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Abstract

A nonnegative 1-periodicmultifractal measureon R is obtained as infinite random product of
harmonics of a 1-periodic function W(t). Such infinite products are statistically self-affine and
generalize certain Rieszproducts with random phases.They are martingale structures, therefore
converge. The criterion on W for nondegeneracy is provided. It differs completely from those
for other known randommeasuresconstructedas martingalelimits of multiplicative processes.In
particular, it is very sensitive to small changesin W(t). Whentheseinfinite products are interpreted
in the framework of thermodynamic formalism for random transformations, logW is a potential
function whenW > 0.Forregularenoughpotentials, in caseof degeneracy, thenatural normalization
makesthesequenceof measuresconverge.Moreover, thisnormalization isneutral for nondegenerate
martingales. The multifractal analysis of the limit martingale measure is performed for a class of
potential functionshavinga densecountable setof jumppoints.
 2003Elsevier SAS. All rights reserved.

Résumé

On construit sur R unemesure aléatoire positive 1-périodiquecommelimite d’unesuite de me-
sures aléatoires dont les densités sont des produits d’harmoniques d’une fonction 1-périodique
W . Lesmesures «produits infinis» ainsi obtenuessont statistiquementauto-affines.Elles généra-
lisent certains produits de Riesz avec phases. Elles existent parce que la suite des densités est une
martingale. On obtient la CNSsur W pourquela limite soit nondégénérée.Cetteconditionest très
différentedecelleobtenuepour lesautresmesuresconnuescommelimites de processusmultiplica-
tifs denaturemartingale. En particulier, elle est trèssensibleàdepetitesperturbationsdeW . Plaçant
cesproduits infinisdanslecontexte du formalismethermodynamiquepourdestransformationsaléa-
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toires, logW estun potentiel lorsqueW > 0. Pour les potentiels assezréguliers donnantlieu à une
limite dégénérée, la normalisation naturelle rend la suite de mesures convergente; elle ne modifie
paslesmartingales nondégénérées.L’analysemultifractale desmesures limites nondégénéréesest
obtenuepouruneclassedepotentiels présentant unensemble densede points de saut.
 2003Elsevier SAS. All rights reserved.
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1. Intr oduction

Therandomstatistically self-affinemultifractalmeasuresthatthispaperinvestigatesare
limitsof martingalesobtainedasproductsof b-harmonicsof aperiodic function.Let W be
a nonnegative1-periodic measurable function satisfying:

∫

[0,1]

W(t)dt = 1.

Let (φn)n�0 bea sequenceof independentrandomphases distributeduniformly in [0,1].
Let b � 2 bean integer. For everyn � 1, denoteby µn therandommeasurewhosedensity
with respectto theLebesguemeasure� on R is:

dµn

d�
(t)=

n−1∏

k=0

W
(
bk(t + φk)

)
.

We let n→∞ and study the limits µ of suchdensitiesµn.
Unexpectedmathematicalresults, practical motivations, and numericalcalculations

havehelpedoneanotherin thisstudyin particularly intimatefashion.Mandelbrot’soriginal
canonicalcascade[21] andthemathematical theoryit inspired[14] provokedtwo separate
broad developments. One led to much more generaland more abstract mathematics.
But actualuses in scienceandengineeringalso demandthe “invention” of very specific
multif ractalsof ever increasing variety and versatility.

In particular, one needsstationarymultifractal measuresthat are natural and simple
to define and simulate numerically. The heuristics and the picturesin [7] suggested that
these goals could be fulfilled by themeasuresµ studiedin this paper. In fact, as we show,
mathematics defeated this hope.But it also revealed a subtle phenomenon.It was not
suspected,might haveescapedbrute-forcenumerics, andisof greatmathematicalinterest.
Itspracticalimplicationsarealsogreatbut will bediscussedelsewhere.

The article [7] was developed with no awareness of Riesz products [24], [27,
Chapter V 7]. But those classical objects and the Riesz products with randomphases
[10–12]provide special examplesof our sequencesµn which do not vanish with positive
probability whenn→∞, i.e.,arenondegenerate.
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Our broadest result is “qualitative”: theRiesz productsandotherspecialexamplesare
exceptionaland unstable, in the sense that the nondegeneracy of the limit is destroyedby
small changesin W . Thisnew phenomenoninvalidatestheconjecturesstatedin [7].

Our secondresult is that,undersuitablesufficient conditions, thenormalizedsequence
(µn/µn([0,1]))n�1 convergesweakly on compactsubsets of R. This normalization is
necessary in concretecontexts thereforewas used in [7,20]. As taken in [7] this step
was mathematicallyunjustified yet had a very fortunateeffect: it revealedthe subtle
phenomenonstudied in this paper. As a result, all future applicationswill have to face
a very importantcomplicatingissue.An observed measurethatseemsto be a multifractal
limit may, instead,beaverydifferentmathematicalobject, providingdifferentinsightsinto
thegeneratingmechanism.

Thesequelcharacterizesthenondegeneracy of the limit measureaswell asperformsits
multifractal analysisunderweakassumptionson the regularity of W .

1.1. The limit measure

For every real t , the sequence(dµn

d� (t))n�1 is a 1-meannonnegative martingale with
respect to the filtration (σ (φ0, . . . , φn−1))n�1. Therefore,the existence of the random
multiplicative measure µ we seek follows from the theory in [14]. Throughout, weak
convergenceof measuresona locallycompactHausdorff set K meansweak∗ convergence
in the dual of C(K), the spaceof real continuousfunctionson K. Our precise result is
that, with probability one, the sequence (µn)n�0 restricted to thecompactinterval [0,1]
convergesweaklyto a measureµ(0), and theendpoints0 and1 arenotatomsof µ(0).

Consequently, by the 1-periodicity of W , thereexists a uniquemeasureµ on R such
thatµ(0)(· + k) is the restriction of µ to [k, k + 1] for every k ∈ Z.

In the sequel, µ will denoteµ(0). Letusdetail thecontentsof the paper.

1.2. Conditionof nondegeneracy

The first question is whether or not the martingale limit µ is nondegenerate, meaning
that µ �= 0 with positive probability. To answer, it is now necessary to go beyond the
criterion. Theorem 1 reports the surprising fact that µ is nondegenerate if and only if
the martingale µn([0,1]) equals 1 almost surely. In particular µ has to be a probability
measure,andcanbecharacterizedvia theFouriercoefficientsof W .

1.3. Themeasureµ is generically degenerate

Theconditionof nondegeneracy forcescertainproductsof Fouriercoefficientsof W to
vanish. Thereforedegeneracy holdsonanopenanddensesetof functionsW . For example,
µ isdegenerateif Ŵ (j)Ŵ(jb) �= 0 for somej ∈ Z

∗. To thecontrary, assoonasŴ (jb)= 0
for all j ∈ Z∗, µ is nondegenerate.

Theexample of W1(t)= 8
35(1−cos(2πt))4 andb = 5. Theassociatedmeasureµ= µW1

is nondegeneratebecause Ŵ1(5j) = 0 for all j ∈ Z∗. For t ∈ [0,1], the backgroundof
Fig.1 showstheintegralof thesinusoidalW1(t), that is, t �→µ1([0, t]), andtheforeground
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Fig. 1.

shows slightly translatedsamples of t �→ µn([0, t]) for n ∈ {30k: 1 � k � 10}. We see a
graphic confirmation thatthesequence(µn)n�1 convergesto a probability measure.

The slightly perturbed example of W2(t) = 80000
353603(1 − cos(2πt) + 0.1 cos(10πt))4, for

which Ŵ2(1)Ŵ2(5) �= 0. Fig. 2 isplottedwith thesameset of phasesasusedin Fig. 1. It
illustrateshow a small perturbation of W1 sufficesto insureadegenerateµ= µW2.

A completely different criterion is found for other random statistically self-affine
measuresgeneratedby multiplicativemartingales, for example,thecanonicalmultifractal
cascades(CCM) [15,21]andthemultifractal products of pulses (MPCP) [3]. In termsof
the multif ractalfunction τ (q) (definedin Eq. (1)), the usual criterion is τ ′(1) < 0, which
holds on an openset of parameters. The function τ (q) is not centralhere.Nevertheless,
Proposition 2 showsthatfor acertainclassof functionsW thecondition τ ′(1) � 0 suffices
for degeneracy.

1.4. Rateof degeneracy

Assume that µ is degenerate and W is positive and satisfies the principle of
boundeddistortions (8) (for example if W is Hölder continuous), with probability one
limn→∞ 1

n
log‖µn‖ exists and is equal to ψW (1) (seeEq. (3)). Proposition 3 shows that

this limit ψW (1) is never equal to 0, so thatµn convergesexponentially fast to 0 almost
surely.
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Fig. 2.

1.5. Thenatural normalization.Themeasureν

When the sequence(µn)n�1 is degenerate, it is natural to consider the normalized
sequenceof measureson [0,1],

νn =
µn

µn([0,1]).

