− kcj,y‖∞ ≤ 1, Dm1 (Icj,k) holds,

where DmM (I) is said to hold for the set I and for the real number M > 0 when

(14) m(I) ≤M |I|β−ϕ(|I|).

(3) (Self-similarity of m) For every c-adic box L of [0, 1)d, let fL denote the
canonical affine mapping from L onto [0, 1)d . There exists a measure mL on L,
equivalent to the restriction m|L of m to L (in the sense that m|L and mL are
absolutely continuous with respect to one another), such that property (13) holds
for the measure mL ◦ f−1

L instead of the measure m.

For every J ≥ 1, let us then introduce the sets

ELJ =

x ∈ L :


∀ j ≥ J + logc

(
|L|−1

)
, ∀ k such that ‖k− kcj,x‖∞ ≤ 1,

we have: mL
(
Icj,k
)
≤
(
|Icj,k|
|L|

)β−ϕ( |Icj,k||L|

)  .

The sets ELJ form a non-decreasing sequence in L, and by (13) and property (3),⋃
J≥1E

L
J is of full mL-measure. We can thus consider the integer

J(L) = inf
{
J ≥ 1 : mL(ELJ ) ≥ ‖mL‖/2

}
.

For every x ∈ (0, 1)d and j ≥ 1, let us define the set of balls

Bj(x) =
{
B(xn, λn) : x ∈ B

(
xn, λn/2

)
and λn ∈ (c−(j+1), c−j ]

}
.

Notice that this set may be empty. When δ > 1 and B(xn, λn) ∈ Bj(x), consider
B(xn, λδn). This ball contains an infinite number of c-adic boxes. Among them, let
Bδ
n be the set of c-adic boxes of maximal diameter. Then define

Bδj (x) =
⋃

B(xn,λn)∈Bj(x)

Bδ
n.

(4) (Control of the growth speed J(L) and of the mass ‖mL‖) There exists a subset
D of (1,∞) such that for every δ ∈ D, for m-a.e. x ∈ [0, 1]d (or equivalently,
by (10) for m-a.e. x ∈ lim supn→∞B

(
xn, λn/2

)
), there is an infinite number of

generations j for which there exists L ∈ Bδj (x) such that

J(L) ≤ logc
(
|L|−1)ϕ(|L|) and |L|ϕ(|L|) ≤ ‖mL‖.(15)
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Remark 2.1. 1. (1) is a technical assumption. In (2), (13) provides us with a
lower bound for the lower Hausdorff dimension of the analyzing measure m. (11)
yields a control of the local behavior of µ, m-a.e.. Then (10) is the natural condition
on m to analyze ubiquitous properties of {(xn, λn)}n conditioned by µ. (3) details
a self-similar property for m, and (4) imposes a control of the growth speed in the
level sets for the “copies” mL ◦ f−1

L of m. The combination of (3) and (4) supplies
the monofractality property used in classical ubiquity results.

2. If µ is a strictly monofractal measure of exponent d (typically the Lebesgue
measure), then (1-4) are always fulfilled with α = β = d and µ = m as soon as (10)
holds. In fact, in this case, (1-4) imply the conditions required to be an ubiquitous
system in the sense of [22, 23].

3. Property (4) can be weakened without affecting the conclusions of Theorem 2.2
below as follows:
(weak 4) There exists a subset D of (1,∞) such that for every δ ∈ D, for m-a.e.
x ∈ (0, 1), there exists an increasing sequence jk(x) such that for every k, there
exists B(xnk , λnk) ∈ Bjk(x)(x) as well as a c-adic box Lk included in B(xnk , λ

δ
nk

)
such that (15) holds with L = Lk; moreover limk→∞

log |Lk|
log λnk

= δ.
This weaker property, necessary in [11], slightly complicates the proof and we decided
to only discuss this point in this remark.

In order to treat the case of the limsup-sets (5) defined with a dilation parameter
ρ < 1, conditions (2) and (4) are modified as follows.

Definition 2.3. Let ρ < 1. The system {(xn, λn)}n∈N is said to form a ρ-
heterogeneous ubiquitous system with respect to (µ, α, β) if the following conditions
are fulfilled.

(1) and (3) are the same as in Definition 2.2.
(2(ρ)) There exists a measure m with a support equal to [0, 1]d such that:
• There exists a non-decreasing continuous function χ defined on R+ such that

χ(0) = 0, r 7→ r−χ(r) is non-increasing near 0+, limr→0+ r−χ(r) = +∞, and
∀ε, θ, γ > 0, r 7→ rε−θϕ(r)−γχ(r) is non-decreasing near 0.

Moreover, for m-a.e. y ∈ [0, 1]d, there exists an infinite number of integers
{ji(y)}i∈N with the following property: the ball B(y, c−ρji(y)) contains at least
cji(y)(d(1−ρ)−χ(c−ji(y))) points xn such that the associated pairs (xn, λn) all satisfy

λn ∈ [c−ji(y)+1, c−ji(y)(1−χ(c−ji(y)))],
for every n′ 6= n, B(x′n, λ

′
n)
⋂
B(xn, λn) = ∅.

(16)

• (11) and (13) of assumption (2) are also supposed here.
(4’) There exists Jm such that for every j ≥ Jm, for every c-adic box L = Icj,k,

(15) holds. In particular, (4) holds with D = (1,+∞).

Remark 2.2. 1. Heuristically, (16) ensures that for m-a.e. y, for infinitely many
j, approximately cjd(1−ρ) “disjoint” pairs (xn, λn) such that λn ∼ c−j can be found
in the neighborhood B(y, c−ρj) of y. This property is stronger than (10).

2. Condition (4’) is stronger than (4), in the sense that it implies (4) for
any system {(xn, λn)} and D = (1,+∞). It appears that (4’) is often satisfied, for
instance by the first two classes described in Section 6.2 (see [13]).

Property (4) is needed for the last two examples developed in Section 6.2 and for
other measures constructed similarly (see [14]). Indeed, for these kinds of random
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measures, it was impossible for us to prove (4’), and we are only able to derive
that, with probability 1, (4) holds with a dense countable set D (see [14]) .

Before stating the results, a last property has to be introduced. Let ρ < 1. For
every set I, for every constant M > 1, PρM (I) is said to hold if

(17) M−1|I|α+ψ(|I|))+2αχ(|I|)) ≤ µ
(
I
)
≤M |I|α−ψ(|I|)−2αχ(|I|).

The dependence in ρ of PρM (I) is hidden in the function χ (see (16)).
It is convenient for a ρ-heterogeneous ubiquitous system {(xn, λn)} (ρ ∈ (0, 1])

with respect to (µ, α, β) to introduce the sequences ερM = (ερM,n)n≥1 defined for a
constant M ≥ 1 by ερM,n = max(ερ,−M,n, ε

ρ,+
M,n), where

(18) λ
α±ερ,±M,n
n = M∓(2λn)α±ψ(2λn)±2αχ(2λn)(by convention χ ≡ 0 if ρ = 1).

2.4. Lower bounds for Hausdorff dimensions of conditioned limsup-sets.
The triplets (µ, α, β), together with the auxiliary measure m, have the properties
required to study the exceptional sets we introduced before.
Let δ̂ = (δn)n≥1 ∈ [1,∞)N∗ , ε̃ = (εn)n≥1 ∈ (0,∞)N∗ , ρ ∈ (0, 1], M ≥ 1, and

(19) Ŝµ(ρ, δ̂, α, ε̃) =
⋂
N≥1

⋃
n≥N :Q(xn,λn,ρ,α,εn) holds

B(xn, λδnn ),

where Q(xn, λn, ρ, α, εn) holds when λ
ρ(α+εn)
n ≤ µ

(
B(xn, λρn)

)
≤ λ

ρ(α−εn)
n . So,

when δ̂ is a constant sequence equal to some δ ≥ 1, the set Ŝµ(ρ, δ̂, α, ε̃) coincides
with the set Sµ(ρ, δ, α, ε̃) defined in (4) and considered in Theorem 2.1.

Theorem 2.2. Let µ be a finite positive Borel measure whose support is [0, 1]d,
ρ ∈ (0, 1] and α, β > 0. Let {xn}n∈N be a sequence in [0, 1]d and {λn}n∈N a non-
increasing sequence of positive real numbers converging to 0.

Suppose that {(xn, λn)}n∈N forms a ρ-heterogeneous ubiquitous system with re-
spect to (µ, α, β). Let D̂ be the set of points δ of R which are limits of a non-
decreasing element of

(
{1} ∪ D

)N∗ (in the case of ρ < 1, D = (1,+∞)).
There exists a constant M ≥ 1 such that for every δ ∈ D̂, we can find a non-

decreasing sequence δ̂ converging to δ and a positive measure mρ,δ which satisfy

mρ,δ

(
Ŝµ(ρ, δ̂, α, ερM )

)
> 0, and such that for every x ∈ Ŝµ(ρ, δ̂, α, ερM ), (recall that

χ ≡ 0 if ρ = 1 and the definition of ερM (18))

lim sup
r→0+

mρ,δ

(
B(x, r)

)
rD(β,ρ,δ)−ξρ,δ(r)

<∞,(20)

where

∀ ρ ∈ (0, 1], D(β, ρ, δ) = min
(d(1− ρ) + ρβ

δ
, β
)

∀ r > 0, ξρ,δ(r) = (4 + d)ϕ(r) + χ(r).

δ̂ can be taken equal to the constant sequence (δ)n≥1 if δ ∈ {1} ∪ D.

For the two first classes of measures of Section 6.2 (Gibbs measures and products
of multinomial measures), (4’) holds instead of (4) and D = (1,+∞), and thus
Theorem 2.2 applies with any ρ ∈ (0, 1]. For the last two classes of measures of
Section 6.2 (independent multiplicative cascades and compound Poisson cascades),
Theorem 2.2 cannot be applied when ρ < 1.
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Corollary 2.3. Under the assumptions of Theorem 2.2, there exists M ≥ 1 such
that for every δ ∈ D̂, there exists a non-decreasing sequence δ̂ converging to δ such
that Hξρ,δ(Ŝµ(ρ, δ̂, α, ερM )) > 0. Moreover, δ̂ = (δ)n≥1 if δ ∈ {1} ∪ D.

In particular, dim Ŝµ(ρ, δ̂, α, ερM ) ≥ D(β, ρ, δ).

When ρ < 1, D(β, ρ, δ) remains constant and equal to β when δ ranges in
[1, d(1−ρ)+ρβ

β ]. This is what we call a saturation phenomenon. Then, as soon as
d(1−ρ)+ρβ

β < δ, we are back to a “normal” situation where D(β, ρ, δ) decreases as
1/δ when δ increases.

When ρ = 1, D(β, ρ, δ) = β/δ, thus there is no saturation phenomenon.

Corollary 2.4. Fix ε̃ = (εn)n≥1 a positive sequence converging to 0. Assume that
{(xn, λn)}n∈N forms a weakly redundant and a ρ-heterogeneous ubiquitous system
with respect to (µ, α, τ∗µ(α)). Under the assumptions of Theorem 2.1 and Theo-

rem 2.2, there exists a constant M ≥ 1 such that for every δ ∈ [d(1−ρ)+ρτ∗µ(α)

τ∗µ(α) ,+∞)∩

D̂, there exists a non-decreasing sequence δ̂ converging to δ such that

dim
(
Ŝµ(ρ, δ̂, α, ερM )

)
= dim

(
Ŝµ(ρ, δ̂, α, ερM )\

⋃
δ′>δ

Sµ(ρ, δ′, α, ε̃)
)

= D(τ∗µ(α), ρ, δ).

Moreover, δ̂ can be taken equal to (δ)n≥1 if δ ∈ {1} ∪ D.

