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COMPARING MULTIFRACTAL FORMALISMS:

THE NEIGHBORING BOXES CONDITION ∗

JULIEN BARRAL† , FATHI BEN NASR‡ , AND JACQUES PEYRIÈRE§

Abstract. Physicists usually compute dimensions by using boxes and they also do so when
dealing with multifractals. Also in the study of some dynamical systems and multiplicative processes,
boxes naturally appear. On the other hand, in geometric measure theory, it is preferred to perform
computations which do not depend on a grid.

This article provides a bridge between the boxes and the grid-free approaches to the multifractal
analysis of measures. Results for quasi-Bernoulli measures and statistically self-similar measures are
obtained.

1. Introduction. The multifractal analysis of a measure µ aims at relating the
dimension of the level sets of the pointwise Hölder exponent of µ to the Legendre
transform of some kind of entropy or free energy function, a problem initially raised
and studied for physical motivations ([19, 17, 18, 25, 26]).

To define these pointwise Hölder exponents one has two alternatives: to define

α(x) as the limit, when it exists, of either the ratio
log µ

(
B(x, r)

)

log r
when r goes to 0,

or the ratio
log µ

(
Qn(x)

)

log diam(Qn(x))
when n goes to +∞ (where B(x, r) stands for the ball

of radius r centered at x and Qn(x) stands for the c-adic box of size c−n which con-
tains x). Of course the partition function is defined in terms of covers or packings by
balls in the former case, by boxes in the latter case. It is usual to observe connections
between these two approaches when µ possesses self-similarity properties and µ is
supported by a regular enough Cantor set ([4, 9, 13, 34, 15, 16, 31, 1]). But there is
no a priori reason why these two approaches should be connected in full generality.
In this work, we give a condition ensuring that if a measure obeys the “box formal-
ism”, then it also obeys the other one. Our results apply on two families of measures
supported by the full c-adic grid of [0, 1], namely the quasi-Bernoulli measures and
the Mandelbrot measures.

The so called “box formalism” is better explained in the abstract setting of trees.
This is the matter of the next section.

In Section 3, the Olsen multifractal formalism is recalled for the reader’s con-
venience. The main comparison theorem is stated and proven in Section 4. This is
explained in the one dimensional case, for the sake of simplicity, but at the end of
this section it is said how to deal with higher dimensions. Section 5 deals with quasi-
Bernoulli measures, and Section 6 with the Mandelbrot multiplicative measures.
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2. Box analysis.

2.1. Trees and weighted trees. Let T be a locally finite rooted tree. If w is
a node, we denote by F (w) the set of nodes which immediately follow w. Let Tn

denote the set of nodes whose geodesic distance from the root equals n. There is a
natural topology on the set ∂T of geodesics stemming from the root which makes ∂T

a metrizable totally disconnected compact space.
We identify a node of T with the set of geodesics going through it and the root.

These sets are open and closed and they are the balls of an ultrametric distance
defining the topology. A Borel measure on T can be identified with a function µ from
the nodes of T to [0,+∞) subject to the condition

µ(v) =
∑

w∈F (v)

µ(w) for all v ∈ T.

From now on, we are given a continuous probability measure ξ on ∂T whose
support is the whole ∂T.

If µ is a measure on ∂T, one defines

Cµ
n(q, t) =

∑∗

w∈Tn

µ(w)qξ(w)t,

where the star means that the terms for which µ(w) = 0 are removed from the sum
—a convention valid throughout this article—, and

τµ(q) = sup{t ∈ R | lim sup
n→∞

Cµ
n(q, t) = +∞}.

Since Cµ
n is a log-convex function, the function τµ is easily seen to be convex and

non-increasing.
One the other hand, for any α ∈ R, one considers the set

Eα =



x ∈ ∂T

∣∣∣∣ lim
ξ(w)→0

x∈w

log µ(w)

log ξ(w)
= α



 .

Let dimξ be the Hausdorff dimension defined by using ξ(w) instead of the diameter
of w (see [8]).

Then it is known (for instance, see [11]) that, for each q for which τ ′
µ(q) exists,

one has

dimξ E−τ ′

µ(q) ≤ τ∗
µ(−τ ′

µ(q)), (2.1)

where τ∗
µ is the Legendre transform of τµ, i.e. τ∗

µ(t) = infq∈R qt + τµ(q). Indeed, the
stronger inequality [11]

Dimξ E−τ ′

µ(q) ≤ τ∗
µ(−τ ′

µ(q)),

where Dimξ stands for the packing dimension (defined in [36]), is almost an instance of
the Chernoff formula [12]. Of course, if these inequalities lead to negative dimensions,
this means that the corresponding set is empty.

The formula

dimξ E−τ ′

µ
(q) = τ∗

µ(−τ ′
µ(q)) (2.2)
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is shown [11] to hold if there exists a measure µq, called a Gibbs measure, such that
there exits C > 0 such that, for all w ∈ T,

1

C
µ(w)qξ(w)τµ(q) ≤ µq(w) ≤ Cµ(w)qξ(w)τµ(q) (2.3)

Indeed, the equality (2.2) appeared, in a non rigourous mathematical form, in [18]
and was proven to hold for some examples [9, 13].

It was noticed in [33] that (2.1) still holds when the function Cµ
n above is replaced

by the infimum of the corresponding sums on the sections of T which lie below level n
(in other terms, one considers covers of ∂T by ultrametric balls).