Moreover, it is important to comparewhathappensherewith what is observed for other
martingalesgeneratedby randommultiplications. For examplefor theinitial “ lognormal”
martingale model considered in [20], numerical simulations revealed that when the
nonnormalizedsequenceconvergesto 0, the normalizedsequencedoesnotconverge.

Only limits of subsequencesof (νn)n�1 are considered in [12]. We point out that
the thermodynamic formalism for random transformations [17,18] insures the weak
convergenceof νn whenW is positiveandHöldercontinuous.

Fig. 3 illustratesthe convergence of the sequence νn obtainedby normalization of µn

in Fig. 2 (W2 is positive).
Let (Ω,B,P)= ((R/Z)⊗N,B(R/Z)⊗N, �⊗N). For ω ∈ Ω , write ω = (φi(ω))i�0. De-

fine on R/Z f (t) = bt as well as the random Perron–Frobenius operator
LlogW = {Lω

logW : ω ∈Ω} actingon thespaceC(R/Z)Ω of families {qω: ω ∈Ω} of real-
valuedcontinuousfunctionsonR/Z by the formula:
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Fig. 3.

L
ω
logWqω(t)=

∑

t ′∈f−1(t)

W(t ′ + φ0)qω(t
′).

Let θ bethe ergodic transformation on (Ω,P) definedby: θ(ω)= (bφi+1(ω))i�0. It is
easily seenthatfor all ω ∈Ω , n � 2 and g ∈ C(R/Z),

∫

R/Z

g(t) νn(dt)=
∫

R/Z
Lθn−1ω

logW ◦ · · · ◦Lθω
logW ◦Lω

logW (g)(t)�(dt)
∫

R/Z
Lθn−1ω

logW ◦ · · · ◦Lθω
logW ◦Lω

logW (1)(t)�(dt)

(herewe identified[0,1) with R/Z andνn with its restriction to [0,1)). Thealmost sure
weakconvergenceof νn is a consequenceof Proposition 2.5 in [18]. Denotethe almost
sure limit by ν. To go back to [0,1], it is an exerciseto show that with probability one, 0,
asany fixed deterministic point, isnotanatomof ν onT.

Observe that underthe previousassumptions, if µ is nondegenerate then it coincides
with ν sinceµn([0,1])= 1 almost surely.

1.6. Themultifr actal structureof µ andν

If λ is a positive measure on [0,1], the multif ractalfunction τλ of λ is definedhereas
in [12]. It is
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τλ :q �→ lim sup
r→0

− 1

log(r)

∫

[0,1]

λ
(
Ir (t)

)q−1
λ(dt), (1)

whereIr (t)= [t − r/2, t + r/2] ∩ [0,1].
Adding therestrictivecondition that therangeof W is isolatedfrom 0 and∞, we show

that for a largeclassof functions, themultif ractalfunction τµ of µ takes theform:

τµ(q)= 1− q +ψW (q), (2)

where

ψW (q)= lim
n→∞

1

n
E

(
logb

∫

[0,1]

n−1∏

k=0

W
(
bk(t + φk)

)q dt

)
. (3)

Section 5 shows that this class of functions strictly includes functions analogous
to the exponentialof potentialof weak boundedvariationsrecently introducedfor the
thermodynamic formalism [16,26].In particular, this class includesfunctionsW with a
densecountableset of jumppoints.

Themultifractalanalysis of µ consists in thecomputation of theHausdorff andpacking
dimension of level setslike

Xα =
{
t ∈ [0,1]: lim

r→0

logµ(Ir (t))

logr
= α

}
(α � 0).

Once(2) is established,Section 5.3 shows that those dimensionsfollow as in [12] using
the Large Deviations theory. The main difficulty is to show that (2) holds underweak
hypotheses. We also show that τµ is differentiableat 1. HencetheHausdorff dimension of
themeasureµ, i.e.,the smallest Hausdorff dimension of a Borel set of full µ-measure,is
equalto −τ ′µ(1) (this isalso thecase whenµ is aCCM or aMPCP).

If W is positive andHölder continuous, the multifractal function τν of ν (recall that
ν = µ in case of nondegeneracy) takesthe formalreadyobtainedin [12], namely,

τν(q)= 1− q
(
1+ψW (1)

)
+ψW (q). (4)

Also using [19] it will beseenthatdueto theergodicity of θ on(Ω,P), τν is strictly convex
and analytic.

1.7. A natural question: doesτµ(q)= 1− q + logb

∫
[0,1]W(t)q dt onsome nontrivial

interval whenµ is nondegenerate?

It is impossible to answer thisquestion numerically by computing

1− q + 1

n
E

(
logb

∫

[0,1]

n−1∏

k=0

W
(
bk(t + φk)

)q dt

)
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for largevaluesof n. This problemis raised in [11,12] (Section 7) underthe form: does
ψW (q) simplif y in logb

∫
[0,1]W(t)q dt onanontrivial interval?ExceptwhenW isconstant,

Theorem3 shows that if W is positive and logW satisfies the principle of bounded
distortions(8), thenψW (q) < logb

∫
[0,1]W(t)q dt outsidea discreteset. This followsfrom

the condition for nondegeneracy. The equality holds on R when W is constant when
restrictedto eachinterval (k/b, (k + 1)/b), 0� k � b − 1. We conjecturethattheanswer
noexceptin this case.

Remark 1. W being a positive continuous1-periodic function such that
∫ 1

0 W(t)dt = 1,
canourproductconstructionbemodifiedto yield amorefamiliar result, namely, arandom
measurem havingthefunctionf :q �→ 1−q+ logb

∫ 1
0 W(t)q dt asits multif ractalfunction

on a nontrivial interval? Sucha measureis indeedobtainedas thealmost sure weaklimit
of thesequenceof measures(mn)n�1 on [0,1] whosedensitieswith respectto � aregiven
by:

dmn

d�
(t)=

n−1∏

k=0

W
(
bk(t + φk,l)

)
if t ∈

[
l/bk, (l + 1)/bk

)
,

where the randomphases φk,l (k � 0, 0 � l � bk − 1) are independentand uniformly
distributed in [0,1]. By using techniquesdevelopedfor CCM and MPCP [1,3,15],one
can show [4] that m is nondegenerate if and only if f ′(1−) < 0. Moreover, assuming
that m is nondegenerate and defining J as the open interval of those q ’s such that
−f ′(q)q + f (q) > 0 wehave:with probability one, both multif ractalformalismsof [6,23]
hold for m on−f ′(J ) (thelargest aspossibleopeninterval on whichthey could hold),and
τm = f onJ .

1.8. Relationswith thepropertiesof Rieszproducts

The simplest Riesz product with random phases is the special case
W(t)= 1+ a cos(2πt) for somea ∈ [0,1); in this case the restriction of µn to [0,1] is
clearly a probability measure for all n � 1. This and closely related“generalized” Riez
productsareconsideredin [10–12],whichneitherpoint out the martingalenatureof some
of these products, nor study nondegeneracy. While we considerµn, [12] typically consid-
erson [0,1] a weaklimit of a subsequenceof (νn = µn/µn([0,1]))n�1. Our Theorem 1
exhibitsall thefunctionsW for which thisnormalization isnotnecessary for convergence
to a nondegeneratelimit.

For thesimplest Riesz products, theapproximateformulagivenin [10] for theHausdorff
dimension of µ is improved in Corollary 2 of thispaper.

[11,12](seealso [13] for aclosely relatedproblemin thedeterministic case)performthe
multifractal analysis of limit of subsequencesof νn whenthe termsof the infinite product
arecontinuousandsatisfy aprincipleof boundedvariations. Both assumptionsarerelaxed
in Theorem4 andRemark8 of thispaper.
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If W is positive andHölder continuous, the multifractal analysis of the limit ν of νn

is implicit in [19], but not complete.Section 6 collects both results of [12,19] to give a
completeresult for themultifractalspectrumof ν.

[11,12] also study infinite products wherethe randomphases are not i.i.d. but satisfy
a stationaryergodic property; the martingalestructuredisappearsand it is necessary to
consider weaklimits of subsequencesof (µn/µn([0,1]))n�1. If W is positive andHölder
continuous, [18] yieldsthealmost sureconvergenceof thenormalizedsequence.

1.9. Summary

Section 2 introducessomedefinitionsneededin thesequel, and sayspreciselyin whatµ
is statistically self-similar (Proposition 1). Section3 dealswith thenecessary andsufficient
conditionfor nondegeneracy of µn. Section 4 providesa lower boundfor the Hausdorff
dimension of µ in thegeneralcase.Sections5 and6 performthemultifractalanalysis of µ
andν, respectively. Section 7 briefly relatesthesemeasureswith a kind of multiplicative
cascadesmeasure.

2. Somedefinitionsand statistical self-affinit y

Densities. For 0 � n < m andt ∈ [0,1], let:

Pn,m(t)=
m−1∏

k=n

W
(
bk(t + φk)

)

andPn = P0,n.
Am. For every integer m � 0 we denote by Am the set of finite words of length m on

the alphabetA= {0, . . . , b − 1} (A0 = {ε}). Thenfor a ∈ Am, |a| =m andIa denotesthe
closedb-adic subinterval of [0,1] naturally encoded by a.