Remark 2.3. 1. Corollary 2.3 is an immediate consequence of Theorem 2.2.

2. In order to prove Corollary 2.4, observe first that when δ > 1 and δ̂ is a
non-decreasing sequence converging to δ, Ŝµ(ρ, δ̂, α, ερM ) ⊂ Sµ(ρ, δ′, α, ερM ) for all
δ′ < δ. Theorem 2.1 gives the optimal upper bound for dim

(
Ŝµ(ρ, δ̂, α, ερM )

)
. Again

by Theorem 2.1, when δ ≥ d(1−ρ)+ρτ∗µ(α)

τ∗µ(α) , for δ′ > δ, the sets Sµ(ρ, δ′, α, ε̃) form
a non-increasing family of sets of Hausdorff dimension < D(τ∗µ(α), ρ, δ). This
implies Hξρ,δ

(⋃
δ′>δ Sµ(ρ, δ′, α, ε̃)

)
= 0. Finally the lower bound for the dimension

dim
(
Ŝµ(ρ, δ̂, α, ερM )\

⋃
δ′>δ Sµ(ρ, δ′, α, ε̃)

)
is given by Corollary 2.3. This holds for

any sequence ε̃ converging to zero.
When δ = ρ = 1 and δ̂ = (1)n≥1, the arguments are similar to those used for δ > 1.

3. Upper bound for the Hausdorff dimension of conditioned
limsup-sets: Proof of Theorem 2.1

The sequence {(xn, λn)}n is fixed, and is supposed to form a weakly redundant
system (Definition 2.1). We shall need the functions defined for every j ≥ 1 by

τµ,ρ,j(q) = −j−1 log2

∑
n∈Tj

µ
(
B(xn, λρn)

)q and τµ,ρ(q) = lim inf
j→∞

τµ,ρ,j(q),

with the convention that the empty sum equals 0 and log(0) = −∞.
In the sequel, the Besicovitch’s covering theorem is used repeatedly

Theorem 3.1. (Theorem 2.7 of [40]) Let d be an integer greater than 1. There
is a constant Q(d) depending only on d with the following properties. Let A be a
bounded subset of Rd and F a family of closed balls such that each point of A is the
center of some ball of F .
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There are families F1, ...,FQ(d) ⊂ F covering A such that each Fi is disjoint, i.e.

A ⊂
Q(d)⋃
i=1

⋃
F∈Fi

F and ∀F, F ′ ∈ Fi with F 6= F ′, F ∩ F ′ = ∅.

Let (Nj)j≥1 be a sequence as in Definition 2.1, and consider for every j ≥ 1
the associated partition {Tj,1, . . . , Tj,Nj} of Tj . For every subset S of Tj , for every
1 ≤ i ≤ Nj , Theorem 3.1 is used to extract from

{
B(xn, λρn) : n ∈ Tj,i ∩ S

}
Q(d)

disjoint families of balls denoted by Tj,i,k(S), 1 ≤ k ≤ Q(d), such that

(21)
⋃

n∈Tj,i∩S
B(xn, λρn) ⊂

Q(d)⋃
k=1

⋃
n∈Tj,i,k(S)

B(xn, λρn).

Let us then introduce the functions

τ̂µ,ρ,j(q) = −j−1 log2 sup
S⊂Tj

∑
n∈

SNj
i=1

SQ(d)
k=1 Tj,i,k(S)

µ
(
B(xn, λρn)

)q (j ≥ 1)

and τ̂µ,ρ(q) = lim infj→∞ τ̂µ,ρ,j(q). Recall that τµ is defined in (7).

Lemma 3.2. Under the assumptions of Theorem 2.1, one has

(22) τµ,ρ ≥ d(1− ρ) + ρτµ and τ̂µ,ρ ≥ ρτµ.

Proof. • Let us show the first inequality of (22).
First suppose that q ≥ 0. Fix j ≥ 1 and 1 ≤ i ≤ Nj . For every n ∈ Tj,i,

B(xn, λρn) ∩ [0, 1]d is contained in the union of at most 3d distinct dyadic boxes of
generation jρ := [jρ]− 1 denoted B1(n), . . . , B3d(n). Hence

µ
(
B(xn, λρn)

)q ≤ ( 3d∑
i=1

µ
(
Bi(n)

))q
≤ 3dq

3d∑
i=1

µ
(
Bi(n)

)q
.

Moreover, since the balls B(xn, λn) (n ∈ Tj,i) are pairwise disjoint and of diam-
eter larger than 2−(j+1), there exists a universal constant Cd depending only on d
such that each dyadic box of generation jρ meets less than Cd2d(1−ρ)j of these balls
B(xn, λρn). Hence when summing over n ∈ Tj,i the masses µ

(
B(xn, λρn)

)q, each
dyadic box of generation jρ appears at most Cd2d(1−ρ)j times. This implies that∑

n∈Tj,i

µ
(
B(xn, λρn)

)q ≤ 3dqCd2d(1−ρ)j
∑

k∈{0,...,2jρ−1}d
µ(Ij,k)q(23)

and
∑
n∈Tj

µ
(
B(xn, λρn)

)q ≤ 3dqCdNj2d(1−ρ)j
∑

k∈{0,...,2jρ−1}d
µ(Ij,k)q.(24)

Since logNj = o(j), we obtain τµ,ρ(q) ≥ d(1− ρ) + ρτµ(q).
Now suppose that q < 0. Let us fix j ≥ 1 and 1 ≤ i ≤ Nj . For every n ∈ Tj,i,

B(xn, λρn) contains a dyadic box B(n) of generation [jρ] + 1, and µ
(
B(xn, λρn)

)q ≤
µ
(
B(n)

)q. The same arguments as above also yield τµ,ρ(q) ≥ d(1− ρ) + ρτµ(q).
• We now prove the second inequality of (22).
Suppose that q ≥ 0. Fix j ≥ 1 and S a subset of Tj , as well as 1 ≤ i ≤ Nj

and 1 ≤ k ≤ Q(d). We use the decomposition (21). Since the balls B(xn, λρn)
(n ∈ Tj,i,k(S)) are pairwise disjoint and of diameter larger than 2−(j+1)ρ, there
exists a universal constant C ′d, depending only on d, such that each dyadic box of
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generation jρ meets less than C ′d of these balls. Consequently, the arguments used
to get (23) yield here∑

n∈Tj,i,k(S)

µ
(
B(xn, λρn)

)q ≤ 3dqC ′d
∑

k∈{0,...,2jρ−1}d
µ(Ij,k)q

and
∑

n∈
SNj
i=1

SQ(d)
k=1 Tj,i,k(S)

µ
(
B(xn, λρn)

)q ≤ 3dqC ′dQ(d)Nj
∑

k∈{0,...,2jρ−1}d
µ(Ij,k)q.

The right hand side in the previous inequality does not depend on S, hence

sup
S⊂Tj

∑
n∈

SNj
i=1

SQ(d)
k=1 Tj,i,k(S)

µ
(
B(xn, λρn)

)q ≤ 3dqC ′dQ(d)Nj
∑

k∈{0,...,2jρ−1}d
µ(Ij,k)q,

and the conclusion follows. The case q < 0 is left to the reader. �

Proof of Theorem 2.1. Let 0 ≤ α ≤ τ ′µ(0−). We have τ∗µ(α) = infq≥0(αq − τµ(q)).

We first prove that dim Sµ(ρ, δ, α) ≤ d(1−ρ)+ρτ∗µ(α)

δ . For this, we fix η > 0 and
N ≥ 1 so that εn < η for n ≥ N . Then we introduce the set Sµ(N, η, ρ, δ, α) =⋃
n≥N :λ

ρ(α+η)
n ≤µ

(
B(xn,λ

ρ
n)
)B(xn, λδn), which can be written as

Sµ(N, η, ρ, δ, α) =
⋃

j≥infn≥N log2(λ−1
n )

⋃
n∈Tj :λρ(α+η)

n ≤µ
(
B(xn,λ

ρ
n)
)B(xn, λδn).

We remark that Sµ(ρ, δ, α, ε̃) ⊂ Sµ(N, η, ρ, δ, α) and use Sµ(N, η, ρ, δ, α) as cover-
ing of Sµ(ρ, δ, α, ε̃) in order to estimate the D-dimensional Hausdorff measure of
Sµ(ρ, δ, α, ε̃) for a fixed D ≥ 0.

Let q ≥ 0 such that τµ(q) > −∞. Let jq be an integer large enough so that
j ≥ jq implies τµ,ρ,j(q) ≥ τµ,ρ(q) − η. Also let jN = max

(
jq, infn≥N log2(λ−1

n )
)
.

For some constant C depending on D, δ, α, η, ρ and q only, we have

HξD
2·2−jNδ

(
Sµ(ρ, δ, α, ε̃)

)
≤

∑
j≥jN

∑
n∈Tj :λρ(α+η)

n ≤µ
(
B(xn,λ

ρ
n)
) ∣∣B(xn, λδn)

∣∣D
≤

∑
j≥jN

∑
n∈Tj

|B(xn, λδn)
∣∣Dλ−qρ(α+η)

n µ
(
B(xn, λρn)

)q
≤

∑
j≥jN

(22−jδ)D2(j+1)qρ(α+η)2−jτµ,ρ,j(q)

≤ C
∑
j≥jN

2−j(Dδ−qρ(α+η)+τµ,ρ(q)−η).

Therefore, if D >
ρ(α+η)−τµ,ρ(q)+η

δ , HξD
2·2−jNδ

(
Sµ(ρ, δ, α, ε̃)

)
converges to 0 as N →

∞, and dim Sµ(ρ, δ, α, ε̃) ≤ D. This yields dim Sµ(ρ, δ, α, ε̃) ≤ qρ(α+η)−τµ,ρ(q)+η
δ ,

which is less than d(1−ρ)+ρ(αq−τµ(q))+(qρ+1)η
δ by Lemma 3.2. This holds for every

η > 0 and for every q ≥ 0 such that τµ(q) > −∞. Finally, dim Sµ(ρ, δ, α, ε̃) ≤
d(1−ρ)+ρ infq≥0 αq−τµ(q)

δ = d(1−ρ)+ρτ∗µ(α)

δ .
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Let us now show that dim Sµ(ρ, δ, α, ε̃) ≤ τ∗µ(α). This time, for j ≥ 1 we define

Sj = {n ∈ Tj : λ
ρ(α+η)
n ≤ µ

(
B(xn, λρn)

)
}. By (21), we remark that

Sµ(ρ, δ, α, ε̃) ⊂
⋃
j≥jN

Nj⋃
i=1

Q(d)⋃
k=1

⋃
n∈Tj,i,k(Sj)

B(xn, λρn).

By definition of τ̂µ,ρ(q), a computation mimicking the previous one yields

HξD
2·2−ρjN

(
Sµ(ρ, δ, α, ε̃)

)
≤ C

∑
j≥jN

2−j(Dρ−qρ(α+η)+bτµ,ρ(q)−η).

Hence dim Sµ(ρ, δ, α, ε̃) ≤ qρ(α+η)−bτµ,ρ(q)+η
ρ , for every η > 0 and every q ≥ 0 such

that τµ(q) > −∞. The conclusion follows from Lemma 3.2.
Finally, when τ∗µ(α) < 0 and Sµ(ρ, δ, α, ε̃) 6= ∅, the previous estimates show that

HξD
2·2−ρjN (Sµ(ρ, δ, α, ε̃)) is bounded for D ∈ (τ∗µ(α), 0) (we can formally extend the

definition of HξD to the case D < 0). This is a contradiction.
The proof when α ≥ τ ′µ(0−) follows similar lines. �

4. Conditioned ubiquity. Proof of Theorem 2.2 (case ρ = 1)

We assume that a 1-heterogeneous ubiquitous system is fixed. With each pair
(xn, λn) is associated the ball In = B(xn, λn). For every δ ≥ 1, I(δ)

n denotes the
contracted ball B(xn, λδn). The following property is useful in the sequel. Because
of the assumption (1) on ϕ and ψ, we have

(25) ∃C > 1, ∀ 0 < r ≤ s ≤ 1, s−ϕ(s) ≤ Cr−ϕ(r) and s−ψ(s) ≤ Cr−ψ(r).