Indeed, as shown in [5], only the right hand side inequality in (2.3) is needed
to prove (2.2). Since this is reminiscent of the Frostman lemma, it was natural to
consider generalized Hausdorff measures: for q and t in R, and A ⊂ ∂T, define

H
q,t
µ (A) = lim

δ↘0
inf
{∑

µ(wj)
qξ(wj)

t | wj ∈ T, A ⊂
⋃

wj , ξ(wj) ≤ δ
}
.

Lemma 2.1 ([5]). If a compact set A is such that Hq,t
µ (A) > 0, then it carries a

probability measure ν satisfying ν(w) ≤ Cµ(w)qξ(w)t for all w.

Then, if one defines

K
q,t
µ,δ = sup

{∑
µ(wj)

qξ(wj)
t | wj ∈ T, ξ(wj) ≤ δ, wj ∩ wk = ∅ for j 6= k

}
,

K
q,t
µ = lim

↘0
K

q,t
µ,δ,

and

Λµ(q) = sup{t ∈ R | Kµ(q, t) = +∞},

this lemma implies the following theorem.

Theorem 2.2 ([5]). Suppose that Λ′
µ(q) exists and that H

q,Λµ(q)
µ (supp µ) > 0.

Then dimξ E−Λ′

µ
(q) = Λ∗

µ(−Λ′
µ(q)).

2.2. Homogeneous trees. In this section, we suppose that the tree T is ho-
mogeneous of order c and that ξ is uniformly distributed. In this context, it is more
convenient to see T as the free monoid on a c-letter alphabet A.

So, let A∗ =
⋃

n≥0 An be the free monoid consisting of words on A endowed
with the concatenation. The operation of concatenation will be simply denoted by
juxtaposition, and by a dot, when this is necessary for a better understanding. The
empty word ε is the identity element. The length of a word w is denoted by |w|. If
a word v is a prefix of the word w, we write v ≺ w. This defines an order on A∗.
Endowed with this order, A is a tree the root of which is ε. If v and w are words,
v ∧ w stands for their largest common prefix. The quantity d(v, w) = c−|v∧w| defines
an ultrametric distance on A∗.

The completion Â∗ of (A∗, d) is a compact space which is the disjoint union of
A∗ and ∂A∗. The elements of ∂A∗ can be viewed as the infinite sequences of elements
of A. The notion of prefix extends in a natural way to elements of ∂A∗.

We identify w ∈ A∗ with the cylinder {x ∈ ∂A∗ | w ≺ x}, so a Borel measure µ
on ∂A∗ is a mapping from A∗ to R

+ fulfilling the following compatibility condition

µ(w) =
∑

a∈A

µ(wa) for all w ∈ A
∗.
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At last, the measure ξ is so defined: ξ(w) = c−|w|.
In this setting, the τµ function can be defined as follows.

τµ(q) = lim sup
n→+∞

1

n
logc

∑∗

w∈An

µ(w)q,

where q is a real number and the star means, as already said, that the summation
runs only on the w having a non-zero measure. This function τµ is convex and non-
increasing as observed previously.

3. A centered multifractal formalism. Let (X, d) be a metric space and µ a
positive atomless Borel measure on X. The support of µ is denoted by suppµ.

According to Olsen [32], we define several measures and premeasures indexed by
a couple (q, t) of real numbers. If E is a subset of X and δ is a positive real number,
we set

P
q,t

µ,δ(E) = sup
∑∗

µ
(
B(xj , rj)

)q
rt
j ,

this supremum being taken over the collections {B(xj , rj)} of mutually disjoint balls
whose centers xj belong to E and whose radii rj are less than δ. The star means that
we omit in the summation the terms which are obviously infinite (i.e. zero raised to a
negative power). As previously said, this convention holds throughout this paper. Of
course, as long as the measure µ has no point masses, it does not matter that balls be
open or closed. In the sequel, we deal with such measures and, it will be convenient
for our reasonings to consider only closed balls.

We consider the limit

P
q,t

µ (E) = lim
δ↘0

P
q,t

µ,δ(E).

The function P
q,t

µ is called packing pre-measure. It lacks σ-subadditivity to be a
Caratheodory outer measure. This is why one considers the following quantity

P
q,t
µ (E) = inf

E⊂
⋃

Ej

∑
P

q,t

µ (Ej),

which, as a function of E, is an outer measure. (This is the same process as for
defining packing measures, which were introduced in [36].)

In a similar way, one defines Hausdorff-like measures.

H
q,t

µ,δ(E) = inf
∑∗

µ
(
B(xj , rj)

)q
rt
j ,

this infimum being taken over the coverings {B(xj , rj)} of E by balls whose centers
xj belong to E and whose radii rj are less than δ, and consider the limit

H
q,t

µ (E) = lim
δ↘0

H
q,t

µ,δ(E).

In order to deal with an outer measure, one defines

H
q,t
µ (E) = sup

F⊂E

H
q,t

µ (F ).
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These last measures are the multifractal counterparts of the centered Haudorff
measures introduced in [35].

For a fixed q, if, for some t one has P
q,t

µ (suppµ) < +∞, then, for all t′ > t, one has

P
q,t′

µ (suppµ) = 0. Therefore, there exists a unique Λµ(q) ∈ R such that P
q,t

µ (supp µ)
is infinite if t < Λµ(q) and zero if t > Λµ(q).

In a similar way, two functions Bµ and bµ are associated respectively to Pq,t
µ and

Hq,t
µ .

All these three functions are non-increasing; Λµ and Bµ are convex. It is clear
that Bµ ≤ Λµ. If, moreover the metric space (X, d) has the Besicovitch covering
property defined below, one has bµ ≤ Bµ.