A∗. Wedenote
⋃∞

m=0 Am byA∗ and{0, . . . , b−1}N by ∂A∗. Theset A∗ actson theleft
on thedisjoint unionA∗ ∪ ∂A∗ by theconcatenation operation.Thus, for everya ∈A∗, let
Ca denote a∂A∗, namelythecylinder generatedby a. Denote by A the σ -field generated
by the Ca ’s in ∂A∗. ∂A∗ is endowedwith the standard ultrametric distance d definedby
d(a, b)= b−|a∧b|, where |a ∧ b| = sup{n � 1: a1 . . . an = b1 . . . bn}.

dimH and dimP . The Hausdorff (respectively packing) dimension of a subset of R

(respectively ∂A∗) is consideredwith respect to the usual distance(respectively d), and
denotedby dimH (respectively dimP ). (See[9] for a detailed account.)

In(t), Cn(t̃ ) and Ir (t). For t ∈ [0,1] (respectively t̃ ∈ ∂A∗) and n � 1, In(t)

(respectively Cn(t̃ )) denotes the closure of the b-adic semi-open to the right interval
(respectively the cylinder) of the nth generation which contains t (respectively t̃ ). For
r ∈ (0,1), Ir (t) denotesthe interval [t − r/2, t + r/2] ∩ [0,1].

Given apositivemeasureν on [0,1] andt apoint in theclosed supportof ν, the“lower
log-densities” αν(t) andβν(t), and the“upperlog-densities” αν(t) andβν(t) of ν at t are
definedby:
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αν(t)= lim inf
r→0

logν(Ir (t))

logr
, βν(t)= lim inf

n→∞
logν(In(t))

−n logb
,

αν(t)= lim sup
r→0

logν(Ir (t))

logr
, βν(t)= lim sup

n→∞

logν(In(t))

−n logb
.

If αν(t)= αν(t) (respectively βν(t)= βν(t)) simply write αν(t) (respectively βν(t)).
Similarly, if ν̃ is a positive measure on ∂A∗ and t̃ is a point in the closed supportof ν̃,

define:





β ν̃(t̃ )= lim inf
n→∞

log ν̃(Cn(t̃ ))

−n logb
,

β ν̃(t̃ )= lim sup
n→∞

log ν̃(Cn(t̃ ))

−n logb
.

π is themapping from ∂A∗ to [0,1] definedby t̃ = t̃1 . . . t̃i . . . �→
∑

i�1 t̃i/b
i .

�̃ is theuniquemeasureon (∂A∗,A) such thatfor all a ∈A∗, �̃(Ca)= b−|a|.
Now if ρ is a nonnegative measure on (∂A,A∗), for n � 1 we define Pn.ρ as the

measurewhosedensity with respectto �̃ is equalto

d(Pn.ρ)

dρ
(t̃ )= Pn

(
π(t̃ )

)
.

TheargumentsrequiredforProposition 1 alsoshow that,with probabilityone,thesequence
(Pn.ρ)n�1 convergesweakly to a nonnegative randommeasureP.ρ. Moreover, sincethe
randomfactorsW(bk(π(t̃ )+ φk)), k � 1, aremutually independent, it follows from [14]
that the operator L :ρ �→ E(P.ρ) onnonnegativemeasuresis a projection(by definitionif
f ∈C(∂T ) then

∫
∂A∗ f (t)E(P.ρ)(dt)= E(

∫
∂A∗ f (t)P.ρ(dt))).

Let µ̃ denoteP.�̃. Thefollowing remarkwill beuseful in the proof of Theorem1. By
construction µ= µ̃ ◦ π−1. For a ∈A∗ the probability distribution of µ̃(Ca) dependsonly
on |a|. Moreover, since∂A∗ is totally disconnected, wehave‖µ̃‖ = ‖µ‖ =

∑
a∈Am µ̃(Ca)

for all m � 0. Consequently

E(µ̃)= E
(
‖µ‖

)
�̃. (5)

We adopttheconvention 0×∞= 0.
Given a nontrivial compactsubinterval I of [0,1], theaffine increasing mapping from

[0,1] onto I is denotedby fI . Thelength of I is denotedby |I |.
Given two randomvariablesX andY , identity in distribution isdenotedby X

d≡ Y .
Given a realx, [x] standsfor thelargest integer less thanor equalto x.
Self-affinity. Thestatisticalself-affinity property of µ is madeexplicit now.

Proposition 1 (Statisticalself-affinity). Fix n � 1 anda nontrivial compactsubinterval I
of [0,1] with length b−n. Definethesequenceof measures (µI

m)m�1 on I by:



J. Barral et al. / J. Math.PuresAppl. 82 (2003)1555–1589 1565

dµI
m

d�
(t)= Pn,m(t).

For all m > n, the restriction of µm to I andthemeasureµI
m−n are relatedby:

µm(dt)= Pn(t)µ
I
m−n(dt) (6)

andthe followingpropertieshold:

(i) For all f ∈ C(I) and m � 1,
∫
I
f (t)µI

m(dt)
d≡ |I |

∫
[0,1] f ◦ fI (t)µm(dt); in

particular ‖µI
m‖

d≡ |I |‖µm‖.
(ii) With probability one, (µI

m)m�1 converges weakly to a measure µI as m tends to

∞ and for all f ∈ C(I),
∫
I
f (t)µI (dt)

d≡ |I |
∫
[0,1] f ◦ fI (t)µ(dt); in particular

‖µI‖ d≡ |I |‖µ‖.
(iii) ThemeasuresµIa , a ∈An, arededucedfromoneanotherbyanhorizontal translation.

Theverificationsareleft to thereader.

3. Nondegeneracyand rateof degeneracy

Thecharacterization of thenondegeneracy of µ, i.e., when is µ positive with positive
probability , is the first problem to be solved, and this phenomenon is expressedin
Theorem1 via the Fourier coefficients of W . Then,Proposition 2 completesthis result
by a dif ferentsufficient condition for degeneracy. Proposition 3 gives precisionson the
rateof convergenceto 0 in case of degeneracy.

For every k ∈ Z, let Ŵ (k) stand for
∫
[0,1]W(t)e−2ikπt dt . By assumption Ŵ (0) = 1.

For every n � 1 let Yn stand for µn([0,1]); (Yn, σ (φ0, . . . , φn−1))n�1 is a martingale with
expectation1, whichconvergesto ‖µ‖.

Theorem 1 (Nondegeneracy). The followingpropertiesareequivalent:

(i) P(‖µ‖> 0) > 0;
(ii) (Yn)n�1 is uniformly integrable;
(iii) ∀n � 1, Yn = 1 almostsurely;
(iv) ‖µ‖ = 1 almostsurely (µ is a probabilitymeasure);
(v) ∀n � 2 ∀(j0, . . . , jn−1) ∈ Zn \ {0, . . . ,0},

∑n−1
k=0 jkb

k = 0⇒
∏n−1

k=0 Ŵ (jk)= 0.

It followsfrom Theorem1 thatif property (v) isviolatedthenYn vanishesalmostsurely,
but E(Y h

n ) ↑n→∞ ∞ for all h > 1.

Proposition 2 (A condition for degeneracy). Suppose that W > 0 and logW satisfiesthe
followingweak principleof boundeddistortions:
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ϕ(n)=
n∑

k=0

sup
t,s∈[0,1], |t−s|�b−k

∣∣logW(t)− logW(s)
∣∣= o(n). (7)

LetDW = 1−
∫
[0,1]W(t) logb W(t). If DW < 0 thenµ isdegenerate. Thesameconclusion

holdsif DW = 0 andmoreoverϕ(n)= o(
√

n loglogn ).

Proposition 3 (Rateof degeneracy). Supposethatµ isdegenerate. Moreover, supposethat
W is positive and that logW satisfiestheprincipleof boundeddistortions:

C =
∞∑

k=0

sup
t,s∈[0,1], |t−s|�b−k

∣∣logW(t)− logW(s)
∣∣<∞. (8)

Then,with probabilityoneψW (1)= limn→∞ 1
n

log‖µn‖ existsand ψW (1) < 0.

Remark 2. (1) The nondegeneracy condition is algebraic.It forcescertainŴ (k) with
k �= 0 to be null, and at least one Ŵ (kb) to be null. This characterization shows that
nondegeneracy holds on a closed subset of functionsW with empty interior in the set
of nonnegativeintegrable functionson [0,1] with mean1.

(2) Hereare two simpleconditionsunderwhichnondegeneracy holds:

(a) Thereexistsp � 0 suchthatŴ (k)= 0 for all k /∈ bp(Z \ bZ).
(b) W is a trigonometric polynomial of theform

W(t)= 1+
∑

k∈K

ak cos
(
2πmkb

pk t
)
+ bk sin

(
2πmkb

pk t
)
,

whereK is a finite set, the ak and bk are so that
∑

k∈K

√
a2
k + b2

k < 1 in order to
insure thatW is nonnegative, thepk arenonnegativeintegers, and themk arepositive
distinct integerssothat: for all (εk)k∈K ∈ {−1,0,1}K \ {(0, . . . ,0)}, b doesnotdivide∑

k∈K εkmk .