We begin with a simple technical lemma

Lemma 4.1. Let y ∈ [0, 1]d, and assume that there exists an integer j(y) such that
for some integer c ≥ 2, (11) and (13) hold for y and every j ≥ j(y).

There exists a constant M independent of y with the following property: for
every n such that y ∈ B(xn, λn/2) and logc λ−1

n ≥ j(y) + 4 , DmM (B(y, 2λn)) and
P1
M (B(xn, λn)) hold.

Proof. Assume that y ∈ B(xn, λn/2) with λn ≤ c−j(y)−4. Let j0 be the smallest
integer j such that c−j ≤ λn/2, and j1 the largest integer j such that c−j ≥ 2λn.
We have j0 ≥ − logc λn ≥ j1 ≥ j(y). We thus ensured by construction that
j0 − 4 ≤ − logc λn ≤ j1 + 4.

Recall that Ij(y) is the unique c-adic box of scale j containing y, and that kj,y
is the unique k ∈ Nd such that y ∈ Icj,k = Ij(y). We have Icj0(y) ⊂ B(xn, λn) ⊂⋃
‖k−kcj1,y

‖∞≤1 I
c
j1,k

, which yields µ(Icj0(y)) ≤ µ(B(xn, λn)) ≤
∑

‖k−kcj1,y
‖∞≤1

µ(Icj1,k).

Applying (11) and (12) yields

|c−j0 |α+ψ(|c−j0 |) ≤ µ(B(xn, λn)) ≤ 3d|c−j1 |α−ψ(|c−j1 |).

Combining the fact that j0 − 4 ≤ − logc λn ≤ j1 + 4 with (25) and (18) gives

λ
α+ε1,+M,n
n = M−1|2λn|α+ψ(2λn) ≤ µ(B(xn, λn)) ≤M |2λn|α−ψ(2λn) = λ

α−ε1,−M,n
n

for some constant M that does not depend on y.
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Similarly, we get from (13) and (14) that DmM
(
B(y, 2λn)

)
holds for some constant

M > 0 that does not depend on y. �

Proof of Theorem 2.2 in the case ρ = 1. Throughout the proof, C denotes a con-
stant which depends only on c, α, β, δ, ϕ and ψ.

The case δ = 1 follows immediately from the assumptions (here mδ = m1 = m).

Now let M ≥ 1 be the constant given by Lemma 4.1. Let δ ∈ D̂ ∩ (1,+∞), and
let {dn}n≥1 be a non-decreasing sequence in D converging to δ (if δ ∈ D, dn = δ
for every n). For every k ≥ 1, j ≥ 1 and y ∈ [0, 1]d, let

(26) n
(dk)
j,y = inf

{
n : λn ≤ c−j , ∃j′ ≥ j :

{
B(xn, λn) ∈ Bj′(y) and
∃ L ∈ Bdk

n , (15) holds

}
.

We shall find a sequence δ̂ = (δn)n≥1, converging to δ, to construct a generalized
Cantor set Kδ in Ŝµ(1, δ̂, α, ε1

M ) and simultaneously the measure mδ on Kδ. The
successive generations of c-adic boxes involved in the construction of Kδ, namely
Gn, are obtained by induction.

- First step: The first generation of boxes defining Kδ is taken as follows.
Let L0 = [0, 1]d. Consider the first element d1 of D of the sequence converging

to δ. We first impose that δn := d1, for every n ≥ 1. The values of the sequence
δ̂ will be modified in the next steps of the construction so that δ̂ will become a
non-decreasing sequence satisfying limn→+∞ δn = δ.

Due to assumptions (2), (3) and (4), there exist EL0 ⊂ EL0
J(L0) such that

m(EL0) ≥ ‖m‖/4 and an integer J ′(L0) ≥ J(L0) such that for all y ∈ EL0 :

- y ∈
⋂
N≥1

⋃
n≥N B(xn, λn/2),

- for every j ≥ J ′(L0), both (11) and (13) hold,

- there are infinitely many integers j such that (15) holds for some L ∈ Bd1j (y).

In order to construct the first generation of balls of the Cantor set, we invoke
the Besicovitch’s covering Theorem 3.1. We are going to apply it to A = EL0 and
to several families F1(j) of balls constructed as follows.

For y ∈ EL0 , we denote n(d1)
j,y by nj,y. Then for every j ≥ J ′(L0) + 4, we define

F1(j) =
{
B
(
y, 2λnj,y

)
: y ∈ EL0

}
.

The family F1(j) fulfills the conditions of Theorem 3.1. Thus, for every j ≥
J ′(L0) + 4, Q(d) families of disjoint balls F1

1 (j), ...,FQ(d)
1 (j), can be extracted

from F1(j). Therefore, since m(A) = m(EL0) ≥ ‖m‖/4, for some i we have
m
( ⋃
B∈Fi1(j)

B
)
≥ ‖m‖/(4Q(d)).

Again, we extract from F i1(j) a finite family of pairwise disjoint balls G̃1(j) =
{B1, B2, . . . , BN} such that

(27) m
( ⋃
Bk∈ eG1(j)

Bk

)
≥ ‖m‖

8Q(d)
.

By construction, with each Bk can be associated a point yk ∈ EL0 so that Bk =
B(yk, 2λnj,yk ). Moreover, by construction (see (26)), Inj,yk = B(xnj,yk , λnj,yk ) ⊂
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B(yk, 2λnj,yk ) = Bk. Thus I(d1)
nj,yk

= B(xnj,yk , λ
d1
nj,yk

) is included in Bk. Finally,
Lemma 4.1 yield P1

M (B(xnj,yk , λnj,yk )) and DmM (Bk).
Let Fk be the closure of one of the c-adic boxes of maximal diameter included in

I
(d1)
nj,yk

, and such that both (15) holds for Fk. Such a box exists by (26). Moreover,

by construction we have |Fk| ≤ |I(d1)
nj,yk
| ≤ C|Fk| for some universal constant C.

We write Bk = Fk. Conversely, if a c-adic box F can be written B for some
larger ball B, we write B = F . Therefore, for every closed box F constructed above
we can ensure by construction that

(28) C−1|F | ≤ |F |d1 ≤ C|F |,
where C depends only on the fixed given sequence {dn}n. We eventually set

(29) G1(j) = {Bk : Bk ∈ G̃1(j)}.
We notice the following property that will be used in the last step: By construction,
if F1 and F2 are two distinct elements of G1(j) then their distance is at least
maxi∈{1,2}(|Fi|/2 −

(
|Fi|/2

)d1), which is larger than maxi∈{1,2} |Fi|/3 for j large
enough (d1 > 1 by our assumption).

On the algebra generated by the elements of G1(j), a probability measure mδ is
defined by

mδ(F ) =
m(F )∑

Fk∈G1(j)m(Fk)
.

Let F ∈ G1(j). By construction, DmM (F ) holds. Using consecutively this fact,
(28) and (25), we obtain

m(F ) ≤M |F |β−ϕ(|F |) ≤ C|F |β/d1 |F |−ϕ(|F |) ≤ C|F |β/d1 |F |−ϕ(|F |).

Moreover, by (27), and recalling the definition of G1(j) (29), we obtain∑
Fk∈G1(j)

m(Fk) =
∑

Bk∈ eG1(j)

m(Bk) ≥ ‖m‖
8Q(d)

.

As a consequence, ∀ F ∈ G1(j), mδ(F ) ≤ 8Q(d)C‖m‖−1|F |β/d1 |F |−ϕ(|F |).
By our assumption (1), we can fix j1 large enough so that

∀ F ∈ G1(j1), 8Q(d)C‖m‖−1 ≤ |F |−ϕ(|F |).

We choose the c-adic elements of the first generation of the construction of Kδ as
being those of G1 := G1(j1). By construction

(30) ∀ F ∈ G1, mδ(F ) ≤ |F |β/d1−2ϕ(|F |).

We know that by construction, for every F ∈ G1, there exists yk ∈ EL0 such
that B(xnj1,yk , λnj1,yk ) ⊂ F = B(yk, 2λnj1,yk ).

As a consequence, for every y ∈
⋃
F∈G1

F , there exists an integer n such that
λn ≤ c−4, |xn − y| ≤ λδnn , and P1

M (In) = P1
M (B(xn, λn)) holds.

- Second step: The second generation of boxes is obtained as follows. Let
n1 be the largest integer among the n(d1)

j1,yk
, where the yk are the points naturally

associated with the balls I ∈ G1 above.
Consider d2, the second element of the sequence {dn}n converging to δ. We

modify the sequence δ̂: for every n > n1, we impose δn := d2.
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Let us focus on one of the c-adic boxes L ∈ G1. The selection procedure is the
same as in the first step. Due to assumptions (2), (3) and (4), we can find a subset
EL of ELJ(L) such that mL

(
EL
)
≥ ‖mL‖/4 and an integer J ′(L) ≥ J(L) such that

for all y ∈ EL:
- y ∈

⋂
N≥1

⋃
n≥N B(xn, λn/2),

- ∀ j ≥ J ′(L) + logc
(
|L|−1

)
,

(31) ∀ k, ‖k− kcj,y‖∞ ≤ 1, Dm
L◦f−1

L
1

(
fL(Icj,k)

)
and P1

1 (Icj,k) hold.

- There are infinitely many integers j such that (15) holds for some L ∈ Bd2j (y).

We again apply Theorem 3.1 to A = EL and to families F2(j) of balls constructed
as above. Hence, for every j ≥ J ′(L) + logc

(
|L|−1

)
+ 4, F2(j) =

{
B(y, 2λ

n
(d2)
j,y

) :

y ∈ EL
}

(n(d2)
j,y is defined in (26)). We set nj,y := n

(d2)
j,y .

The family F2(j) fulfills the conditions of Theorem 3.1 and covers EL. By
Theorem 3.1, for every j ≥ J ′(L)+logc

(
|L|−1

)
+4, Q(d) families of pairwise disjoint

boxes F1
2 (j), . . . ,FQ(d)

2 (j), whose union covers EL, can be extracted from F2(j).
Since mL(A) = mL(EL) ≥ ‖mL‖/4, there exists i such that mL

(⋃
B∈Fi2(j)B

)
≥

‖mL‖/4Q(d).
As in the first step, we extract from F i2(j) a finite family of disjoint balls G̃L2 (j) =

{B1, B2, . . . , BN} such that

(32) mL
( ⋃
Bk∈ eGL2 (j)

Bk

)
≥ ‖m

L‖
8Q(d)

.

As above, with eachBk is associated a point yk ∈ EL so thatBk = B(yk, 2λnj,yk ),

and I
(d2)
nj,yk

⊂ Inj,yk ⊂ Bk. Now, notice that Lemma 4.1 applies with mL ◦ f−1
L in-

stead of m and with the same constant M . It follows that Dm
L◦f−1

L

M

(
fL(Bk)

)
and

P1
M (Inj,yk ) hold. Let Fk be the closure of one of the c-adic balls of maximal diameter

included in I
(d2)
nj,yk

such that (15) holds for Fk.
We then define the notation Bk = Fk, and conversely Bk = Fk. We also have

(28) (for the same constant C). We eventually define

(33) GL2 (j) = {Bk : Bk ∈ G̃L2 (j)}.