If α and β are two real numbers such that α ≤ β, one considers the following sets

Xµ(α, β) =
{

x | α ≤ lim inf
r↘0

log µ
(
B(x, r)

)

log r
≤ lim sup

r↘0

log µ
(
B(x, r)

)

log r
≤ β

}
.

Instead of Xµ(α, α), we shall simply write Xµ(α).

If the derivative of Bµ exists at point q, it is known [32] that the following in-
equalities hold, with the convention that a set of negative dimension1 is empty,

dim Xµ

(
−B′

µ(q)
)
≤ b∗µ

(
−B′

µ(q)
)

Dim Xµ

(
−B′

µ(q)
)
≤ B∗

µ

(
−B′

µ(q)
)
, (3.1)

where, as previously, the star as an exponent denotes the Legendre transform —i.e.
f∗(α) = infq∈R αq + f(q)— and where dim and Dim stand for the Hausdorff and
packing dimensions.

Definition 3.1. If B′
µ(q) exists and if all the quantities in (3.1) are equal, one

says that the measure µ obeys the multifractal formalism at point q.

Before recalling the following theorem [6], we need another definition.

Definition 3.2. A metric space (X, d) is said to have the Besicovitch cov-
ering property if there exists a positive integer β such that, given any collection
{B(xi, ri)}i∈I of balls, one can extract from it packings P1, P2, . . . , Pβ which al-
together form a cover of the set {xi}i∈I .

Any euclidean space has this property, as well as, of course, any ultrametric space.

Theorem 3.3. If (X, d) has the Besicovitch covering property, if α = −B ′
µ(q)

exists, and if H
q,Bµ(q)
µ (supp µ) > 0, then

dim Xµ(α) = Dim Xµ(α) = B∗
µ(α) and bµ(q) = Bµ(q).

4. Comparing multifractal analyses.

4.1. Stating the problem.

Lemma 4.1. Let µ be a non-zero positive measure on ∂A∗. Then one has τµ = Λµ.

Proof. We begin by noticing that, if t > τµ(q), one has

∑∗

w∈A∗

µ(w)q c−t|w| < +∞ (4.1)

1For a further interpretation of negative dimensions, see [26, 27].
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It results that, if t > τµ(q), P
q,t

µ (suppµ) is finite, and therefore t ≥ Λµ(q). This
proves Λµ ≤ τµ. The converse inequality is obvious.

The equality asserted in this lemma is similar to the equivalence of two different
definitions of the quantity called ∆(E) in [36].

The map γ. There is a natural map from ∂A∗ onto R: let us take A =
{0, 1, 2, . . . , c−1} and consider the map γ which sends the element x = a1a2 · · · an · · ·
on the number

∑
n≥1 anc−n. This map sends cylinders onto c-adic intervals, and

when a measure µ on ∂A∗ has no point masses, it is equivalent in many problems to
consider it or its image ν = γ∗(µ) under γ.

This rises the natural question of deciding when the multifractal analysis of ν (in
(R, | |)) and µ (in (∂A∗, d)) are linked. Indeed, there are no reasons (even when ν is
doubling) why Bµ and Bν , for instance, should coincide. There are no reasons either
that Xν(α, β) should be the image of Xµ(α, β) under γ. Nevertheless, one has the
following fact.

Lemma 4.2. One has Λν ≤ τµ.

Proof. Consider first the case q ≤ 0. Let {B(xj , rj)} be a centered packing of
supp ν, and t > τµ(q). Each B(xj , rj) contains a c-adic interval Ij such that xj ∈ Ij ,
|Ij | > rj/c (where |Ij | stands for the length of Ij), and ν(Ij) > 0 (do not forget that
xj ∈ supp ν). Therefore

∑
ν
(
B(xj , rj)

)q
rt
j ≤ ct+

∑
ν(Ij)

q|Ij |
t

≤ ct+
∑∗

w∈A∗

µ(w)q c−t|w| < +∞,

where t+ = max{t, 0}. This yields Pq,t
ν (supp ν) < ∞. Consequently Λν(q) ≤ τµ(q).

Now, consider the case q > 0. Let {B(xj , rj)} be a centered packing of supp ν, and
t > τµ(q). Each B(xj , rj) is covered by at most c+1 c-adic intervals Ij,1, Ij,2, . . . , Ij,kj

of non-zero ν-measure and of common length l satisfying l ≤ 2rj < cl. One has

ν
(
B(xj , rj)

)q
≤ k

(q−1)+

j

kj∑

k=1

ν(Ij,k)q

and rt
j ≤ 2−tct+ |I|t. Observe also that a c-adic interval can appear at most twice as

an Ij,k, since {B(xj , rj)} is a packing. Therefore

∑
ν
(
B(xj , rj)

)q
rt
j

≤ 21−t(c + 1)(q−1)+ct+
∑∗

w∈A∗

µ(w)q c−t|w| < +∞.

This proves again that Λν(q) ≤ τµ(q).

In the next section, we give conditions which ensure that the multifractal analysis
of µ and ν are equivalent. In the subsequent sections, we analyse some examples.
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4.2. The comparison theorems. As recalled in Lemma 2.1 the inequality
Hq,t

µ (supp µ) > 0 (where µ is a measure on ∂A∗) is equivalent to the existence of a mea-
sure µq,t with the property that, for a suitable C > 0, one has µq,t(B) ≤ Cµ(B)q|B|t,
for any ball B of radius |B| small enough. It is convenient to set the following defini-
tion.

Definition 4.3. Let µ be a measure on a metric space X and q and t be two real
numbers. A non-zero measure µ′ having the property that there exists two positive
numbers C and η such that, for all x ∈ suppµ and r ≤ η, one has µ′

(
B(x, r)

)
≤

Cµ
(
B(x, r)

)q
rt is called a Frostman measure for µ at (q, t).