For instance, if b = 5 and K = {1,3} then the choice m1 = 1, m3 = 3 yields the
functions

W(t)= 1+ a1 cos
(
2π × 5p1t

)
+ b1 sin

(
2π × 5p1t

)

+ a3 cos
(
2π × 3× 5p3t

)
+ b3 sin

(
2π × 3× 5p3t

)
,

wherep1 andp3 arearbitrarynonnegativeintegers.
(3) LetT betheoperator on the1-periodic functionsof L1

loc(R) definedby:

f �→ Tf : t �→ 1

b

b−1∑

j=0

f

(
t

b
+ j

b

)
.
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It is immediate that for every k ∈ Z, T̂f (k) = f̂ (kb). So if Tf = 0, f is of mean0, and
if the function W definedby W = 1+ f is nonnegative, thenthefunction W satisfiesthe
conditionfor nondegeneracy sinceŴ (kb) = 0 if k �= 0. Conversely, all the functions W

satisfying the conditionfor nondegeneracy andsuch that Ŵ(kb) = 0 if k �= 0 are of the
form W = 1+ g for some1-periodic g ∈L1

loc(R) with Tg = 0.

This remarkwill be useful to construct explicit examplesof functionswith a dense
countable set of jump points satisfying the “weakened” weak principle of bounded
distortionsin Section 5.1.

Theproof of Theorem1 beginswith the following lemma,whichexplainstheorigin of
property (v).

Lemma 1. Assume that
∑

k∈Z
|Ŵ(k)| < ∞. Properties (iii) and (v) in Theorem 1 are

equivalent.

Proof. Noticethat Y1 = 1 almost surely. Since
∑

k∈Z
|Ŵ(k)|<∞, t �→

∑
k∈Z

Ŵ (k)e2iπkt

is a continuousversion of W . Therefore,for everyn � 2,

1= Yn = Yn(φ0, . . . , φn−1)=
∫

[0,1]

n−1∏

k=0

W
(
bk(t + φk)

)
dt

=
1∫

0

n−1∏

k=0

∑

j∈Z

Ŵ (j)e2iπjbk(t+φk) dt

=
1∫

0

∑

(j0,...,jn−1)∈Zn

n−1∏

k=0

Ŵ(jk)e2iπ
∑n−1

k=0 jkb
k(t+φk) dt

=
∑

(j0,...,jn−1)∈Zn,
∑n−1

k=0 jkbk=0

n−1∏

k=0

Ŵ (jk)e
2iπ

∑n−1
k=0 jkb

kφk .

Sinceφ0, . . . , φn−1 aremutually independentanduniformly distributed, this holdsalmost
surely if andonly if thefunction of n variables

Yn : (u0, . . . , un−1) ∈ [0,1]n �→
∑

(j0,...,jn−1)∈Zn,
∑n−1

k=0 jkbk=0

n−1∏

k=0

Ŵ (jk)e2iπ
∑n−1

k=0 jkb
kuk

is identically equal to 1. This isequivalent to (v). �

Proof of Theorem 1. To see that (i) and (ii) are equivalent, recall that the mapping
L defined in Section 1 is a projection. Moreover, it follows from (5) that L(�̃) =
E(‖µ‖)�̃. Consequently, the equality L ◦ L(�) = L(�) yields E(‖µ̃‖) = (E(‖µ̃‖))2 and



1568 J. Barral et al. / J. Math.PuresAppl. 82 (2003)1555–1589

E(‖µ‖) ∈ {0,1}. Since (Yn)n�1 is a 1-meanmartingale, E(‖µ‖) = 1 is equivalent to the
uniform integrability of the martingale.Thesameargument showsthat (iv) implies (ii) .

It is clear that (iii) implies (ii) and that (iii) implies (iv). It remains to show that (v)
implies (iii) and (ii) implies (v).

To prove that (v) implies (iii) , notice that property (v) means that certain Fourier
coefficients of W are null. It is then standard that W is the limit in L1([0,1]) of a
sequence(fp)p�1 of nonnegative trigonometric polynomials with mean 1 such that
Ŵ (k)= 0⇒ f̂p(k)= 0 for all k ∈ Z∗ andp � 1: fp =W ∗ gp where

gp : t �→
(
1+ cos(2πt)

)p/
∫

[0,1]

(
1+ cos(2πt)

)p
dt

so that f̂p(k) = Ŵ (k)ĝp(k) for all k ∈ Z. In particulareachfp satisfies property (v), as
well astheassumption of Lemma1, sofor every p,n � 1 almost surely

∫

[0,1]

n−1∏

k=0

fp

(
bk(t + φk)

)
dt = 1.

Therefore,for every p,n � 1,

|1− Yn|�
∫

[0,1]

∣∣∣∣∣

n−1∏

k=0

fp

(
bk(t + φk)

)
−

n−1∏

k=0

W
(
bk(t + φk)

)
∣∣∣∣∣dt

�

n−1∑

k=0

∣∣fp

(
bk(t + φk)

)
−W

(
bk(t + φk)

)∣∣

×
∏

0�k′<k

fp

(
bk′(t + φk′)

) ∏

k<k′�n−1

W
(
bk′(t + φk′)

)

and

E
(
|1− Yn|

)
� ‖fp −W‖L1

n−1∑

k=0

‖fp‖kL1‖W‖n−1−k

L1 = n‖fp −W‖L1.

By ourchoiceof (fp)p�1 weget (iii) .
Now suppose (ii) holdsbut (v) fails. Fix n0 � 2 and (l0, . . . , ln0−1) ∈ Zn0 \ {0, . . . ,0}

such that
∑n0−1

k=0 lkb
k = 0 and

∏n0−1
k=0 Ŵ (lk) �= 0. Then, for every n � 1, choose

(j0, . . . , jn+n0−1) such that j0 = · · · = jn−1 = 0 and (jn, . . . , jn+n0−1) = (l0, . . . , ln0−1).
By using theFubini lemmatogetherwith the1-periodicity of W andtheindependenceswe
get:



J. Barral et al. / J. Math.PuresAppl. 82 (2003)1555–1589 1569

E

(
[Yn+n0 − Yn]e−2iπ

∑n+n0−1
k=0 jkb

kφk

)

= E

(
Yn+n0e−2iπ

∑n+n0−1
k=0 jkb

kφk

)

=
∫

[0,1]

n−1∏

k=0

E
(
W
(
bk(t + φk)

)) n+n0−1∏

k=n

E

(
W
(
bk(t + φk)

)
e−2iπjkb

kφk

)
dt

=
∫

[0,1]

n+n0−1∏

k=n

E

(
W
(
bk(t + φk)

)
e−2iπjkb

kφk

)
dt

=
∫

[0,1]

n0−1∏

k=0

e2iπlkb
n+k t

∫

[0,1]

W
(
bn+ku

)
e−2iπlkb

n+ku dudt

=
∫

[0,1]

exp

(
2iπbnt

n0−1∑

k=0

lkb
k

)
n0−1∏

k=0

b−(n+k)

∫

[0,bn+k]

W(u)e−2iπlku dudt

=
n0−1∏

k=0

Ŵ (lk).

On the other hand,E(|Yn+n0 − Yn|) hasto convergeto 0 asn tends to ∞ since by (ii) the
martingale (Yn)n�1 is uniformly integrable, a contradiction. �

Proof of Proposition 2. We proceedas in [25] to obtain the necessary condition of
nondegeneracy for CCM, via asize-biasing approach.

For every t ∈ [0,1] andn � 1, defineon (Ω,σ(φ0, . . . , φn−1)) theprobability measure
Pt,n whosedensity with respectto P is given by:

dPt,n

dP
(ω)= Pn(t).

The sequence(Pn(t))n�1 is a 1-meanpositive martingale with respect to the filtration
(σ (φ0, . . . , φn−1))n�1. This allows us to consider Pt , the Kolmogorov extension of
(Pt,n)n�1 to (Ω,σ(φn, n � 1)). Following [25, Theorem4.1(i)], to conclude,it suffices
to show that for all t ∈ [0,1], Pt (lim supn→∞µn(In(t))=∞)= 1. To see this, notice that
underourassumptions, it is straightforwardthatwith probabilityone,for all n � 1, for all
t, s ∈ [0,1] such that|t − s|� b−n,

e−ϕ(n)
�

Pn(t)

Pn(s)
� eϕ(n).

It follows that
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logµn

(
In(t)

)
�−ϕ(n)+

n−1∑

k=0

− log(b)+ logW
(
bk(t + φk)

)
.

Therandomvariables− log(b)+ logW(bk(t + φk)), k � 0, arei.i.d. with respect to Pt ,
with Pt expectation−DW logb andpositivevariance(otherwiseW is constant equalto b,
contradicting

∫ 1
0 W(t)dt = 1). Consequently, if DW < 0 then

Pt

(
lim sup
n→∞

µn

(
In(t)

)
=∞

)
= 1

follows from the strong law of large numbersand the property ϕ(n) = o(n), and if
DW = 0, the same follows from the law of the iterated logarithm and the property
ϕ(n)= o(

√
n loglogn ). �

Proof of Proposition 3. It followsfrom thecomputationsdonein theproof of Theorem2
in Section 5 (seealso[12], Section 7) that, almost surely, ψW (1)= limn→∞ 1

n
logb ‖µn‖

exists.Moreover, ψW (1) is alsothe limit of 1
n
Xn, where Xn = E(logb ‖µn‖), and for all

m,n � 1,

Xn+m � 2C +Xm +Xn.