On the algebra generated by the elements F of GL2 (j), an extension of the re-
striction to the ball L of the measure mδ is defined by

mδ(F ) =
mL(F )∑

Fk∈GL2 (j)m
L(Fk)

mδ(L).

Let F ∈ GL2 (j). Since Dm
L◦f−1

L

M

(
fL(F )

)
holds, we have

mL(F ) ≤ M

(
|F |
|L|

)β−ϕ( |F ||L| )
≤ C|F |β/d2 |L|−β

(
|F |
|L|

)−ϕ( |F ||L| )
≤ C|F |β/d2 |L|−β |F |−ϕ(|F |),
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where (25) has been used. Moreover, by (32) and (33),∑
Fk∈GL2 (j)

mL(Fk) =
∑

Bk∈ eGL2 (j)

mL(Bk) ≥ ‖mL‖/8Q(d).

Consequently, since mδ(L) can be bounded using (30), we obtain

mδ(F ) ≤ 8mδ(L)Q(d)‖mL‖−1
C|F |β/d2 |L|−β |F |−ϕ(|F |)

≤ 8Q(d)‖mL‖−1
C|L|β/d1−β−2ϕ(|L|)|F |β/d2−ϕ(|F |).

By (1), we can choose j2(L) large enough so that for every integer j ≥ j2(L), for
every c-adic ball F ∈ GL2 (j), 8Q(d)C‖mL‖−1|L|β/d1−β−2ϕ(|L|) ≤ |F |−ϕ(|F |). Then,
taking j2 = max

{
j2(L) : L ∈ G1

}
, and defining

G2 =
⋃
L∈G1

GL2 (j2),

this yields an extension of mδ to the algebra generated by the elements of G1

⋃
G2

and such that for every F ∈ G1

⋃
G2, mδ(F ) ≤ |F |β/d2−2ϕ(|F |) (indeed if F ∈ G1

|F |β/d1 ≤ |F |β/d2 because d2 ≥ d1).
Notice that by construction, for every F ∈ G2, |F | ≤ maxF∈G1 2(c−4|F |)d2 .
Finally we define n2 as the largest integer among the n(d2)

j2(L),yk
, where the yk are

the points naturally associated with the balls F ∈ G2 above.

- Third step: We end the induction. Assume that N generations of closed
c-adic boxes G1, . . . , GN are found for some integer N ≥ 2. Assume also that a
probability measure mδ on the algebra generated by

⋃
1≤p≤N Gp is defined and that

the following properties hold (the fact that this holds for N = 2 comes from the
two previous steps):

(i) For every 1 ≤ p ≤ N , the elements of Gp are closed pairwise disjoint c-adic
boxes, and for 2 ≤ p ≤ N , maxF∈Gp |F | ≤ 2c−4dp maxF∈Gp−1 |F |dp .

For 1 ≤ p ≤ N , with each F ∈ Gp is associated a ball F enjoying the properties:

• F ⊂ F ,
• there is a constant C > 0 which depends only on δ such that (28) holds,
• if F1 6= F2 belong to Gp, their distance is at least maxi∈{1,2} F i/3,
• the F ’s (F ∈ Gp) are pairwise disjoint.
• F satisfies the next parts (ii), (iii), (iv), (v) and (vi).

(ii) For every 2 ≤ p ≤ N , each element F of Gp is included in an element L of
Gp−1. Moreover, F ⊂ L, logc

(
|F |−1

)
≥ J(L) + logc

(
|L|−1

)
and F ∩ ELJ(L) 6= ∅.

(iii) There exists a sequence δ̂ = {δq}q≥1 such that:

• δ̂ is non-decreasing, and ∀ q ≥ 1, δq ≤ δ,
• for every 1 ≤ p ≤ N and F ∈ Gp, there is an integer q such that F ⊂
I

(δq)
q = B(xq, λ

δq
q ) ⊂ F , P1

M (Iq) holds, and δq = dp.
• for every 1 ≤ p ≤ N − 1, we found an integer np such that for every
q ∈ {np−1 +1, np−1 +2, . . . , np}, δq = δp (with the convention that n0 = 0).

(iv) For every F ∈
⋃

1≤p≤N Gp, mδ(F ) ≤ |F |β/dN−2ϕ(|F |).
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(v) For every 1 ≤ p ≤ N − 1, L ∈ Gp, and F ∈ Gp+1 such that F ⊂ L,

mδ(F ) ≤ 8Q(d)mδ(L)
mL(F )
‖mL‖

.

(vi) Every L ∈
⋃

1≤p≤N Gp satisfies (15).
The constructions of a generation GN+1 of c-adic balls and an extension of mδ

to the algebra generated by the elements of
⋃

1≤p≤N+1Gp such that properties (i)
to (vi) hold for N + 1 are done in the same way as when N = 1.

By induction, and because of the separation property (i), we get:
- a sequence (GN )N≥1 and a non-decreasing sequence δ̂ converging to δ,
- a probability measure mδ on σ

(
F : F ∈

⋃
N≥1GN

)
such that properties (i) to (vi) hold for every N ≥ 1. We now define

Kδ =
⋂
N≥1

⋃
F∈GN

F.

By construction, mδ(Kδ) = 1 and because of property (iii), we have Kδ ⊂
Ŝµ(1, δ̂, α, ε1

M ). The measure mδ can be extended to B([0, 1]d) by the usual way:
mδ(B) := mδ(B ∩ Kδ) for B ∈ B([0, 1]d). Finally, since δn ≤ δ for every n ≥ 1,
property (iv) implies that for every F ∈

⋃
N≥1GN ,

(34) mδ(F ) ≤ |F |β/δ−2ϕ(|F |).

- Last step: Proof of (20). If F ∈ GN , we set g(F ) = N .
Let us fix B an open ball of [0, 1]d of length less than the one of the elements

of G1, and assume that B ∩Kδ 6= ∅. Let L be the element of largest diameter in⋃
N≥1GN such that B intersects at least two elements of Gg(L)+1 included in L.

We remark that this implies that B does not intersect any other element of Gg(L),
and as a consequence mδ(B) ≤ mδ(L).

Let us distinguish three cases:
• When |B| ≥ |L|: we have by (34)

(35) mδ(B) ≤ mδ(L) ≤ |L|β/δ−2ϕ(|L|) ≤ C|B|β/δ−2ϕ(|B|).

•When |B| ≤ c−J(L)−3|L|: let L1, . . . , Lp be the elements of Gg(L)+1 that intersect
B. We use property (v) to get

(36) mδ(B) =
p∑
i=1

mδ(B ∩ Li) ≤ mδ(L)
8Q(d)
‖mL‖

p∑
i=1

mL(Li).

Let j0 be the unique integer such that c−j0 ≤ |B| < c−j0+1. Assume that B
intersects for instance the boxes Li1 and Li2 . Then, by (i), we have |B| ≥
max(|Li1 |, |Li2 |)/3 when j0 is large enough. Consequently, when |B| is small enough,
we get |B| ≥ (maxi=1,...,p |Li|)/3 and the scale of the boxes Li (defined as [− logc |Li|])
is always larger than j0 − [logc 3] ≥ j0 − 2.

By property (ii), for each i ∈ {1, . . . d}, we have ELJ(L)∩Li 6= ∅. Let y ∈ ELJ(L)∩Li
for some i, and let us consider the c-adic box Icj0−2,kj0−2,y

. For every z ∈ Li,
|y − z| ≤ c−(j0−2). This yields

Li ⊂
⋃

k: ‖k−kj0−2,y‖∞≤1

Icj0−2,k.
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The ball B intersects Li, thus the distance between y and B is at most c−(j0−2).
As a consequence, if Li′ 6= Li, the distance between y and Li′ is lower than c−(j0−3).
This implies that

(37)
p⋃
i=1

Li ⊂
⋃

k: ‖k−kj0−3,y‖∞≤1

Icj0−3,k.

Since y ∈ ELJ(L) and j0 ≥ − logc |L|+J(L)+3, assumption (3) ensures the control
of the m-mass of the unions of all the balls that appear on the left hand-side of
(37) by the sum of the masses of the 3d c-adic boxes Icj0−3,k, ‖k− kj0−3,y‖∞ ≤ 1.
These boxes all satisfy

mL(Icj0−3,k) ≤
( |Icj0−3,k|
|L|

)β−ϕ( |Icj0−3,k|

|L|

)
≤ C

(
|B|
|L|

)β ( |B|
|L|

)−ϕ( |B||L| )

where C depends only on β. Injecting this in (36) and using that the Li are pairwise
disjoint, we obtain that for |B| small enough

mδ(B) ≤ mδ(L)
8Q(d)
‖mL‖

p∑
i=1

mL(Li)

≤ mδ(L)
8Q(d)
‖mL‖

3d C
(
|B|
|L|

)β ( |B|
|L|

)−ϕ( |B||L| )

≤ mδ(L)
C

‖mL‖

(
|B|
|L|

)β
|B|−ϕ(B),

where C takes into account all the constant factors. We then use consecutively
two facts. First, by (34), mδ(L) ≤ |L|β/δ|L|−2ϕ(|L|) ≤ C|L|β/δ|B|−2ϕ(|B|), which
implies, since r 7→ rβ(1−1/δ) is bounded near 0,

mδ(B) ≤ C

‖mL‖
|B|β/δ|B|−3ϕ(|B|)

(
|B|
|L|

)β(1−1/δ)

≤ C

‖mL‖
|B|β/δ|B|−3ϕ(|B|).

Second, (vi) allows to upper bound ‖mL‖−1 by |L|−ϕ(L), which yields

(38) mδ(B) ≤ C|L|−ϕ(|L|)|B|β/δ|B|−3ϕ(|B|) ≤ C|B|β/δ|B|−4ϕ(|B|).

• c−J(L)−3|L| < |B| ≤ |L|: we need at most cd(J(L)+4) contiguous boxes of
diameter c−J(L)−3|L| to cover B. For these boxes, the estimate (38) can be used.
Also we know by (vi) that cJ(L) ≤ |L|−ϕ(L), so for |B| small enough

mδ(B) ≤ Ccd(J(L)+4)
(
c−J(L)−3|L|

)β/δ−4ϕ(c−J(L)−3|L|) ≤ CcdJ(L)|B|β/δ−4ϕ(|B|)

≤ C|L|−dϕ(|L|)|B|β/δ−4ϕ(|B|) ≤ C|B|β/δ−(4+d)ϕ(|B|).

Combining (35) and (38) with assumption (1), we obtain a universal constant C
such that for every non-trivial ball B of [0, 1]d small enough, we have mδ(B) ≤
C|B|β/δ|B|−(4+d)ϕ(|B|). This yields (20). �
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5. Dilation and Saturation. Proof of Theorem 2.2 (Case ρ < 1)

The introduction of the condition (16) induces a modification in the construction
of the Cantor set with respect to the case ρ = 1, in the selection of the pairs (xn, λn).
The following lemma is comparable with Lemma 4.1

Lemma 5.1. Let y ∈ [0, 1]d, and assume that (11) and (13) hold for y when
j ≥ j(y) for some integer j(y). There exists a constant M independent of y with
the following property: for every integer j such that j(1 − χ(c−j)) ≥ j(y)+5

ρ , for

every integer n such that λn ∈ [c−j+1, c−j(1−χ(c−j))] and

(39) B(y, (cρ − 1)c−jρ) ⊂ B(xn, λρn) ⊂ B(y, c−jρ(1−χ(c−j))),

then PρM (B(xn, λρn)) holds. Moreover, the same constant M can be chosen so that
DmM (B(y, r)) holds for r ∈ (0, c−j(y)−1).