From now on we stick to the convention that µ (with or without subscript) is a
measure on ∂A∗ and that ν (with or without subscript) stands for the corresponding
image measure under γ.

As, via γ, the elements of An correspond to the c-adic intervals of length c−n

contained in [0, 1], one can assign to each w ∈ An a number ı(w) so as to have
γ(w) = [ı(w) c−n, (ı(w) + 1) c−n]. Finally, if the words v and w have the same length,
we set δ(v, w) = |ı(v) − ı(w)|.

If ν = γ∗(µ) has no masses at the endpoints of γ(w), then ν(γ(w)) = µ(w). But,
one always has ν(γ(w)) ≤

∑
v∈A

∗

δ(v,w)≤1
µ(v).

From now on, in this section, we deal with an atomless measure µ on ∂A∗ and
its image ν under γ.

Lemma 4.4. Let q ∈ R and η > 0 be two numbers. Assume there exists a
Frostman measure µq for µ at (q, τµ(q)). Let νq = γ∗(µq) stand for the image of µq

under γ. Then we have the following facts.
1. When q < 0, if c−(n+1) < 2r ≤ c−n, one has

∫

supp ν

[
ν
(
B(x, r)

)−q
νq

(
B(x, r)

)]η
dνq(x) ≤

C c−n(1+η)τµ(q)
∑∗

v,w∈A
n

δ(v,w)≤3

µ(v)(1+η)qµ(w)−ηq.

2. When q ≥ 0, if c−n ≤ r < c1−n, one has
∫

supp ν

[
ν
(
B(x, r)

)−q
νq

(
B(x, (1 +

1

c
)r)
)]η

dνq(x) ≤

C c−n(1+η)τµ(q)
∑∗

v,w∈A
n

δ(v,w)≤4c+2

µ(v)(1+η)qµ(w)−ηq.

In both cases the constant C depends only on q, η, and c.

Proof. We begin by assuming q < 0. By the Besicovitch covering lemma, we
extract from the collection {B(x, r)}x∈supp ν of balls β (a universal constant) packings
which altogether cover supp ν.

One has
∫

B(a,r)∩supp ν

[
ν
(
B(x, r)

)−q
νq

(
B(x, r)

)]η
dνq(x) ≤

ν
(
B(a, 2r)

)−ηq
νq

(
B(a, 2r)

)1+η
.
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The interval B(a, 2r) is contained in at most two c-adic consecutive intervals I1

and maybe I2 of common length l such that l/c < 2r ≤ l. We add to this collection of
one or two intervals the two c-adic intervals of the same length which are contiguous.
We keep only the ones having a non-zero ν-measure. Then we have intervals J1, J2,
J3, and maybe J4 such that, if I is any of the intervals I1 or I2, νq(I) is majorized
by the sum

∑
µq(Ji). We had to adjunct the right and left intervals to cope with the

case where νq has masses at some c-adic points. In these conditions, we have

ν
(
B(a, 2r)

)−ηq
νq

(
B(a, 2r)

)1+η
≤ C1

(∑
ν(Jj)

−qη

) (∑
νq(Jj)

1+η

)

≤ C1

(∑
ν(Jj)

−qη

) (∑
ν(Jj)

(1+η)q |Jj |
(1+η)τµ(q)

)

≤ C2 c−n(1+η)τµ(q)
∑

ν(Ji)
−qη ν(Jj)

(1+η)q,

where the constants C1 and C2 depend only on c, q, and η.

Now, consider the case q ≥ 0. For every x ∈ supp ν, B(x, r) contains at least one
c-adic interval Ix of length c−n such that µ(Ix) > 0 and c−n ≤ r < c1−n.

Fix a ∈ supp(µ) and consider the set of closed c-adic intervals of length c−n

the interior of which intersect B(a, (2 + 1
c
)r), and, as previously, add to them two

intervals of the same generation, one on the right, the other on the left. The number
of elements of the set S of these intervals is bounded by 4c + 3. Therefore

∫

B(a,r)∩supp ν

[
ν
(
B(x, r)

)−q
νq

(
B(x,

(c + 1)r

c
)
)]η

dνq(x)

≤

∫

B(a,r)∩supp ν

[
ν−q(Ix)νq

(
B(x,

(c + 1)r

c
)
)]η

dνq(x)

≤

[∑

I∈S

ν−q(I)

]η ∫

B(a,r)∩supp ν

νq

(
B(x,

(c + 1)r

c
)
)η

dνq

≤

[∑

I∈S

ν−q(I)

]η

νq

(
B(a, (2 +

1

c
)r)
)1+η

≤ C

[∑

I∈S

ν−qη(I)

][∑

I∈S

νq(I)1+η

]
.

The proof ends as previously.

Definition 4.5 (NBC). A measure µ on ∂A∗ is said to satisfy the Neighboring
Boxes Condition (NBC) for q ∈ R if, for all ε > 0, there exists η > 0 such that

∑

n>0

c−n(τµ(q)+εη)
∑

v,w∈A
n

δ(v,w)≤c′

µ(v)−ηqµ(w)(1+η)q < +∞, (4.2)

where c′ = 3 if q < 0, c′ = 4c + 2 otherwise.
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Lemma 4.6. Let q ∈ R. Assume there exists a Frostman measure µq for µ
at (q, τµ(q)) and that µ fulfills the NBC for q. Then, we have bν(q) = τµ(q).