It follows that the sequence Xn + 2C is sub-additive andψW (1)= infn�1(Xn + 2C)/n.
Moreover, limn→∞Xn = −∞ sincesupn�1 E(‖µn‖) < ∞ and limn→∞ ‖µn‖ = 0. This
yieldsψW (1) < 0. �

4. A lower bound for dimH (µ)

Whenthemeasureµ is nondegenerate, it is natural to ask for a lower boundestimate
of itsdimension.Undersuitableassumptionsthisboundwill provein Section 5.3 to bethe
exactvalueof thisdimension.

Proposition 4. Suppose that µ is nondegenerate and that
∫
[0,1]W

p(t)dt < ∞ for some

p > 1. With probabilityone, for µ̃-almost every t̃ ∈ ∂A∗,

βµ̃(t̃ ) � DW = 1−
∫

[0,1]

W(t) logb W(t)dt � 0.

TheHausdorff dimension of µ, dimH (µ), wasdefinedis Section1.

Corollary 1 (Lower bound for dim(µ)). Suppose that µ is nondegenerate and that∫
[0,1]W

p(t)dt < ∞ for some p > 1. With probability one, 0 � DW � dimH (µ) � 1. In
particular µ is atomlesswhenDW > 0.
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Corollary 1 is simply a consequenceof Proposition 4, therelationµ = µ̃ ◦ π−1 anda
Billingsley lemma(cf. [5, pp.136–145]).

Proof of Proposition 4. For n � 1, ε > 0 and η > 0, the Chebychev inequality applied to
theprobability measure µ̃ andtherandomvariables µ̃(Cn(t̃ ))

η yields

µ̃
({

t̃ ∈ ∂A∗: µ̃
(
Cn(t̃ )

)η
bnη(DW−ε)

� 1
})

�
∑

a∈An

µ̃(Ca)
1+ηbnη(DW−ε) = fn,ε(η).

Applying successively Proposition 1, the Fatou lemma,and the Jensen inequality to
(
∫
Ia

Pn(t)µ
Ia
m−n(dt))

1+η yields

E
(
fn,ε(η)

)
� bnη(DW−ε)

∑

a∈An

lim inf
m→∞

E

((∫

Ia

Pn(t)µ
Ia
m−n(dt)

)1+η)

� bnη(DW−ε)
∑

a∈An

lim inf
m→∞

E

(∥∥µIa
m−n

∥∥η
∫

Ia

Pn(t)
1+η µ

Ia
m−n(dt)

)

= bnη(DW−1−ε)

( ∫

[0,1]

W(t)1+η dt

)n

(we also used the independencesandthe property: sinceµ is nondegenerate, it follows
from Theorem 1 and Proposition 1 that ‖µIa

m−n‖ = b−n). This yields
E(fn,ε(η)) � bnη(−ε+o(η)) so

∑
n�1 E(fn,ε(η)) < ∞ if η is small enough.Finally, for

every ε > 0, with probability one
∑

n�1 µ̃({t̃ ∈ ∂A∗: µ̃(Cn(t̃ ))
ηbnη(DW−ε) � 1}) < ∞.

Oneconcludeswith Borel–Cantelli lemma. �

To seethat DW � 0 weproceedasfollows: on theonehand,welearnfromProposition 2
that DW > 0 when W is a positive trigonometricpolynomialsatisfying theconditionfor
nondegeneracy. On theotherhand,for every p > 1, the set of these polynomials is dense
in theset of functionsof Lp([0,1]) satisfying theconditionfor nondegeneracy.

5. Multifractal analysisof µ

We haveto assumesomerestrictionsonthe function W .

(H1) Property (v) of Theorem1 holdsfor W (i.e.,µ is nondegenerate).
(H2) 0< w < W < w <∞ for somerealnumbersw andw.

Our third assumption allowscertain functionsW to havea densecountableset of jump
points. Thisassumptionincludesa conditioninspiredfrom theweakprincipleof bounded
distortions(seeRemark 3(1)) recentlyconsideredin the thermodynamicformalism (see
[16,26]), but it is lessrestrictive thanthis principle:
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(H3) “ Weakened” weak principle of boundeddistortions for logW : there exists a
sequence(Sn)n�1 of finitesubsetsof [0,1], all including {0,1}, suchthat

hn =
n∑

k=0

sup{
t,s∈[0,1], |t−s|�b−k,

Sn∩[t,s]=∅

∣∣logW(t)− logW(s)
∣∣= o(n)

and

mn =min
{
k ∈ N: b−k

� inf
t,s∈Sn, t �=s

|t − s|
}
= o(n).

Remark 3. (1) Theweakprincipleof boundeddistortions, for examplein thedeterministic
context of [26] (seealso [16] and[12, Theorem3]), would assume the more restrictive
condition that there exists n0 � 1 such that Sn = Sn0 for all n � n0, i.e., W should be
piecewise continuous. Even in this case, if W is not continuous, thefact that we consider
randomphases createscomplicationsthat, to be circumvented,necessitate the new ideas
wedevelop in thecase of an infinitenumberof jumppoints.

(2) We adapt the approachof [12] to find τµ. The main difficulty is locatedin the
impossibility, under (H3), to directly applying the (key) Kingman sub-multiplicative
ergodic theoreminvolvedin [12].

Beforebeginningthestudyof themultifractal structureof µ, weexhibit somenontrivial
examplesof functionsW satisfying theaboveassumptions.

5.1. Nontrivial examplesof functionsW

We shall use Remark2(3) in Section 3, wherethe operator T wasdefined.
FunctionsW (with a dense countable set of jump points) of the form 1+

∑
p�1 gp

where thegp arepiecewiseHölder continuouswith at least two jump pointsandTgp = 0.
Fix (m̃n)n�1 a nondecreasing sequenceof integers such that m̃n = o(n) and

limn→∞ m̃n =∞.
Fix a sequence(αp)p�1 ∈ (0,1]N∗

.
For every p � 1, construct a 1-periodic function fp ∈ L1

loc(R) with the following
properties:

(i) fp is given on [0,1/b) by t �→ −
∑b−1

j=1fp(t + j/b).
(ii) Theset of jump points of fp in (1/b,1) is nonempty andfinite, andfp is αp-Hölder

continuousbetweentwo consecutive jumppoints.

Due to (i) we haveTfp = 0 so f̂p(kb)= 0 for all k ∈ Z.
Thendenoteby Dp the set containing0 and 1 and all thepointswherethe function fp

jumps. Denote by ‖fp‖∞ the supremumof |fp| andby Cp a positive real numbersuch
that for all t, s ∈ [0,1] such that[t, s] ⊂ [0,1] \Dp ,

∣∣fp(t)− fp(s)
∣∣� Cp|t − s|αp .
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Assume that the sets Dp \ {0,1,1/b} are pairwise disjoint. For j � 1, define

Rj =
⋃j

p=1Dp . Fix (it is easy to construct one) a nondecreasing sequence(jn)n�1

of integers such that for every n � 1 large enough,b−m̃n � inft,s∈Rjn , t �=s |t − s|, and
limn→∞Rjn =

⋃∞
p=1Dp . ChooseSn =Rjn . It follows thatmn � m̃n = o(n).

Finally, choosea sequenceof realnumbers(βp)p�1 such that





∑

p�1

|βp|‖fp‖∞ <
1

2
,

lim
n→∞

1

n

jn∑

p=1

|βp|Cp

1− b−αp
= 0.

Thendefine

W = 1+
∑

p�1

βpfp.

By construction W jumps at every point of
⋃

p�1 Dp \ {0,1,1/b}, W � 1/2, W

is bounded,
∫
[0,1]W(t)dt = 1 and W satisfies the condition for nondegeneracy since

T W = 1.
It is clearthatwecanforce

⋃
p�1 Dp to bedense in [0,1].

Now, if n � 1 is largeenoughand[t, s] ⊂ [0,1] \ Sn is such that |t − s|� b−k for some
m̃n � k � n, then by construction all thefp , 1� p � jn, arecontinuouson [t, s], so

∣∣logW(t)− logW(s)
∣∣ � 2

∣∣W(t)−W(s)
∣∣� 2

jn∑

p=1

|βp|Cpb
−αpk + 4

∑

p>jn

|βp|‖fp‖∞.

Consequently

hn

n
� 2

m̃n

n
sup

t∈[0,1]
W(t)+ 2

n

jn∑

p=1

|βp|Cp

n∑

k=0

b−αpk + 4
∑

p>jn

|βp|‖fp‖∞

� 2
m̃n

n
sup

t∈[0,1]
W(t)+ 2

n

jn∑

p=1

|βp|Cp

1− b−αp
+ 4

∑

p>jn

|βp|‖fp‖∞.