Proof. Let us fix j such that (39) holds, and let us denote j1 the integer [jρ] + 2
and j2 the integer [jρ(1−χ(c−j))]− 2. By definition of j1 and j2, (39) implies that
Icj1(y) ⊂ B(xn, λρn) ⊂

⋃
‖k−kcj2,y

‖∞≤1 I
c
j2,k

. Combining this with (11) yields

(40) (c−j1)α+ψ(c−j1 ) ≤ µ(B(xn, λρn)) ≤ 3d(c−j2)α−ψ(c−j2 ).

We have c−j1 ≤ 2λρn = |B(xn, λρn)| ≤ 2c−j2 , but by (39) we also have

(41) C−1(2c−j2)
1

1−χ(c−j) ≤ 2λρn ≤ C(2c−j1)1−χ(c−j)

for some constant C independent of y and j. Hence, using the monotonicity of
r 7→ r−ψ(r), (40) and (41) yields the two inequalities

M−1(2λρn)
α

1−χ(c−j) (2λ
ρ

1−χ(c−j)
n )ψ

(
2λ

ρ

1−χ(c−j)
n

)
≤ µ(B(xn, λρn)),

(2λρn)ψ(2λρn) ≤
(
2λ

ρ

1−χ(c−j)
n

)ψ(2λ ρ

1−χ(c−j)
n

)
for some constant M ≥ 1 also independent of y and j. Eventually, since χ(r) → 0
when r → 0, we have 1

1−χ(c−j) ≤ 1 + 2χ(c−j) for j large enough. As a consequence,
for the same constant M we can write

M−1(2λρn)α+2αχ(2λρn)+ψ(2λρn) ≤ µ(B(xn, λρn)).

The upper bound of (40) is treated with the same arguments, and we obtain
µ(B(xn, λρn)) ≤M(2λρn)α−αχ(2λρn)−ψ(2λρn). Hence PρM (B(xn, λρn)) holds.

To prove that DmM (B(y, r) holds for some M > 0 independent of y and r ∈
(0, c−j(y)−1) it is enough to write that B(y, r) ⊂

⋃
‖k−kcj,y‖∞≤1 I

c
j,k, where j is the

largest integer such that r ≤ c−j , and then to use (13). �

If y, j and (xn, λn) satisfy (16), then they also satisfy (39). This ensures that
the Cantor set we are going to build is included in Sµ(ρ, δ, α, ερM ).

Proof of Theorem 2.2 in the case ρ < 1. Here again, the case δ = 1 is obvious and
left to the reader. Since D = (1,∞), we deal with the sets Ŝµ(ρ, (δ)n≥1, α, ε

ρ
M ),

which are equal to the sets Sµ(ρ, δ, α, ερM ).
Let δ > 1. As in the proof of Theorem 2.2, we construct a generalized Cantor

set Kδ in Sµ(ρ, δ, α, ερM ) and a measure mρ,δ on Kδ.

- First step: The first generation in the construction of Kδ is as follows:
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Let L0 = [0, 1]d. Using assumption (2(ρ)), there exist a subset EL0 of EL0
J(L0) of

m-measure larger than ‖m‖/4 and an integer J ′(L0) ≥ J(L0) such that ∀y ∈ EL0 ,
∀j ≥ J ′(L0), (11) and (13) hold. There is a subset ẼL0 of EL0 of m-measure greater
than ‖m‖/8 such that for every y ∈ ẼL0 , (16) holds.

Once again we are going to apply Theorem 3.1 to A = ẼL0 and to families B1(j)
of balls built as follows. Let y ∈ ẼL0 . We define

(42) nj,y,ρ = inf
{
n :c−n(1−χ(c−n)) ≤ c−

j+5
ρ and (16) holds with ji(y) = n

}
.

Then for every j ≥ J ′(L0), let us introduce the family

B1(j) =
{
B(y, 3c−ρnj,y,ρ) : y ∈ ẼL0

}
.

For every j ≥ J ′(L0), the family B1(j) fulfills conditions of Theorem 3.1.
Hence, ∀j ≥ J ′(L0), Q(d) families of disjoint balls B1

1(j), ...,BQ(d)
1 (j) can be

extracted from B1(j). The same procedure as in Theorem 2.2 allows us to extract
from these new families a finite family of disjoint balls G̃1(j) = {B1, B2, . . . , BN}
such that

(43) m
( ⋃
Bk∈ eG1(j)

Bk

)
≥ ‖m‖

16Q(d)
.

Recall that with each Bk can be associated a point yk ∈ ẼL0 so that Bk =
B(yk, 3c−ρnj,yk,ρ). Let us fix one of the balls Bk = B(yk, 3c−ρnj,yk,ρ). By construc-
tion, we can find [cnj,yk,ρ(d(1−ρ)−χ(c

−nj,yk,ρ ))] points xn in the ball B(yk, c−ρnj,yk,ρ)
such that (16) holds. We denote S(Bk) the set of these points xn. The correspond-
ing balls B(xn, λn) are pairwise disjoint. By construction, for each of these points
xn ∈ S(Bk), we have

(44) B(yk, (cρ − 1)c−ρnj,yk,ρ) ⊂ B(xn, λρn) ⊂ B
(
yk, c

−ρnj,yk,ρ(1−χ(c
−nj,yk,ρ ))

)
.

Therefore each point xn ∈ S(Bk) such that (16) holds verifies the conditions
of Lemma 5.1. Thus PρM (B(xn, λρn)) and DmM (Bk) hold for some constant M in-
dependent of the scale and of x. This constant M is the one chosen to define
Sµ(ρ, δ, α, ερM ).

Let us now consider I(δ)
n = B(xn, λδn). Let Fn,k be the closure of one of the

c-adic box of maximal diameter included in I
(δ)
n . Since |Bk| = 6c−ρnj,yk,ρ , we have

|Bk| ≤ C|Fn,k|ρ/δ for some constant C depending only on δ.
We write Bk = Fn,k. Conversely, if a closed c-adic box F can be written B for

some larger ball B, we write B = F . Pay attention to the fact that a number equal
to #S(Bk) ≥ [cnj,yk,ρ(d(1−ρ)−χ(c

−nj,yk,ρ ))] of c-adic boxes Fn,k can be written as Bk
for the same ball Bk. For every c-adic box F such that there exists k with Bk = F ,
we ensured by construction

(45) |F | ≤ C|F |ρ/δ

for some constant C depending on δ. Moreover, the c-adic box F is included in a
contracted ball I(δ)

n = B(xn, λδn) such that PρM (B(xn, λρn)) holds.
Since |Bk| = 6c−ρnj,yk,ρ , there is C > 0 independent of k and ρ such that

(46) #S(Bk) ≥ [cnj,yk,ρ(d(1−ρ)−χ(c
−nj,yk,ρ ))] ≥ C−1|Bk|−

d(1−ρ)
ρ |Bk|χ(|Bk|).
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We eventually define

(47) G1(j) = {Fn,k : Fn,k ∈ G̃1(j)}.

We notice that F1 and F2 belong to G1(j) and F1 6= F2 then the distance between
F1 and F2 is by construction at least maxi∈{1,2} Fi/3.

On the algebra generated by the elements of G1(j), a probability measure mδ,ρ

is defined by

mρ,δ(F ) =
m(F )

#S(F )∑
Bk∈ eG1(j)m(Bk)

.

Since DmM (F ) holds for the measure m, by (45) and (25), we have

m(F ) ≤M |F |β−ϕ(|F |) ≤ C|F |ρβ/δ|F |−ϕ(|F |) ≤ C|F |ρβ/δ|F |−ϕ(|F |).

Then, we also have by (46) and (44)

(#S(F ))−1 ≤ C|F |
d(1−ρ)
ρ |F |−χ(|F |) ≤ C|F |

ρ
δ
d(1−ρ)
ρ |F |−χ(|F |) ≤ C|F |

d(1−ρ)
δ |F |−χ(|F |).

Moreover, by (43) and the definition of G1(j) (29), we get∑
Bk∈ eG1(j)

m(Bk) ≥ ‖m‖
16Q(d)

.

Thus, ∀ F ∈ G1(j), mρ,δ(F ) ≤ 16Q(d)C‖m‖−1|F |−ϕ(|F |)|F |−χ(|F |)|F |
d(1−ρ)+ρβ

δ .
By our assumption (1), we can fix j1 large enough so that

∀ F ∈ G1(j1), 16Q(d)C‖m‖−1 ≤ |F |−ϕ(|F |).

We choose the c-adic elements of the first generation of the construction of Kδ as
being those of G1 := G1(j1). By construction

(48) ∀ F ∈ G1, mρ,δ(F ) ≤ |F |
d(1−ρ)+ρβ

δ −2ϕ(|F |)−χ(|F |),

and for every x ∈
⋃
F∈G1

F , there exists an integer n so that λn ≤ c−5/ρ, ‖xn −
x‖∞ ≤ λδn, and PρM (B(xn, λρn)) holds. Moreover, maxF∈G1 |F | ≤ 2c−5δ/ρ.

- Second step: The second generation is built as in the case ρ = 1, by focusing
on one c-adic box L of the first generation. We give the essential clues to obtain
this second generation.

Using assumption (2(ρ)), there exist a subset EL of ELJ(L) of mL-measure larger
than ‖mL‖/4 and an integer J ′(L) ≥ J(L) such that for all y ∈ EL, for every
j ≥ J ′(L) + logc

(
|L|−1

)
, (31) holds. Then, there exists a subset ẼL of EL of

mL-measure greater than ‖mL‖/8 such that for every y ∈ ẼL, (16) holds.
One more time we apply Theorem 3.1 to A = ẼL and to families of balls B2(j).

Let y ∈ ẼL. For every j ≥ J ′(L) + logc
(
|L|−1

)
, we define the family

B2(j) =
{
B(y, 3c−ρnj,y,ρ) : y ∈ ẼL

}
.

The family B̃2(j) fulfills conditions of Theorem 3.1. Hence, Q(d) families of disjoint
balls B1

2(j), ...,BQ(d)
2 (j) can be extracted from B2(j). Moreover, we can also extract
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from these families one finite family of disjoint balls G̃L2 (j) = {B1, B2, . . . , BN}
such that

(49) mL
( ⋃
Bk∈ eG2(j)

Bk

)
≥ ‖mL‖

16Q(d)
.

Each of these balls Bk can be written B(yk, 3c−ρnj,yk,ρ) for some point yk ∈
ẼL and some integer nj,yk,ρ. Moreover, by (16), with each Bk can be associated
[cnj,yk,ρ(d(1−ρ)−χ(c

−nj,yk,ρ ))] points xn in B(yk, c−ρnj,yk,ρ) such that (16) holds. As
above, S(Bk) denotes the set of these points xn. The corresponding balls B(xn, λn)
are pairwise disjoint.

By construction, (44) holds for each of these points xn ∈ S(Bk). Moreover,
Lemma 5.1 holds with the measure mL ◦ f−1

L instead of m and with the same
constant M . Consequently, each point xn ∈ S(Bk) such that (16) holds is such

that PρM (B(xn, λρn)) and Dm
L◦f−1

L

M

(
fL(Bk)

)
hold.

We then consider I(δ)
n = B(xn, λδn), and we denote by Fn,k the closure of one

c-adic box of maximal diameter included in I
(δ)
n . Again we have (45).

We write Bk = Fn,k. Conversely, if a closed c-adic box F can be written B for
some larger ball B, we write B = F . We eventually set

(50) GL2 (j) = {Fn,k : Fn,k ∈ G̃L2 (j)}.