Also, there exists a constant C > 0 such that, for any ε > 0, for νq-almost every x,
and for r small enough, νq

(
B(x, r)

)
≤ C ν

(
B(x, r)

)q
rτµ(q)−ε.

Proof. First consider the case q < 0. Set

F (r) =

∫

supp ν

[
ν
(
B(x, r)

)−q
νq

(
B(x, r)

)]η
dνq(x).

For any ε > 0, we have

∑

n≥0

F (c−n) cnη(τµ(q)−ε) ≤ C
∑

n≥0

c−n(τµ(q)+ηε)
∑

v,w∈A
n

δ(v,w)≤c′

µ(v)−ηqµ(w)(1+η)q,

due to Lemma 4.4. The right hand side quantity is finite for a suitable choice of η,
because of the NBC.

As a consequence of the Borel-Cantelli lemma, for νq-almost every x, one has

νq

(
B(x, c−n)

)
≤ ν

(
B(x, c−n)

)q
c−n(τµ(q)−ε)

for n large enough. Consequently for νq-almost every x, one has νq

(
B(x, r)

)
≤

C ν
(
B(x, r)

)q
rτµ(q)−ε for r small enough.

Similarly, when q ≥ 0, for νq-almost every x, one has

νq

(
B(x, κ1−n)

)
≤ Cν

(
B(x, κ−n)

)q
κ−n(τµ(q)−ε)

for n large enough, where κ = 1 + 1/c. This implies that, for νq-almost every x, one
has νq

(
B(x, r)

)
≤ C ν

(
B(x, r)

)q
rτµ(q)−ε for r small enough.

It results from these estimates that H
q,τµ(q)−ε
ν (supp ν) > 0, and therefore bν(q) ≥

τµ(q).

Lemma 4.7. Under the same assumptions as in Lemma 4.6, one has

νq

(
R \ Xν

(
−B′

ν(q+),−B′
ν(q−)

))
= 0.

Proof. Due to Lemmas 4.2 and 4.6, Bν(q) = τµ(q). Take α < −B′
ν(q+) and set

En =
{
x ∈ supp ν | ν

(
B(x, r)

)
> rα for r < 1/n

}
.

Choose ε > 0 and t > 0 such that τµ(q) − ε − αt > Bν(q + t). This can be done
for positive, but arbitrarily small, ε. Once ε is chosen, consider the following sets

Gm =
{

x ∈ supp ν | νq

(
B(x, r)

)
≤ C ν

(
B(x, r)

)q
rτµ(q)−ε for r ≤ 1/m

}
,

where C is the constant in Lemma 4.6. Due to this lemma,
⋃

m≥1 Gm has full νq-
measure.

Let F be a subset of En. For any θ < min(1/n, 1/m), consider a centered θ-cover
{B(xj , rj)} of F ∩ Gm which splits in β packings.
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We have, if ν∗
q stands for the outer measure associated with νq,

ν∗
q (F ∩ Gm) ≤

∑
νq

(
B(xj , rj)

)
≤ C

∑
ν
(
B(xj , rj)

)q
r

τµ(q)−ε

j

≤ C
∑

ν
(
B(xj , rj)

)q+t
r

τµ(q)−ε−αt

j ν
(
B(xj , rj)

)−t
rαt
j

≤ C
∑

ν
(
B(xj , rj)

)q+t
r

τµ(q)−ε−αt

j

≤ βC P
q+t,τµ(q)−ε−αt

ν,θ (F ).

This means that ν∗
q (F ) ≤ CP

q+t,τµ(q)−ε−αt

ν (F ), and

νq(En) ≤ P
q+t,τµ(q)−ε−αt
ν (En) ≤ P

q+t,τµ(q)−ε−αt
ν (supp ν).

But this last quantity equals 0 because τµ(q) − ε − αt ≥ Bν(q + t). Therefore

νq

({
x ∈ supp ν | lim sup

r↘0

log ν
(
B(x, r)

)

log r
< α

})
= νq

(⋃
En

)
= 0.

Thus we proved the equality

νq

({
x ∈ supp ν | lim sup

r↘0

log ν
(
B(x, r)

)

log r
< −B′

ν(q+)

})
= 0.

The equality

νq

({
x ∈ supp ν | lim sup

r↘0

log ν
(
B(x, r)

)

log r
> −B′

ν(q−)

})
= 0.

is proven in a similar way.

Theorem 4.8. Under the same hypotheses as in Lemma 4.6, we have

dim Xν

(
−B′

ν(q+),−B′
ν(q−)

)
≥

{
τ∗
µ

(
−B′

ν(q+)
)

if q ≥ 0,

τ∗
µ

(
−B′

ν(q−)
)

if q ≤ 0.

Proof. Due to Lemma 4.7, νq is carried by Xν

(
−B′

ν(q+),−B′
ν(q−)

)
. On the other

hand, due to Lemma 4.6, for νq-almost every x, for ε > 0, and for r small enough,
one has

log νq

(
B(x, r)

)

log r
≥

log C

log r
+ q

log ν
(
B(x, r)

)

log r
+ τµ(q) − ε.

One concludes by using the Billingsley lemma [8].

Corollary 4.9. Let q ∈ R. Assume there exists a Frostman measure µq for µ
at (q, τµ(q)). If τ ′(q) exists and if µ fulfills the NBC for q, then both measures µ
and ν = γ∗(µ) satisfy the multifractal formalism at q and one has bν(q) = Bν(q) =
Λν(q) = bµ(q) = Bµ(q) = Λµ(q) = τµ(q).