It follows that limn→∞ hn/n= 0.

5.2. Themultifr actal function of µ

As in [12], we begin with the identification of a natural candidate to be themultif ractal
function of µ. Proposition 2 providessufficient conditionson W for DW to be positive
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(hereµ is nondegenerate). In this case,Corollary 1 saysthatµ is atomless. Withoutthese
informationin general,wehaveto considerthecaseDW = 0 in ourstatementsandproofs.

Theorem 2 (Multif ractalfunction τµ). Assume(H1), (H2) and(H3).

(1) Supposethat0 � DW < 1.
(i) With probabilityone, thelimit τµ asr → 0+ of

q ∈ R �→ τr (q)=− 1

logr
log

∫

[0,1]

µ
(
Ir (t)

)q−1
µ(dt)

exists andit isequalto

q ∈R �→ 1− q + lim
n→∞

1

n
E

(
logb

∫

[0,1]

Pn(t)
q dt

)
.

If DW > 0 then the function τµ is convex anddecreasing, and if DW = 0 then τµ is
convex anddecreasingon (−∞,1) andnull on [1,∞).
(ii) τµ is differentiable at 0 and 1 with τ ′µ(0) = −1 +

∫
[0,1] logb W(t)dt and

−τ ′µ(1)=DW ; τµ is notaffineon [0,1].
(2) DW = 1 if andonly if W = 1 almost everywhere; that is µ is the Lebesguemeasure

andτµ(q)= 1− q .

Theorem 3. Assume(H1), (H2) and(H3).

(i) τµ(q) � 1− q + logb

∫ 1
0 W(t)q dt for all q ∈R, with equality for q ∈ {0,1}.

(ii) Suppose W is positive and logW satisfiesthe principle of boundeddistortions(8).
Then,either W is constant, or

τµ(q) < 1− q + logb

1∫

0

W(t)q dt

for every q ∈ R \ S, where S is a discrete set that contains {0,1}. Moreover, if
supt∈[0,1]W(t) > b thenS is upperbounded.

(iii) If W is equalto a positive constant wk on every interval (k/b, (k + 1)/b) (0 � k �

b− 1) thenfor all q ∈ R,

τµ(q)= 1− q + logb

1∫

0

W(t)q dt = 1− q + logb

b−1∑

k=0

w
q

k .

Remark 4. In the proof of Theorem3(ii), we show that if W is nonconstant, positive,
andlogW satisfies (8), thenψW (q) < logb

∫ 1
0 W q (t)dt for all q ∈ R excepton a discrete
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set that contains {0,1}. The proof is valid even is W does not satisfy the condition for
nondegeneracy.

The proof of Theorem 2 needs two lemmas, namely Lemmas 2 and 3, both
consequencesof (H3). The proofsof these lemmasare postponeduntil after the oneof
Theorem2 andthestatementof Lemma4. Theproof of Theorem3 endsthissection.

Lemma 2. Thereexistsa positive function ϕ(n)= o(n) such that,with probabilityone, for
n largeenough,for all t, s ∈ [0,1] with |t − s|� b−n,

e−ϕ(n)
�

∏n−1
k=0 W(bk(t + φk))∏n−1
k=0 W(bk(s + φk))

� eϕ(n).

Remark 5. Because of theassumption(H3) on logW , theset of integersn for which the
inequalities in Lemma2 hold dependson ω ∈Ω . Consequently, it isnotpossible to obtain
thefirst partof Theorem2 asdirectly asthecorrespondingresult in [12, Theorem4].

We also needLemma3 which involvesnew definitions.
Fix γ ∈ (1/2,1). For every j andp � 0, denote by εj,p the finite word written with

p× j timesthe letter0 (εj,0 = ε), and then for n � 1 denoteby Ej,n theevent

Ej,n =
{
∀a ∈ εj,n−1A

j ,

#
{
0 � k � j −mj : Sj ∩

[
b(n−1)j+k(Ia + φ(n−1)j+k) mod1

]
�= ∅

}
� jγ

}
.

ThendefineMj,n(ω)= #{1� l � n: ω /∈Ej,l}.

Lemma 3. There exists a sequence(βj )j�1 tending to 0 at ∞ such that for every j � 1
largeenough,with probabilityone, for n largeenoughMj,n � βjn.

Proof of Theorem 2. (1)(i). We proceedin four steps.
Step1. We show that for every q ∈ R, limr→0+ τr (q) existsalmost surely if and only if

limn→∞ 1− q + 1
n

logb

∫
[0,1]

∏n−1
k=0 Pn(t)

q dt existsalmost surely. Moreover, theselimits
areequalwhenever they exist.

Notice that it sufficesto establish this property whenr tendsto 0 along the sequence
(b−n)n�1. We distinguish two cases.

First case: q − 1 � 0. For every n � 1 and a ∈ An, define I−a as being the closed
b-adic interval of the nth generation immediately on the left side of Ia if Ia ⊂ (0,1]
and∅ otherwise; also define I+a asbeing theclosedb-adic interval of thenth generation
immediately on therightsideof Ia if Ia ⊂ [0,1) and∅ otherwise.

Fix n � 1 and a ∈An. For every t ∈ Ia , wehaveIb−n(t)⊂ I−a ∪ Ia ∪ I+a . Dueto thefact
thatq � 1, this implies that

µ
(
Ib−n(t)

)q−1
� 3q−1(µ(I−a )q−1 +µ(Ia)

q−1 +µ
(
I+a

)q−1)
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andthen

∫

[0,1]

µ
(
Ib−n(t)

)q−1
µ(dt) � 3q−1

∑

a∈An

(
µ(I−a )q−1 +µ(Ia)

q−1 +µ
(
I+a

)q−1)
µ(Ia). (9)

On theotherhand, if a ∈An+1, Ia ⊂ Ib−n(t) for every t ∈ Ia so

µ(Ia)
q =

∫

Ia

µ(Ia)
q−1µ(dt) �

∫

Ia

µ
(
Ib−n(t)

)q−1
µ(dt)

and

∑

a∈An+1

µ(Ia)
q

�

∫

[0,1]

µ
(
Ib−n(t)

)q−1
µ(dt). (10)

Now, we use the following important remark.Eventhoughwe do not know that µ is
atomless,the theory in [14] tells us that, with probability one, the b-adic points are not
atomsof µ. It followsthat with probability one, for every a ∈A∗,

µ(Ia)= lim
m→∞

µ|a|+m(Ia)= lim
m→∞

∫

Ia

P|a|(t)P|a|,|a|+m(t)ds. (11)

Moreover, by Lemma2, with probability one, for n largeenough,for all a ∈An andm � 1,

e−ϕ(n)
�

∫
Ia

Pn(s)Pn,n+m(s)ds

Pn(ta)
∫
Ia

Pn,n+m(s)ds
� eϕ(n),

whereta = inf(Ia). But dueto Proposition 1(i) andTheorem1(iii) wehave:

∫

I

Pn,n+m(s)ds = b−n

for every interval I of length b−n. Consequently

e−ϕ(n)
�

∫
Ia

Pn(s)Pn,n+m(s)ds

b−nPn(ta)
� eϕ(n)

andby (11),

e−ϕ(n)
�

µ(Ia)

b−nPn(ta)
� eϕ(n). (12)
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Now, if I ∈ {Ia, I−a , I+a } is nonempty, applying Lemma2 with (t, s) = (inf(I), inf(Ia))
in (12) writtenwith I yields

e−2ϕ(n)
�

µ(I)

b−nPn(ta)
� e2ϕ(n).

So

exp
(
−h(q)ϕ(n)

)
�

µ(I)q−1µ(Ia)

b−n(q−1)b−nPn(ta)q
� exp

(
h(q)ϕ(n)

)
, (13)

whereh(q)= 1+ 2|q − 1|. A lastapplication of Lemma2 yields

e−|q|ϕ(n)
�

∫
Ia

Pn(s)
q ds

b−nPn(ta)q
� e|q|ϕ(n)

and we deduce from (13) that with probability one, for n largeenough,for all a ∈An and
I a nonempty elementof {Ia, I−a , I+a },

exp
(
−
[
|q| + h(q)

]
ϕ(n)

)
�

µ(I)q−1µ(Ia)

b−n(q−1)
∫
Ia

Pn(s)q ds
� exp

([
|q| + h(q)

]
ϕ(n)

)
. (14)

Finally, theconclusion isa consequenceof (9), (10)and(14).
Secondcase: q − 1 < 0. Fix n � 1 and a ∈ An+1. We saw that Ia ⊂ Ib−n(t) for every

t ∈ Ia . Consequently

∫

[0,1]

µ
(
Ib−n(t)

)q−1
µ(dt) �

∑

a∈An+1

µ(Ia)
q . (15)

Ontheotherhand, if a ∈An, fix a′ ∈An+2 suchthatI ′a := Ia′ ⊂ Ia andI ′a doesnotcontain
any endpoint of Ia . We have Ib−(n+2)(t)⊂ Ia for all t ∈ I ′a so

µ(Ia)
q−1µ

(
I ′a
)
�

∫

I ′a

µ
(
Ib−(n+2)(t)

)q−1
µ(dt).