On the algebra generated by the elements of GL2 (j), an extension of the proba-
bility measure mρ,δ is defined by

mρ,δ(F ) = mρ,δ(L)
mL(F )

#S(F )∑
Bk∈ eGL2 (j)m

L(Bk)
.

Since Dm
L◦f−1

L

M

(
fL(Bk)

)
and (45) hold, we get

mL(F ) ≤
(
|F |
|L|

)β−ϕ( |F ||L| )
≤ C|F |

ρβ
δ |L|−β

(
|F |
|L|

)−ϕ( |F ||L| )
≤ C|F |

ρβ
δ |L|−β |F |−ϕ(|F |),

where the monotonicity of x 7→ x−ϕ(x) of assumption (1) is used. Then (46) applied
to F and (49) yield

mρ,δ(F ) ≤ mρ,δ(L)
16Q(d)C
‖mL‖

|F |
ρβ
δ |L|−β |F |−ϕ(|F |)|F |

d(1−ρ)
δ |F |−χ(|F |),

and using (48) finally gives

mρ,δ(F ) ≤ 16Q(d)C|L|
d(1−ρ)+ρβ

δ −β−2ϕ(|L|)−χ(|L|)

‖mL‖
|F |

d(1−ρ)+ρβ
δ −ϕ(|F |)−χ(|F |)

By assumption (1) we can choose j2(L) large enough so that for every integer
j ≥ j2(L), for every I ∈ GL2 (j),

16Q(d)C‖mL‖−1|L|
d(1−ρ)+ρβ

δ −β−2ϕ(|L|)−χ(|L|) ≤ |F |−ϕ(|F |).

Then, taking j2 = max
{
j2(L) : L ∈ G1

}
and defining G2 =

⋃
L∈G1

GL2 (j2), this
yields an extension of mρ,δ to the algebra generated by the elements of G1

⋃
G2.

We have for every F ∈ G1

⋃
G2, mρ,δ(F ) ≤ |F |

d(1−ρ)+ρβ
δ −2ϕ(|F |)−χ(|F |).
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We remark that by construction if J ∈ G1 and F ∈ G2 verify F ⊂ J we have∑
F ′∈G2, F

′
=F

mρ,δ(F ′) ≤ 16Q(d)mρ,δ(J)
mJ(F )
‖mJ‖

.

Also notice that by construction, |F | ≤ maxJ∈G1 2(c−5|J |)δ/ρ ≤ (2c−5δ/ρ)2 for
every F ∈ G2. Moreover, F is contained in some I(δ)

n such that |I(δ)
n | ≤ C|F |, where

C is a constant which depends only on c.

- Third step: Assume that N generations of closed c-adic boxes G1, . . . , GN
have already been found for some integer N ≥ 2. Assume also that a probability
measure mρ,δ on the algebra generated by

⋃
1≤p≤N Gp is defined and that:

(i) The elements of Gp are pairwise disjoint closed c-adic boxes, and for 1 ≤ p ≤
N , maxI∈Gp |I| ≤

(
2c−5δ/ρ

)p.
For 1 ≤ p ≤ N , with each F ∈ Gp is associated a ball F enjoying the properties:

• F ⊂ F ,
• there is a constant C > 0 which depends only on δ such that (45) holds,
• if F1 6= F2 belong to Gp, their distance is at least maxi∈{1,2} F i/3,
• the F ’s (F ∈ Gp) are pairwise disjoint,
• F satisfies the next parts (ii), (iii), (iv) and (v).

(ii) For every 2 ≤ p ≤ N , each element F of Gp is a subset of an element L of
Gp−1. Moreover, F ⊂ L, logc

(
|F |−1

)
≥ J(L) + logc

(
|L|−1

)
and F ∩ ELJ(L) 6= ∅.

(iii) For every 1 ≤ p ≤ N and F ∈ Gp, there exists an integer q such that
F ⊂ B(xq, λδq) = I

(δ)
q ⊂ F and PρM (B(xq, λρq)) holds, and |I(δ)

q | ≤ C|F | for some
constant C which depends only on c.

(iv) For every F ∈
⋃

1≤p≤N Gp, mρ,δ(F ) ≤ |F |
d(1−ρ)+ρβ

δ −2ϕ(|F |)−χ(|F |).

(v) For every 1 ≤ p ≤ N − 1, L ∈ Gp, and F ∈ Gp+1 such that F ⊂ L,∑
F ′∈Gp+1, F ′=F

mρ,δ(F ′) ≤ 16Q(d)mρ,δ(L)
mL(F )
‖mL‖

.

The construction of a generation GN+1 of c-adic boxes and an extension of mρ,δ to
the algebra generated by the elements of

⋃
1≤p≤N+1Gp such that properties (i) to

(v) hold for N + 1 are done as when N = 1.
Then, by induction, we get a sequence (GN )N≥1 and a probability measure on

σ
(
F : F ∈

⋃
N≥1GN

)
such that properties (i) to (v) hold for every N ≥ 1,

and Kρ,δ =
⋂
N≥1

⋃
I∈GN

F . By construction, mρ,δ(Kρ,δ) = 1 and because of (iii)

Kρ,δ ⊂ Sµ(ρ, δ, α, ερM ). Finally, the measure mρ,δ is extended to B([0, 1]d) in the
usual way: mρ,δ(B) := mρ,δ(B ∩Kρ,δ) for every B ∈ B([0, 1]d).

- Last step: Proof of (20). If F ∈ GN , recall that we set g(F ) = N .
Fix B an open ball of [0, 1] of diameter less than the one of the elements of G1

such that B∩Kρ,δ 6= ∅. Let L be the element of largest diameter in
⋃
N≥1GN such

that B intersects at least two balls Li such that Li belongs to Gg(L)+1 and Li is
included in L (hence mρ,δ(B) ≤ mρ,δ(L)).
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• When |B| ≥ |L|:

mρ,δ(B)≤mρ,δ(L)≤|L|
d(1−ρ)+ρβ

δ −2ϕ(|L|)−χ(|L|)≤C|B|
d(1−ρ)+ρβ

δ −2ϕ(|B|)−χ(|B|).

• When |B| < c−J(L)−3|L|: let L1, . . . , Lp be the c-adic boxes in Gg(L)+1 such that
∀i Li intersects B. Property (v) yields

mρ,δ(B) =
p∑
i=1

∑
L∈Gg(L)+1, L=Li

mρ,δ(B ∩ L) ≤
p∑
i=1

mρ,δ(L)
16Q(d)
‖mL‖

mL(Li).

Let j0 be the unique integer so that c−j0 ≤ |B| < c−j0+1. Because of (i), we have
|B| ≥ maxi |Li|/3. As a consequence − logc |Li| ≥ j0 − [logc 3] ≥ j0 − 2.

The same arguments as in the proof of Theorem 2.2 (Case ρ = 1) yield that
there exists an index i0 and a point y ∈ ELJ(L) ∩ Li0 such that

⋃p
i=1 Li is included

in
⋃

k: ‖k−kj0−3,y‖∞≤1 I
c
j0−3,k. Hence

(51)
p∑
i=1

mL(Li) ≤
∑

k: ‖k−kj0−3,y‖∞≤1

mL(Icj0−3,k),

and by definition of ELJ(L), we can bound mL(Icj0−3,k) by

mL(Icj0−3,k) ≤
( |Icj0−3,k|
|L|

)β−ϕ( |Icj0−3,k|

|L|

)
≤ C

(
|B|
|L|

)β ( |B|
|L|

)−ϕ( |B||L| )
.

There are 3d such pairwise disjoint boxes in the sum (51), hence

mρ,δ(B) ≤ 16Q(d)
‖mL‖

mρ,δ(L)3dC
(
|B|
|L|

)β ( |B|
|L|

)−ϕ( |B||L| )

≤ 16Q(d)3dC
‖mL‖

mρ,δ(L)
(
|B|
|L|

)β
|B|−ϕ(|B|).

By (iv), we obtain

mρ,δ(L) ≤ |L|
d(1−ρ)+ρβ

δ |L|−2ϕ(|L|)−χ(|L|) ≤ |L|
d(1−ρ)+ρβ

δ |B|−2ϕ(|B|)−χ(|B|),

which yields

mρ,δ(B) ≤ 16Q(d)3dC
‖mL‖

|L|
d(1−ρ)+ρβ

δ

(
|B|
|L|

)β
|B|−3ϕ(|B|)−χ(|B|).

Then, the second property of (15) in assumption (4) allows to upper bound ‖mL‖−1

by |L|−ϕ(|L|), which is lower than |B|−ϕ(|B|), and thus

(52) mρ,δ(B) ≤ C|L|
d(1−ρ)+ρβ

δ

(
|B|
|L|

)β
|B|−4ϕ(|B|)−χ(|B|).

Finally, if β > d(1−ρ)+ρβ
δ , (52) yields

mρ,δ(B) ≤ C|B|
d(1−ρ)+ρβ

δ

(
|B|
|L|

)β− d(1−ρ)+ρβδ

|B|−4ϕ(|B|)−χ(|B|)

≤ C|B|
d(1−ρ)+ρβ

δ |B|−4ϕ(|B|)−χ(|B|);
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If β ≤ d(1−ρ)+ρβ
δ , (52) yields

mρ,δ(B) ≤ C|B|β |L|
d(1−ρ)+ρβ

δ −β |B|−4ϕ(|B|)−χ(|B|) ≤ C|B|β |B|−4ϕ(|B|)−χ(|B|).

In both cases, if D(β, ρ, δ) = min(β, 1−ρ+ρβ
δ ),

(53) mρ,δ(B) ≤ C|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|).

• c−J(L)−3|L| ≤ |B| ≤ |L|: we need at most cd(J(L)+4) contiguous c-adic boxes
of diameter c−J(L)−3|L| to cover B. For these boxes, (53) can be used to get

mρ,δ(B) ≤ Ccd(J(L)+4)
(
c−J(L)−3|L|

)D(β,ρ,δ)−4ϕ(c−J(L)−3|L|)−χ(c−J(L)−3|L|)

≤ CcdJ(L)|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|)

≤ C|L|−dϕ(|L|)|B|D(β,ρ,δ)|B|−4ϕ(|B|)−χ(|B|)

≤ C|B|D(β,ρ,δ)|B|−(4+d)ϕ(|B|)−χ(|B|).

This shows (20) and ends the proof of Theorem 2.2 when ρ < 1. �

6. Examples

Section 6.1 exhibits several families {(xn, λn)}n which satisfy (10) or (16) for
any measure m, and form weakly redundant systems. Then Section 6.2 provides
examples of triplets

(
µ, α, τ∗µ(α)

)
leading to ρ-heterogeneous ubiquitous systems. It

also gives relevant interpretations to property PρM .

6.1. Examples of families {(xn, λn)}n∈N. Let us notice first that, to ensure (10),
it suffices that

(54)
⋂
N≥1

⋃
n≥N

B
(
xn, λn/2

)
= [0, 1]d.

• The family of the b-adic numbers.

Fix b an integer ≥ 2. Let us consider the sequence {(kb−j , 2b−j)}, for j ∈ N
and k = (k1, k2, . . . , kd) ∈ {0, . . . , bj − 1}d. By construction, for every j ≥ 2,⋃

k∈{0,...,bj−1}d B
(
kb−j , b−j

)
= [0, 1]d. Hence (54) is satisfied, (16) holds for any

measure m and the family is weakly redundant.

• The family of the rational numbers.