By careful analysis of the steps which lead to the previous theorem and its corol-
lary, and a few modification, one can prove the following result.
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Theorem 4.10. Let q ∈ R. Assume there exists a non-zero measure µq on ∂A∗

and a function Cq on A∗ such that µq(w) ≤ Cq(w)µ(w)q c−|w|τµ(q) for all w ∈ A∗

such that µ(w) > 0. If τ ′(q) exists and if, for all ε > 0, there exists η > 0 such that,
we have

∑

n>0

c−n(τµ(q)+ηε)
∑

v,w∈A
n

δ(v,w)≤c′

µ(v)−ηqCq(w)1+ηµ(w)(1+η)q < +∞

(where c′ = 3 if q < 0, c′ = 4c + 2 otherwise), then both measures µ and ν = γ∗(µ)
obey the multifractal formalism at q, and bν(q) = Bν(q) = Λν(q) = bµ(q) = Bµ(q) =
Λµ(q) = τµ(q).

One can remark that the conjunction of the existence of a Gibbs measure and of
the NBC is stronger than the hypothesis of this last theorem, which therefore can be
called weak NBC.

Remark. [The case of higher dimension] We stated and proved these com-
parison theorems in a one dimensional setting in order not to deal with too complicated
notations. But these results hold for measures on R

d. Here are the few modifications
to be made to accomodate this case.

This time, the alphabet is of the form Ad. So each node w of the tree
(
Ad
)∗

can

be viewed as a collection (w1, w2, . . . , wd) of words on A. An element x of ∂
(
Ad
)∗

can

be identified to (x1, x2, . . . , xd) ∈
(
∂A∗

)d
and a mapping, which we again call γ, from

∂
(
Ad
)∗

to R
d is defined by γ(x) =

(
γ(x1), γ(x2), . . . , γ(xd)

)
. Similarly, the distance

of two nodes v = (v1, v2, . . . , vd) and w = (w1, w2, . . . , wd) of the same generation,
again denoted by δ, is δ(v, w) = max

{
δ(v1, w1), δ(v2, w2), . . . , δ(vd, wd)

}
. At last, the

value of c′ is unchanged. Then, as already said, the previous results hold, with the
same proofs, if µ is a measure on ∂

(
Ad
)∗

and ν = γ∗(µ).

5. Quasi-Bernoulli measures. A probability measure on ∂A∗ is said to be
quasi-Bernoulli if there exists C > 0 such that, for any v and w in A∗, one has

1

C
µ(v)µ(w) ≤ µ(vw) ≤ Cµ(v)µ(w). (5.1)

The multinomial measures constitute a paradigm of such measures. They are
very special elements of a larger family. Indeed, denote by S the shift operation on
∂A∗. Due to its construction [10], any Gibbs measure with Hölder potential on the
dynamical system (∂A∗, S) is quasi-Bernoulli. Moreover, any quasi-Bernoulli measure
is equivalent to an ergodic quasi-Bernoulli measure (see [20]).

It turns out from [28, 29, 11] that for every q ∈ R there exists a probability
measure µq and a constant Cq > 0, such that, for every v ∈ A∗ such that µ(v) 6= 0,
one has

1

Cq

µ(v)qc−τµ(q)|v| ≤ µq(v) ≤ Cqµ(v)qc−τµ(q)|v|. (5.2)

Moreover, the function τµ is differentiable [20]. As a consequence, the first two
assumptions in Corollary 4.9 are fulfilled for every q ∈ R.

Clearly, a quasi-Bernoulli probability measure µ on ∂A∗ has an atom if and only
if µ(j) = 1 for some j ∈ A1, in which case µ = δjj...j.... We discard this case and
prove the following result.
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Theorem 5.1. Let µ be a continuous quasi-Bernoulli measure on ∂A∗. Then
both measures µ and ν = γ∗(µ) obey the multifractal formalism everywhere and one
has bν = Bν = Λν = bµ = Bµ = Λµ = τµ.

This result is established without using the NBC in [7] under the strong hypoth-
esis: for all n ≥ 1, if a, b ∈ An and δ(a, b) = 1 then µ(a)µ(b) = 0. In particular, the
case c = 2 is excluded and in the case c = 3 µ is a Dirac mass.

Proof. We begin by a preliminary remark: if v and w are words of length n, and if
v̇ and ẇ stand for their prefixes of length n−1, then δ(v̇, ẇ) > k implies δ(v, w) > ck.
It results that, given two integers n ≥ m > 0 and two words v and w in An such that
cm−1 < δ(v, w) ≤ cm, there exists two prefixes v̄ and w̄ of v and w respectively of
common length n − m such that δ(v̄, w̄) ≤ 1.

It results from (5.1) and the above remark that, for a quasi-Bernoulli measure to
fulfill the NBC it is enough that for all ε > 0, there exists η > 0 such that

∑

n>0

c−n(τµ(q)+ηε)
∑

v,w∈A
n

δ(v,w)≤1

µ(v)−ηqµ(w)(1+η)q < +∞. (5.3)

Due to the existence of the Gibbs measure µq this reduces to
∑

n>0

c−n(τµ(q)+ηε)
∑

v,w∈A
n

δ(v,w)=1

µ(v)−ηqµ(w)(1+η)q < +∞.

Define Ã = {0 ≤ j ≤ c − 2 | µ(j)µ(j + 1) 6= 0}.

Define ρk to be the word consisting of k consecutive zeros and λk to be the
word consisting of k consecutive c − 1 (considered as a letter from the alphabet
{0, 1, 2, . . . , c − 1}).