Thisyields

∑

a∈An

µ(Ia)
q−1µ

(
I ′a
)
�

∫

[0,1]

µ
(
Ib−(n+2)(t)

)q−1
µ(dt). (16)

By using Lemma2 weget,with probability one, for all n largeenoughanda ∈An,

b−2w2e−(ϕ(n)+ϕ(n+2))
�

µ(I ′a)

µ(Ia)
,
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so by (16)

∑

a∈An

µ(Ia)
q

� b2w−2eϕ(n)+ϕ(n+2)
∫

[0,1]

µ
(
Ib−(n+2)(t)

)q−1
µ(dt) (17)

andtheproofendslike in thefirst case by using(15),(17)and(14).
Step 2. We use the notations introducedwith Lemma3. For all j andn � 1 and all

q ∈R, define:

Yj,n(q)= b(n−1)j
∫

Iεj,n−1

P(n−1)j,nj (t)
q dt

(Yj,1(q) =
∫
[0,1]Pj (t)

q dt). Define CW = max(| logw|, | logw|). We use the notationsof
Lemma3 andprovethe followingproperty:

(P) For every j large enough,with probabilityone,for all n � 1 largeenough,0 � i �

j − 1 and q ∈R,

exp
(
−h̃(j, n, q)

)
�

Ynj+i,1(q)∏n
l=1Yj,l(q)

� exp
(
h̃(j, n, q)

)
,

whereh̃(j, n, q)= 2|q|hjn+CW |q|(2βjjn+ 2(jγ +mj )n+ i).

It follows from thedefinition of Mj,n and the inequality W q � exp(CW |q|) that

exp
(
−CW |q|(Mj,n j + i)

)
�

Ynj+i,1(q)

Z
� exp

(
CW |q|(Mj,n j + i)

)

with

Z =
∫

[0,1]

∏

1�l�n,
ω∈Ej,l

P(l−1)j,lj (t)
q dt .

Moreover, againbecauseof W q � exp(CW |q|), we have e−CW |q|j � Yj,l(q) � eCW |q|j for
each0� l � n− 1. So

exp
(
−CW |q|(2Mj,n j + i)

)
�

Ynj+i,1(q)

Z
∏

1�l�n, ω/∈Ej,l
Yj,l(q)

� exp
(
CW |q|(2Mj,n j + i)

)
. (18)
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Define l1(ω)=min{1� l � n: ω ∈Ej,l}. By construction we have:

Z =
∑

a∈A(l1−1)j

∫

Ia

∏

l1�l�n,
ω∈Ej,l

P(l−1)j,lj (t)
q dt .

By the1-periodicity of W , the integral

∫

Ia

∏

l1�l�n,
ω∈Ej,l

P(l−1)j,lj (t)
q dt

doesnotdependona ∈A(l1−1)j . It follows that

Z = b(l1−1)j
∫

Iεj,l1−1

∏

l1�l�n,
ω∈Ej,l

P(l−1)j,lj (t)
q dt .

Now, by using the definition of Ej,l1 andcomputationssimilar to those used in the first
stepandin theproofof Lemma2, weget:

exp
(
−2|q|hj − 2CW |q|(jγ +mj )

)
�

Z

Yj,l1(q)Z1
� exp

(
2|q|hj + 2CW |q|(jγ +mj )

)

with

Z1 = bl1j

∫

Iεj,l1

∏

l1+1�l�n,
ω∈Ej,l

P(l−1)j,lj (t)
q dt .

Repeating thesameargumentuntil the last l for whichω ∈Ej,l we get:

exp
(
−ĥ(j, n, q)

)
�

Z∏
1�l�n, ω∈Ej,l

Yj,l(q)
� exp

(
ĥ(j, n, q)

)
, (19)

where ĥ(j, n, q)= (2|q|hj + 2CW |q|(jγ +mj ))(n −Mj,n). Thenproperty (P) follows
from Lemma3, (18)and(19).

Step3. Fix q ∈ R. We show thatthelimit in Step1 exists almost surely and is equalto
1− q +ψW (q).

By construction, for every j � 1 the randomvariables Yj,l(q), l � 1 are i.i.d. and
integrable. It then follows from Step2 and the law of large numbers that for every j large
enough,with probabilityone,



1580 J. Barral et al. / J. Math.PuresAppl. 82 (2003)1555–1589

−2|q|hj

j
− 2CW |q|

(
βj +

jγ +mj

j

)
+ 1

j
E
(
logYj,1(q)

)

� lim inf
N→∞

logYN,1(q)

N
� lim sup

N→∞

logYN,1(q)

N

� 2|q|hj

j
+ 2CW |q|

(
βj +

jγ +mj

j

)
+ 1

j
E
(
logYj,1(q)

)

and theconclusion followsby letting j tend to∞.
Step4. We show that with probability one, the convergenceas r → 0+ of τr (q) holds

for all q ∈R, and limr→0+ τr (q)= 1− q +ψW (q).
It sufficesto notice thatalmost surely, for n � 1 and q, q ′ ∈ R,

∣∣∣∣
1

n
logYn,1(q)−

1

n
logYn,1(q

′)

∣∣∣∣� CW |q − q ′|,

andthento use Step 3, together with (9), (10), (15) and(17). The property of the limit
function τµ to be convex nonincreasing is inherited from the τr . The fact that τµ is
decreasing if DW > 0 and decreasing on (−∞,1) and null on [1,∞) if DW = 0 will
beexplainedin Remark7 (Section5.3).

(1)(ii). It follows from the proof of (i) (Step 3) that the function τµ is the limit of
the sequenceof convex functionsfn = E(τb−n). Moreover, due to the concavity of the
logarithm, for all n � 1 and q ∈ R, fn(q) � f (q) = 1 − q + logb

∫
[0,1]W(t)q dt , so

τµ(q) � f (q). Then, the dif ferentiability of τµ at 0 and 1 results from the equalities
fn(0) = f (0) = 1, fn(1) = f (1) = 0, f ′

n(0) = f ′(0) = −1 +
∫
[0,1] logb W(t)dt and

f ′
n(1)= f ′(1)=−DW for all n � 1. τµ is not affine on [0,1] because of the valuesof

τµ(0), τµ(1) andτ ′µ(1).
(2)(ii). We have DW = 1 if and only if the derivative of the convex function

f :q �→
∫
[0,1]W(t)q dt at 1 is null. Since f (0) = f (1) = 1, this yields W = 1 almost

everywhere.In this caseµ is theLebesguemeasureand τµ(q)= 1− q for all q ∈ R. �

To proveLemmas2 and3, weneedthe:

Lemma 4. For γ ∈ (1/2,1) andn � 1 definepn = pn(γ ) theprobability that there exists
a ∈An for which #{0� k � n−mn: Sn ∩ [bk(Ia + φk) mod1] �= ∅}� nγ .

Theseries
∑

n�1 pn converge.

Proof of Lemma 2. Fix γ > 1/2. By Lemma4 and theBorel–Cantelli lemma, for almost
every ω ∈Ω , thereexistsn0(ω) � 1 suchthatfor n � n0, for all a ∈An,

#
{
0 � k � n−mn: Sn ∩

[
bk(Ia + φk) mod1

]
�= ∅

}
< nγ .
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This implies that for n � n0(ω), a ∈An andt, s ∈ Ia , wehave:

∣∣∣∣∣

n∑

k=0

log
[
W
(
bk(t + φk)

)]
− log

[
W
(
bk(s + φk)

)]
∣∣∣∣∣

�
∑

0�k�n−mn,

Sn∩[bk(Ia+φk) mod 1]=∅

∣∣log
[
W
(
bk(t + φk)

)]
− log

[
W
(
bk(s + φk)

)]∣∣

+ (nγ +mn)
(
log(w)− log(w )

)

� hn + (nγ +mn)
(
log(w)− log(w )

)

by definition of hn. So theconclusion follows if we take:

ϕ(n)= 2
[
hn + (nγ +mn)

(
log(w)− log(w )

)]
. �

Proof of Lemma 3. By definition,for j andn � 1,

Mj,n(ω)=
n∑

l=1

1Ω\Ej,l (ω),

where the randomvariables 1Ω\Ej,l , 1 � l � n, are independentcopies of a Bernoulli
randomvariablewith parameter pj (definedin Lemma4).

Defineβj = 2pj/(1+pj ) (βj tendsto 0 at ∞). Then,theestimateof P(Mj,n � [βjn])
is standardandonehas

∑
n�1 P(Mj,n � [βj n]) <∞. �

Proof of Lemma 4. Fix γ > 1/2. For every n � 1, denote by Nn + 1 the numberof
elementsof Sn. Notice that Nnb

−mn � 1. The φk being uniformly distributed, for every
0 � k � n−mn anda ∈An,

P
(
Sn ∩

[
bk(Ia + φk) mod1

]
�= ∅

)
=Nnb

k−n.