By Theorem 200 of [30], any point x = (x1, . . . , xd) ∈ [0, 1]d such that at least one
of the xi is an irrational number satisfies for infinitely many p = (p1, p2, . . . , pd)
and q the inequality ‖x − p/q‖∞ ≤ q−(1+1/d). As a consequence, the sequence{(

p/q, 2q−(1+1/d)
)}

for q ∈ N∗ and p = (p1, p2, . . . , pd) ∈ {0, . . . , q − 1}d fulfills
(54). Here again, (16) holds for any measure m.

To ensure the weak redundancy, we must select only the rational numbers{(
p/q, 2q−(1+1/d)

)}
such that at least one fraction pi/q is irreducible. But (54)

is no more satisfied. Indeed, the rational numbers p/q themselves do not belong to
the corresponding limsup-set (each rational number belongs only to a finite num-
ber of balls B

(
p/q, 2q−(1+1/d)

)
. Nevertheless, as soon as the rational points are

not atoms of m (for instance if dim(m) > 0), both (10) and (16) hold. In this case,
by Theorem 193 of [30], the same holds with

{(
p/q, 2/

√
5q2
)}

when d = 1. This
family is used to prove (2).

• The family
{

({nα}, 1/n)
}
n∈N.
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Let us focus on the case d = 1 to introduce another family. Let α be an irrational
number. For every n ∈ N, we denote by {nα} the fractional part of nα. If x /∈
Z +αZ, we have |nα−x| < 1/2n for an infinite number of integers n (see Theorem
II.B in [20] for instance). Hence

R\ (Z + αZ) ⊂
⋂
N≥1

⋃
n≥N

B({nα}, 1/2n).

As soon as m (Z + αZ) = 0, (10) is satisfied for the family {({nα}, 1/n)}n≥1. We
do not know the measures m for which (16) holds. However the following property
concerning the redundancy holds:

Proposition 6.1. {({nα}, 1/n)}n≥1 forms a weakly redundant system if and only
if inf

{
ξ : #

{
(p, q) ∈ N× N∗ : |α− p/q| ≤ q−ξ

}
=∞

}
= 2.

We know that every irrational number is approximated at rate ξ ≥ 2 by the
rational numbers. But the system {({nα}, 1/n)}n is weakly redundant if and only
if the approximation rate by rational numbers of α is exactly equals 2.

Proof. Notations of Definition 2.1 are used.
We remark that Tj (defined by (6)) contains exactly 2j integers.
Suppose that the family is not weakly redundant. For every partition of Tj

into Nj subsets, we have lim supj→+∞ j−1logNj > 0. Let us fix such a partition.
There exists ε > 0 such that for infinitely many integers j, we can find a real
number x ∈ [0, 1] such that more than 2εj among the {B(xn, λn)}n∈Tj contain x.
Since these integers n belong to Tj , the corresponding λn belong to (2−(j+1), 2−j ].
Consequently, these 2εj integers n all verify |{nα} − x| ≤ 2−j .

By a classical argument, there are two integers n and n′ of Tj such that

(55) n 6= n′, |n− n′| ≤ 2j and |{nα} − {n′α}| ≤ 2 · 2−j(1+ε).

We deduce from (55) that there exists p ∈ N such that
∣∣|n − n′|α − p

∣∣ ≤ 2 ·
2−j(1+ε) ≤ 2|n − n′|−(1+ε). Hence

∣∣α − p/|n− n′|∣∣ ≤ 2|n − n′|−(2+ε). Since (55)
holds for infinitely many j, |n−n′| cannot be bounded as j goes to ∞. This yields
ξα := inf

{
ξ : #

{
(p, q) ∈ N× N∗ :

∣∣α− p/q∣∣ ≤ q−ξ} =∞
}
> 2.

Conversely, if ξα > 2, fix ε ∈ (0, ξα − 2). For infinitely many (p, q) ∈ N × N∗,
we have |α− p/q| ≤ q−(2+ε). For such an integer q, we have {nqα} ≤ 1/qn for
every n ∈

[
1, qε/2

]
. For q large enough, let jq be the largest integer j so that

[j, j+1] ⊂ [log2(q), (1 + ε/2) log2(q)]. Consider then Tjq . By construction, the point
0 belongs to at least 2

ε
4 jq balls B(xn, λn) such that n ∈ Tjq . Hence Njq ≥ 2jqε/4.

Since this holds for infinitely many j’s, the conclusion follows. �

• Poisson point processes.

Let S be a Poisson point process with intensity λ⊗ ν in the square [0, 1]× (0, 1],
where λ denotes the Lebesgue measure on [0, 1] and ν is a positive locally finite
Borel measure on (0, 1] (see [38] for the construction of a Poisson process). Let us
take the family {(xn, λn)}n equal to the set S. Let c be an integer ≥ 2. Then for
j ≥ 1, let us introduce the quantities T cj = {n : c−(j+1) < λn ≤ c−j}, as well as

βj = j−1logc ν((c−(j−1), c−(j−2)]) and β = lim sup
j→∞

βj .
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We have β = lim supj→∞ j−1logb E(#Tj−2) for b ∈ {2, c}, but we use a basis c
rather than 2 in order to discuss property (16). In fact, it is a general property
that the number lim supj→∞ j−1logc #T cj itself does not depend on c. We group
the information concerning (10), (16) and weak redundancy:

Proposition 6.2. (1) Suppose
∫

[0,1]
exp

(
2
∫

[t,1]
ν((2y, 1)) dy

)
dt = +∞. This

implies in particular β ≥ 1. With probability 1, (54) holds.
(2) Fix ρ ∈ (0, 1). Let χ be a function defined as in Definition 2.3. If there

exists an increasing sequence (jn)n≥1 such that βjn ≥ 1 − χ(c−jn) + 4/jn,
then with probability 1, (16) holds for any measure m.

(3) {(xn, λn)}n is weakly redundant almost surely if and only if β ≤ 1.

As a consequence, if ν(dλ) = γdλ/λ2 with γ > 1/2, with probability 1, the
system S is weakly redundant and (54) holds. In addition, if γ is large enough,
with probability 1, (16) holds for any measure m.

Proof. (i) It is a consequence of Shepp’s theorem (see [46] and [16]).
(ii) We shall need the following lemma.

Lemma 6.3. Let γ ∈
(
1, 2, 1

)
. Let N be a Poisson random variable with parameter

M . For all p ≥ 1, we have P(N ≤M −Mγ) = O(M−p) (M →∞).

The proof of Lemma 6.3 uses the identity
∑n
k=0 exp(−M)M

k

k! =
∫∞
M

un

n! e
−u du

(M > 0, n ∈ N) as well as Laplace’s method for equivalents of integrals.
For j ≥ 1 and 0 ≤ k ≤ c[jρ] − 1, let Îc[jρ],k be the subset of Ic[jρ],k obtained by

keeping one over c of the consecutive c-adic subintervals of I[jρ],k of generation j−2,
that is Îc[jρ],k =

⋃
k′=0,...,cj−[jρ]−3−1

Icj−2,cj−2−[jρ]k+ck′ . Let us also define the random

sets Sj,k =
{
n : λn ∈ (c−(j−1), c−(j−2)], xn ∈ Îc[jρ],k

}
, and the random variables

Nj,k = #Sj,k. The Nj,k’s are mutually independent Poisson random variables with
parameter Mj equal to the product of ν

(
(c−(j−1), c−(j−2)]

)
with

∣∣Îc[jρ],k∣∣, that is
Mj = cjβj · c−[jρ]−1.

Fix γ ∈ (1/2, 1) and let Ej =
{
∀ 0 ≤ k ≤ c[jρ] − 1, Nj,k ≥Mj −Mγ

j

}
for j ≥ 1.

We have P(Ej) =
(
P(Nj,0 ≥Mj−Mγ

j )
)c[jρ] . Moreover, by definition of jn, we have

limn→∞Mjn = ∞. Consequently, using the form of Mj and Lemma 6.3, we have
limn→∞ P(Ejn) = 1. Since the events Ejn are independent, by the Borel-Cantelli
lemma we have P(lim supn→∞Ejn) = 1.

A computation shows that Mjn −M
γ
jn
≥ c(βjn−ρ)jn−4 for n large enough. It

follows that with probability 1, there exist infinitely many jn such that for all
0 ≤ k ≤ c[jnρ] − 1, Njn,k ≥ cjn(1−ρ−χ(c−jn )). Moreover, by construction, the balls
B(xn, λn) for n ∈ Sj,k are pairwise disjoint, and if y ∈ [0, 1], B(y, c−jnρ) contains
at least one of the Î[jnρ],k’s. The conclusion follows.

(iii) If β ≤ 1, the fact that {(xn, λn)}n forms almost surely a weakly redundant
system is a consequence of the estimates obtained in the proofs of Lemma 5 and 8
of [32] for the numbers Ñj,k = #{n ∈ Tj : xn ∈ [k2−j , (k + 1)2−j ]}.

If β > 1, computations patterned after those performed in proving (ii) show that
if ε ∈ (0, β − 1), with probability 1, there are infinitely many integers j such that
for all k ∈ {0, . . . , cj − 1}, #{n ∈ Tj : xn ∈ Icj,k} ≥ cjε. �
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• Random family based on uniformly distributed points.

Let {xn}n be a sequence of points independently and uniformly distributed in
[0, 1]d and {λn}n a non-increasing sequence of positive numbers.

We do not know conditions ensuring that (16) holds for some non-trivial measure
m. The following Proposition concerns (10) and weak redundancy.

Proposition 6.4. Let β = lim supj→∞ j−1log2 #Tj.

1. Suppose that lim supn→+∞

(∑n
p=1 λp/2

)
− d log n = +∞. This implies β ≥ 1.

With probability 1 (54) holds.
2. Suppose that β ≤ 1. With probability 1, {(xn, λn)}n is weakly redundant.

As a consequence, if λn = γ/n for some γ > 2d then, with probability 1,
{(xn, λn)}n is weakly redundant and (54) holds.

Proof. (i) It is Proposition 9 of [35].
(ii) The estimates of [32] invoked in the proof of Proposition 6.2(iii) also concern
N̂j,k = #{n ∈ Tj : xn ∈ [k2−j , (k + 1)2−j ]} for the example we are dealing with
(i.e. (xn) is a sequence of i.i.d. uniform variables) when d = 1. In particular, when
d = 1, a sufficient condition for the system to be weakly redundant is β ≤ 1. Since a
random variable with uniform distribution in [0, 1]d is a random vector in Rd which
components are independent uniform random variables in [0, 1], the same property
holds in dimension d if β ≤ 1. �

6.2. Examples of measures µ and m, Interpretations of the property PρM .
We give interpretations only for P1

M , since PρM contains similar information.
Given the measure µ and the exponent α > 0, there is typically an uncountable

family of values of β > 0 such that properties (11), (13), (3) and (4) of Definition 2.2
hold for many systems {(xn, λn)}n. Consequently, we seek for the largest value of
β. It follows from the study of the multifractal nature of statistically self-similar
(including the deterministic) measures we deal with that, in general, this optimal
value is given by β = τ∗µ(α) (see formulas (7) and (8)).

We select four classes of measures to which Theorem 2.2 is applicable. Other
examples can be found in [28, 7, 2, 8, 14]. We keep in mind part 3. of Remark 2.1.

For the rest of this section the sequences {xn}n∈N and {λn}n∈N are fixed, and
we assume that (0, 1)d ⊂ lim supn→∞B(xn, λn/2).

For C, κ, r > 0 and γ > 1/2, let ϕC(r) = C| log(r)|−1/2(log log | log(r)|
)1/2,

ϕ̃κ(r) =
(

log | log(r)|
)−κ, and ψγ(r) = C| log(r)|−1/2( log | log(r)|

)γ .