By (5.1), for n ≥ 1, a representation of the set of pairs (v, w) in An such that
µ(v)µ(w) 6= 0 and ı(w) = ı(v) + 1 is as follows:

n−1⋃

k=0

⋃

u∈A
n−1−k

µ(u)6=0

{
(
u.j.λk, u.(j + 1).ρk

)
| j ∈ Ã} (5.4)

if µ(0)µ(c − 1) 6= 0 and

⋃

u∈A
n−1

µ(u)6=0

{
(
u.j, u.(j + 1)

)
| j ∈ Ã}

otherwise.
We end the proof when µ(0)µ(c − 1) 6= 0. The other case is simpler. We have to

prove that for every ε > 0, there exists η > 0 such that

Sq,ε(η) =
∑

n≥1

c−n(τµ(q)+ηε)
n−1∑

k=0

∑

u∈A
n−1−k

µ(u)6=0

∑

j∈Ã

µ(u.j.λk)q µ(u.j.λk)qη

µ
(
u.(j + 1).ρk

)qη + µ
(
u.(j + 1).ρk

)q µ
(
u.(j + 1).ρk

)qη

µ(u.j.λk)qη
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is finite.

Fix ε > 0. Let η be a positive number to be chosen later on. By (5.1),

µ(u.j.λk)q µ(u.j.λk)qη

µ
(
u.(j + 1).ρk

)qη + µ
(
u.(j + 1).ρk

)q µ
(
u.(j + 1).ρk

)qη

µ(u.j.λk)qη
≤

C(q, η)µ(u)q

[
µ(λk)q µ(λk)qη

µ(ρk)qη
+ µ(ρk)q µ(ρk)qη

µ(λk)qη

]
(5.5)

for some constant C(q, η). Therefore

Sq,ε(η) ≤ (c − 1)C(q, η)
∑

n≥1

c−n(τµ(q)+ηε)fn(q, η) (5.6)

with

fn(q, η) =
n−1∑

k=0

c(n−1−k)τµ,n−1−k(q)

[
µ(λk)q µ(λk)qη

µ(ρk)qη
+ µ(ρk)q µ(ρk)qη

µ(λk)qη

]
,

where

τµ,k(q) =
1

k
logc

∑∗

u∈Ak

µ(u)q.

By using (5.2) we get

1

Cq

ckτµ(q) ≤ ckτµ,k(q) ≤ Cqc
kτµ(q). (5.7)

Then (5.2) and (5.7) yield

fn(q, η) ≤ C2+2η
q c(n−1)τµ(q)

n−1∑

k=0

[
µq(λk)

µq(λk)η

µq(ρk)η
+ µq(ρk)

µq(ρk)η

µq(λk)η

]
. (5.8)

By construction µq has no atoms and is quasi-Bernoulli. Consequently, by
the sub-multiplicativity property (up to a multiplicative constant) of µq, both
limn→∞

1
n

log µq(ρn) and limn→∞
1
n

log µq(λn) exist and are negative. Therefore if η
is small enough (notice that η does not depend on ε), one has

Mq(η) = sup
k∈N

[
µq(ρk)

µq(ρk)η

µq(λk)η
+ µq(λk)

µq(λk)η

µq(ρk)η

]
< ∞

and, by (5.8),

fn(q, η) ≤ C2+2η
q Mq(η)nc(n−1)τµ(q).

Finally by (5.6)

Sq,ε(η) ≤ (c − 1)C(q, η)C2+2η
q Mq(η)c−τµ(q)

∑

n≥1

nc−nηε < ∞.
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6. Statistically self-similar measures. In this section, we consider the ran-
dom measures introduced by B. Mandelbrot in [24]. Up to now, their multifrac-
tal analysis has been mostly performed in the setting of the tree of c-adic intervals
(see [22, 21, 14, 30, 2, 3]). Nevertheless, Arbeiter and Patzschke [1] obtained a result
in the same spirit as ours under strong assumptions without setting a general frame.
To be more specific, they compute the Hausdorff dimension of the level sets of the
local centered Hölder exponent, for each α with probability one, for a Mandelbrot
cascade on the attractor of an IFS satisfying the OSC.

Mandelbrot measures do not satisfy the NBC. This motivated the consideration
of the weak NBC (Theorem 4.10).

For the sake of simplicity, we only deal with the so-called canonical multiplicative
cascades. Let us recall a construction of these measures.

Fix W a non-negative random variable. Assume that W is not almost surely
constant and that E(W ) = 1/c.

Define the function τ̃(q) = 1 + logc E
(
1{W>0}W

q
)

for q ∈ R.

In order to avoid technicalities, unessential to our purpose, we assume that W is
positive and that τ̃(q) is finite for any q ∈ R.

Let (Ww)w∈A∗ be a sequence of independent copies of W . For every n ≥ 1,
consider the random measure µn whose density with respect to the uniform probability
measure on ∂A∗ is locally constant and equals

cnWw1
Ww1w2

. . . Ww1w2...wn

on the cylinder w = w1w2 . . . wn. With probability one, the sequence µn converges
weakly to a measure µ as n goes to infinity. Moreover, if τ̃ ′(1) < 0, one has µ 6= 0
(see [23]).

Then, define J = {q ∈ R; τ̃ ∗(−τ̃ ′(q)) > 0}. It follows from Theorem 8(iv) in [3]
that τµ = τ̃ on J .

Theorem 6.1. With probability one, both measures µ and ν = γ∗(µ) satisfy the
multifractal formalism on J and bν = Bν = Λν = bµ = Bµ = Λµ = τµ = τ̃ on J .