• Product of d multinomial measures and frequencies of digits

Let (π(i)
0 , . . . , π

(i)
c−1), 1 ≤ i ≤ d, be d probability vectors with positive components

such that
∑c−1
l=0 π

(i)
j = 1, ∀ 1 ≤ i ≤ d. For 1 ≤ i ≤ d let µ(i) be the multinomial mea-

sure on [0, 1] associated with (π(i)
0 , . . . , π

(i)
c−1), and µ = µ(1)⊗ · · · ⊗µ(d) the product

measure of the µ(i) on [0, 1]d. We have τµ(i)(q) = − logc
∑c−1
k=0(π(i)

k )q and τµ(q) =∑d
i=1 τµ(i)(q). It is convenient to take α = τ ′µ(q) for some given q ∈ R. Let us then

define β = τ∗µ(α) = qτ ′µ(q)−τµ(q), and µq = µ
(1)
q ⊗· · ·⊗µ(d)

q , where µ(i)
q is the multi-

nomial measure associated with the vector
(
c
τ
µ(i) (q)(π(i)

0 )q, . . . , cτµ(i) (q)(π(i)
c−1)q

)
.
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It is proved in [13] that each measure µ(i) satisfies properties (11), (13), (3) and
(4’) with the exponents αi = τ ′

µ(i)(q) and βi = qτ ′
µ(i)(q)−τµ(i)(q), and with m equal

to µ(i)
q . This requires some work, because the masses of the c-adic boxes and of their

immediate neighbors need to be controlled. We can choose mI ◦ f−1
I = m = µ

(i)
q ,

and (3) and (4’) do not matter. Moreover, (ϕ,ψ) is of the form (ϕC , ψγ).
Now, in terms of conditioned ubiquity, it is interesting to recall the well-known

interpretation of the conditions (11) and (13), which hold for each µ(i), in terms of
c-adic expansions (recall Section 1 and the definition (1) of φk,j): For µ(i)-almost
every point xi ∈ [0, 1], for every 0 ≤ k ≤ c − 1, for all y ∈ Ij,kxi−1 ∪ Ij,kxi ∪
Ij,kxi+1, limj→∞ φk,j(y) = c

τ
µ(i) (q)(π(i)

k )q.

The previous remarks yield the following result, which implies (2).

Proposition 6.5. Let q ∈ R. The measure µ satisfies properties (11), (13), (3) and
(4’) with α = τ ′µ(q), β = τ∗µ(α), (ϕ,ψ) of the form (ϕC , ψγ), and mI◦f−1

I = m = µq
for all I ∈ I.

Moreover, there exists a sequence εn ↘ 0 such that, when applying Theorem 2.2,
property Q(xn, λn, 1, α, ε1

M,n) in (19) can be replaced by the following condition
in terms of c-adic expansion: for every 1 ≤ i ≤ d, for every 0 ≤ k ≤ c − 1,∣∣∣φk,[logc(λ

−1
n )](xn,i)− c

τ
µ(i) (q)(π(i)

k )q
∣∣∣ ≤ εn, where xn = (xn,1, . . . , xn,d).

• Gibbs measures and average of Birkhoff sums

Let φ be a (1, . . . , 1)-periodic Hölder continuous function on Rd. Let T be
the transformation of [0, 1)d defined by T

(
(x1, . . . , xd)

)
= (cx1 mod 1, . . . , cxd

mod 1). For k ∈ N, let T k denote the kth iteration of T (T 0 = Id[0,1)d). For every

x ∈ [0, 1)d and n ≥ 1, let us also define the nth Birkhoff sum of x, Sn(φ)(x) =∑n−1
k=0 φ

(
T k(x)

)
as well as Dn(φ)(x) = exp

(
Sn(φ)(x)

)
.

The Ruelle Perron-Frobenius theorem (see [44]) ensures that the probability
measures µn given on [0, 1]d by µn(dx) = Dn(φ)(x) dx/

∫
[0,1)d

Dn(φ)(u) du converges
weakly to a probability measure µ which is a Gibbs state with respect to the
potential φ and the dynamical system ([0, 1)d, T ). The multifractal analysis of µ is
performed in [28, 29] for instance. With φ is also associated the analytic function

L : q ∈ R 7→ d log(c) + lim
n→∞

j−1 log
∫

[0,1)d
Dn(qφ)(u) du, which is the topological

pressure of qφ. We have τµ(q) = qL(1)−L(q)
log(c) . For q ∈ R, let µq be the Gibbs measure

defined as µ, but with the potential qφ.
Then, the structure of µ combined with the Hölder regularity of φ and the law

of the iterated logarithm (see Chapter 7 of [45]) yield

Proposition 6.6. Let q ∈ R. The measure µ satisfies properties (11), (13), (3)
and (4’) with α = τ ′µ(q), β = τ∗µ(α), both ϕ and ψ of the form ϕC , and mI ◦ f−1

I =
m = µq for all I ∈ I.

There exists C > 0 such that, applying Theorem 2.2, in (19) the property
Q(xn, λn, 1, α, ε1

M,n) can be replaced in terms of average of Birkhoff sums by:∣∣L′(q)−A[| logc(λn)|](xn)
∣∣ ≤ ϕC(λn), where Ap(x) = Sp(φ)(x)/p.

• Independent multiplicative cascades, average of branching random walks
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For these random measures, the situation is subtle. Indeed, the study achieved
in [14] concludes that property (4) can be satisfied for some systems {(xn, λn)}n≥1,
while the strong property (4’) fails because of the unavoidable large values of J(L)
for some c-adic boxes L.

Let us recall that these measures µ are constructed as follows. Let X be a real
valued random variable. Let us define L : q ∈ R 7→ d log(c) + log E(eqX), and
assume that L(1) <∞. For every c-adic box J included in [0, 1]d, let XJ be a copy
of X. Moreover, assume that the XJ ’s are mutually independent. The branching
random walk is then

(56) ∀x ∈ [0, 1)d, ∀n ≥ 1, Sn(x) =
∑

J∈I, c−n≤|J|≤c−1, x∈J

XJ .

The measure µ is obtained as the almost sure weak limit of the sequence µn on
[0, 1]d given by µn(dx) =

(
E(eX)

)−n
eSn(x) dx.

Let θ : q ∈ R 7→ qL(1)−L(q)
log(c) . In [39, 37], it is shown that θ′(1−) > 0 is a necessary

and sufficient condition for µ to be almost surely a positive measure with support
equal to [0, 1]d. The multifractal nature of µ or of variants of µ has been investigated
in many works [36, 31, 25, 42, 1, 41, 4]. We need to consider the interior J of the
interval {q ∈ R : θ′(q)q − θ(q) > 0}.

For every q ∈ J and every c-adic box I in [0, 1)d, let us introduce the sequences
of measures µq,n and mI

q,n defined as follows: µq,n is defined as µn but using
XJ(q) := qXJ instead of XJ in (56), and mI

q,n is defined as µq,n but with qXf−1
I (J)

instead of XJ(q) in (56).
It is shown in [4] that, with probability 1, ∀ q ∈ J , the measures µq,n converge

weakly to a positive measure µq on [0, 1]d; In addition, ∀ q ∈ J , for every c-adic box
I of generation ≥ 1, the sequence of measures mJ

q,n converges weakly to a measure
mI
q on [0, 1]d, and τµ(q) = θ(q) on J .
The following result is a consequence of Theorem 4.1 in [14].

Proposition 6.7. Suppose that lim supn→∞B(xn, λn/4) ⊃ (0, 1)d.
For every q ∈ J , with probability 1 (and also with probability 1, for almost

every q ∈ J ), µ satisfies properties (11), (13), (3) and (4) with the exponents
α = τ ′µ(q) and β = τ∗µ(α), (ϕ,ψ) of the form (ϕ̃κ, ψγ), m = µq, mI ◦ f−1

I = mI
q for

all I ∈ I, and D = Q ∩ (1,∞).
There exists γ > 1/2 such that, applying Theorem 2.2, in (19) the property

Q(xn, λn, 1, α, ε1
M,n) can be replaced in terms of average of branching random walks

by:
∣∣L′(q)−A[| logc(λn)|](xn)

∣∣ ≤ ψγ(2λn), where Ap(x) = Sp(x)/p.

• Poisson cascades and average of covering numbers in the case d = 1.

Let ξ > 0 and S a Poisson point process in R× (0, 1) with intensity Λ given by
Λ(ds dλ) = ξdsdλ/2λ2. For every c-adic box I of [0, 1], define SI =

{
(f−1
I (t), |I|−1λ) :

(t, λ) ∈ S, λ < |I|
}

. The point process SI is a copy of S.

For every t ∈ [0, 1] and ε ∈ (0, 1], the covering number of t at height ε by the
Poisson intervals {(s− λ, s+ λ) : (s, λ) ∈ S} is defined by

NS
ε (t) =

∑
(t,λ)∈S, λ≥ε

1{(s−λ,s+λ)}(t) = #
{

(s, λ) ∈ S : λ ≥ ε, t ∈ (s− λ, s+ λ)
}
.
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The measure µ on [0, 1] is the almost sure weak limit, as ε→ 0, of

(57) µε(dt) =
(
E(eN

S
ε (t)
))−1

eN
S
ε (t) dt = εξ(e−1)eN

S
ε (t) dt.

Let L : q ∈ R 7→ ξ−1 + eq − 1, and let θ : q ∈ R 7→ ξ
(
qL(1)− L(q)

)
.

In [7], it is shown that θ′(1−) > 0 is a necessary and sufficient condition for µ
to be almost surely a positive measure supported by [0, 1)d. Let J = {q ∈ R :
θ′(q)q − θ(q) > 0. It is also shown in [7] that, with probability 1, for all q ∈ J ,
the measures µq,ε on [0, 1] given by µq,ε(dt) = εξ(e

q−1)eqN
S
ε (t) dt converge weakly,

as ε → 0, to a positive measure µq on [0, 1]; moreover, for every q ∈ J , for every
c-adic interval I of generation ≥ 1, the family of measures mI

q,ε constructed as µq,ε
but with NSI

ε (t) instead of NS
ε (t) in (57) converges weakly, as ε→ 0, to a measure

mI
q on [0, 1]; finally, we have τµ(q) = θ(q) on J .
The same conclusions as in Proposition 6.7 hold if Q(xn, λn, 1, α, ε1

M,n) is re-

placed by
∣∣∣L′(q) + 1

ξ log(λn)Nλn(xn)
∣∣∣ ≤ ψγ(2λn).

More on covering numbers and related questions can be found in [5, 6].

6.3. Example where dim
(

lim supn→∞B(xn, λn/2)
)
< d. Let us return to the

example of Gibbs measures µ in Section 6.2. Let q0 > 0. Fix K a subset of R such
that τ ′µ(K) ∩ (τ ′µ(q0), τ ′µ(−q0)) = ∅. Define the system

{(xn, λn)} =
{(

(k + 1/2) c−j , c−j
)

:
logµ

(
B
(
(k + 1/2) , c−j

))
−j log(c)

∈ K
}
.

Let S = lim supn→∞B(xn, λn/2). For every q ∈ K, we have µq(S) = 1 and
dim S ≤ max

(
τ∗µ(τ ′µ(−q0)), τ∗µ(τ ′µ(q0))

)
< d.
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[32] Jaffard, S.: The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114,

207–227 (1999).
[33] Jaffard, S.: On lacunary wavelet series. Ann. Appl. Prob. 10, 313–329 (2000).

[34] Jarnik, V.: Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sbornik 36,

371–381 (1929).
[35] Kahane, J.-P.: Some random series of functions, 2nd Ed. Cambridge Univ. Press (1985).

[36] Kahane, J.-P.: In: J. Bélair and S. Dubuc (eds.) Produits de poids aléatoires et indépendants
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