Proof. For every q ∈ J , v ∈ A∗ and n ≥ 1, define

Yq,n(v) = c−nτ̃(q)
∑

w1...wn∈An

W q
vw1

W q
vw1w2

. . . W q
vw1w2...wn

.

It follows from Corollary 5 in [3] that, with probability one, for all v ∈ A∗ and all
q ∈ J , the limit Yq(v) = limn→∞ Yq,n(v) exists. Moreover, with probability one, for
all q ∈ J , the mapping µq defined on ∂A∗ by

µq(v) = c−|v|τ̃(q)Yq(v)

|v|∏

j=1

W q
v1···vj

(6.1)

defines a measure (notice that µ1 = µ); all the measures µq have ∂A∗ as support and
for all v ∈ A∗ and q ∈ J ,

µq(v) = Cq(v)µ(v)qc−|v|τ̃(q) (6.2)
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with

Cq(v) =
Yq(v)

Y q
1 (v)

.

Since τµ = τ̃ on J , the result will be a consequence of Theorem 4.10 if we show
that for every non trivial compact subinterval K of J , with probability one, for all
q ∈ K, for all ε > 0, there exists η > 0 such that

∑

n≥1

c−n(τ̃(q)+ηε)
∑

v,w∈A
n

δ(v,w)≤c′

µ(v)−ηqCq(w)1+ηµ(w)(1+η)q < +∞, (6.3)

i.e.
∑

n≥1

c−n(τ̃(q)+ηε)fn,ε,η(q) < ∞,

where

fn,ε,η(q) =
∑

v,w∈A
n

δ(v,w)≤c′

Y1(v)−ηqYq(w)1+η

n∏

k=1

W−ηq
v1...vk

W (1+η)q
w1...wk

.

Fix such a compact K. It turns out that it suffices to show that for every ε > 0,
if η > 0 is small enough, then

{∑
n≥1 supq∈K nc−n(τ̃(q)+ηε)

E
(
fn,ε,η(q)

)
< ∞∑

n≥1 supq∈K c−n(τ̃(q)+ηε)
E
(
|f ′

n,ε,η(q)|
)

< ∞
(6.4)

(see the proof of Corollary 1 in [3] for a more detailed similar argument).

It follows from Lemma 6 in [3] that for η small enough

CK(η) = sup
q∈K,
n≥1,

v,w∈A
n

E

(
|
d

dq
(Y1(v)−ηqYq(w)1+η)|

)
+ E

(
Y1(v)−ηqYq(w)1+η

)
< ∞

and

C ′
K(η) = sup

q∈K,
n≥1,

v,w∈A
n

E

(
| d
dq

W−ηq
v W

(1+η)q
w |

)

E

(
W−ηq

v W
(1+η)q
w

) < ∞.

By taking into account the fact that the W s are mutually independent, we get

E
(
|f ′

n,ε,η(q)|
)
≤ CK(η)

(
1 + nC ′

K(η)
)
gn,ε,η(q)

where

gn,ε,η(q) =
∑

v,w∈A
n

δ(v,w)≤c′

n∏

k=1

E

(
W−ηq

v1···vk
W

(1+η)q
w1···wk

)
.
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Also, we have

E (fn,ε,η(q)) ≤ CK(η)gn,ε,η(q).

By using a reduction similar to the one made in the beginning of Section 5, we can
assume without loss of generality that in the sums over {v, w ∈ An; δ(v, w) ≤ c′},
there are only pairs (v, w) for which δ(v, w) ≤ 1. Then, by using (5.4), we get

gn,ε,η(q) = cnτ̃(q) + hn,ε,η(q),

where

hn,ε,η(q) = (c − 1)

n−1∑

k=0

ck (E(W q))
k
(
E(W−ηq)E(W (1+η)q)

)n−k

= (c − 1)
(
E(W−ηq)E(W (1+η)q)

)n
n−1∑

k=0

[
cE(W q)

E(W−ηq)E(W (1+η)q)

]k

≤ c1+n
(
−2+τ̃(q)+τ̃(0)+ηq(τ̃ ′(q)−τ̃ ′(0))+η εq(η)

)

×
n−1∑

k=0

ck
(
2−τ̃(0)−ηq(τ̃ ′(q)−τ̃ ′(0))+η εq(η)

)

≤
c1+n

(
τ̃(q)+η εq(η)

)

c2−τ̃(0)−ηq(τ̃ ′(q)−τ̃ ′(0))+η εq(η) − 1
,

with εq(η) → 0 uniformly on K when η → 0. Then, it is easily seen that (6.4) holds
if η is small enough.
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Théor., 58:3 (1993), pp. 267–285.

[30] G.M. Molchan, Scaling exponents and multifractal dimensions for independent random cas-
cades, Commun. Math. Phys., 179 (1996), pp. 681–702.

[31] L. Olsen, Random geometrically graph directed self-similar multifractals, Pitman Res. Notes
Math. Ser., 307 (1994).

[32] L. Olsen, A multifractal formalism. Adv. Math., 116 (1995), pp. 92–195.
[33] J. Peyrière, Multifractal measures, In Probabilistic and Stochastic Methods in Analysis (Pro-

ceedings of the NATO ASI, Il Ciocco 1991). Ed. J. Byrnes, Kluwer Academic Publish-
ers, 1992.

[34] D.A. Rand, The singularity spectrum f(α) for cookie-cutters, Ergod. Th. & Dynam. Sys., 9
(1989), pp. 527–541.

[35] X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cam-
bridge Philos. Soc, 288 (1985), pp. 679–699.

[36] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91
(1982), pp. 57–74.



166 J. BARRAL, F. BEN NASR AND J. PEYRIÈRE