Sotheprobability thatbk(Ia+φk) mod1 meetsSn for at least nγ valuesof k in [0, n−mn]
is boundedby (weuse theindependencesbetweentheφk):

an =
n−mn∑

l=nγ

∑

0�k1<···<kl�n−nm

l∏

i=1

Nnb
ki−n =

n−mn∑

l=nγ

N l
nb

−nl
∑

0�k1<···<kl�n−nm

b
∑l

i=1 ki .

By boundingevery termof theform b
∑l

i=1 ki by b
∑l−1

i=0 n−mn−i andthenumberof termsin∑
0�k1<···<kl�n−nm

b
∑l

i=1 ki by nl , we get:

an �

n−mn∑

l=nγ

N l
nb

−nlnlb(n−mn)l−(l2−l)/2
�

n−mn∑

l=nγ

nlb−(l2−l)/2
� nn+1b−(n2γ−nγ )/2
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(we used Nnb
−mn � 1). As γ > 1/2, an elementarystudy shows that

∑
n�1 bnan < ∞.

Sincepn � bnan, wehave theconclusion. �

Proof of Theorem 3. According to the notations of the introduction, denote by f the
function q �→ 1− q + logb

∫ 1
0 W(t)q dt .

(i) This is shown in theproof of Theorem2(ii) or Proposition 10 in [12].
(ii) Suppose that W is not constant. Let S be the set of those points q ∈ R such that

τµ(q)= f (q). Supposethatthereexistsp0 ∈ S and(qn)n�1 asequenceof pairwisedistinct
points in S such thatqn → p0 asn→∞.

For every q ∈ R, writing τµ(q) = f (q) is equivalent to ψW (q) = logb

∫ 1
0 W(t)q dt ,

i.e.,ψWq (1)= 0, whereWq =W q/
∫ 1

0 W(t)q dt . Since W q alsosatisfies the assumptions
of Proposition 3, it follows from this proposition that τµ(q) = f (q) is equivalent to the
nondegeneracy of the measureµq associatedwith Wq like µ with W . By Theorem1(v),
thenondegeneracy of µq implies that for every j ∈ Z

∗, Ŵq (j)Ŵq(bj)= 0, or equivalently
Ŵ q (j)Ŵ q (bj) = 0. Now suppose that Ŵp0(b) �= 0. The same holds for Ŵ q (b) in a
neighborhoodof p0, so we canassume without loss of generalitythat Ŵ qn(b2) = 0 for
all n � 1. Sincethemapping q �→ Ŵ q (b2) has an analytic extension to C (w � W � w),
this yields Ŵ q (b2) = 0 for all q ∈ R. On the other hand, since W is not constant,
�({t ∈ [0,1]: W(t) > 1}) > 0 and either limq→∞ |

∫
[0,1]W(t)q cos(2πb2t)dt| = ∞ or

limq→∞ |
∫
[0,1]W(t)q sin(2πb2t)dt| =∞, acontradiction.

Supposing that Ŵp0(b2) �= 0 leadsto a similar contradiction. Consequently, the set S

is discrete. If supt∈[0,1]W(t) > b thenf (q) > 0 for q large enough.Sinceτµ(q) � 0 for
q � 1, it follows that thediscretesetS is upperbounded.

(iii) The function Wq = W q/
∫ 1

0 W(t)q dt is of the same kind as W . In particular,
Ŵq (bj) = 0 for all j ∈ Z∗. Consequently, property (v) of Theorem1 is fulfilled by Wq ,
hencetheassociatedmeasureµWq nondegenerate. It followsthat‖µWq ,n‖ = 1 for all n � 1
andq ∈ R. Thisyields theconclusion. �

5.3. Themultifr actal spectrumof µ

We denoteτµ by τ in this section.
If α � 0, define:

{
X α =

{
t ∈ [0,1]: αµ(t)= α

}
, Xα =

{
t ∈ [0,1]: αµ(t)= α

}
, Xα =X α ∩Xα,

Vα =
{
t ∈ [0,1]: αµ(t) � α

}
, V α =

{
t ∈ [0,1]: αµ(t) � α

}
.

We excludethecasewhereW is almost everywhereequalto 1. It followsfrom Theorem2
thatwehaveαinf < αsup, whereαinf = inf{−τ ′+(q): q � 0} andαsup= sup{−τ ′−(q): q � 0}
(αinf = 0 if DW = 0).

Theorem 4. Assume(H1), (H2) and(H3).

(i) With probabilityone, for every q � 0 such that−τ ′+(q) > αinf andL ∈ {H,P },
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0<−τ ′+(q)q + τ (q) � dimL V−τ ′+(q) ∩ V−τ ′−(q)
�−τ ′−(q)q + τ (q)

andfor every q � 0 such that−τ ′−(q) < αsup andL ∈ {H,P },

0<−τ ′−(q)q + τ (q) � dimL V−τ ′+(q) ∩ V −τ ′−(q)
�−τ ′+(q)q + τ (q).

Moreover, at each q where the convex function τ is differentiable and −τ ′(q) ∈
(αinf, αsup), for every E ∈ {X,X,X} andL ∈ {H,P },

dimL E−τ ′(q) =−τ ′(q)q + τ (q) > 0.

(ii) With probability one, Vα ∩ V β = ∅ for all (α,β) such that α � β and [α,β] �⊂
[αinf, αsup].

Remark 6. (1) Theorem4 concludesasTheorem1 in [12] for µ, thedifferencebeing that
now W satisfiestheweakassumption (H3).

(2) In theproofof Theorem4(i), wedealwith atomlessmeasuresµq in orderto compute
someLaplacetransformanduse theLargeDeviationstheoryto show thatµq is carriedby
V−τ ′+(q) ∩ V −τ ′−(q). When DW = 0, wearenot able to provethatµ1 = µ is atomlesssince
weonly know thatdimH µ=DW = 0 (Corollary 2).Thisiswhywecannotclaim thatX0 is
notempty. If wecould provethatµ is atomless,this would yieldX0 �= ∅ anddimH X0 = 0.

(3) Onealso couldderivesimilar results in theframework of “box” multifractalanalysis
[6]. Also noticethatwhenW satisfies(8), µ isakind of randomversion of quasi-Bernoulli
measuresconsideredin [6].

Theorem 4 will be obtained by using a convenient family of auxiliary measures.Our
approachisaslightmodification of theoneof [12]. Insteadof constructing thesemeasures
directly on [0,1], weobtain themasprojectionsof measuresdefinedon∂A∗.

Let Ω∗ bea subset of Ω such thatP(Ω∗)= 1 and for all ω ∈Ω∗ the martingale limit
measureµ̃ exists.Fix ω ∈Ω∗. Thenforq ∈ R, let µ̃q,n, n � 1, bethesequenceof measures
on ∂A∗, definedby:

dµ̃q,n

d�̃
(t̃ )= Pn(π(t̃ ))q∫

[0,1]Pn(π(t̃ ))q dt
.

It possessesasubsequencẽµq,nj (q) which convergesto aprobability measure µ̃q with the
followingproperty:

Proposition 5. For P-almost every ω in Ω∗, for all q ∈R, for µ̃q -almost every t̃ ∈ ∂A∗: if
q � 0 then

−τ ′+(q)q + τ (q) � βµ̃q
(t̃ ) � βµ̃q

(t̃ ) �−τ ′−(q)q + τ (q);

if q � 0 then

−τ ′−(q)q + τ (q) � βµ̃q
(t̃ ) � βµ̃q

(t̃ ) �−τ ′+(q)q + τ (q).
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Corollary 2. Due to the differentiability of τµ at 1, with probability one the Hausdorff
dimension of µ is exactly DW .

Remark 7. (1) It follows from Proposition 5 that −τ ′sgn(q)(q)q + τ (q) � 0 for all
q ∈ R, because the logarithmicdensity of a measure cannottend to −∞. This forces
−τ ′sgn(q)(q)q + τ (q) to bepositive if −τ ′sgn(q)(q) ∈ (αinf, αsup).

(2) Since τ (1) = 0 and τ is convex nonincreasing, it is decreasing on (−∞,1).
Moreover, if DW > 0, i.e., τ ′(1) < 0, τ becomesnegative on (1,∞). Consequently,
it is also decreasing on [1,∞), otherwise −τ ′sgn(q)(q)q + τ (q) < 0 for some q > 1,
contradictingProposition 5. If DW = 0, i.e., τ ′(1) = 0, since τ is convex nonincreasing,
τ (q)= 0 for all q � 1. Thiscompletes theproofof Theorem2(1)(i).

Theproofsof Proposition 5 andCorollary2 arepostponed.

Proof of Theorem 4. (i) As a consequenceof Proposition 5 and a Billingsley lemma
[5, pp.136–145], for P-almost every ω ∈ Ω∗, for every q ∈ R such that
−τ ′sgn(q)(q)q + τ (q) > 0, the measure defined on [0,1] by µq = µ̃q ◦ π−1 is of Haus-
dorff dimension at least −τ ′sgn(q)(q)q + τ (q). In particular, it is atomless.Moreover, this

measure is the weak limit of the sequenceµq,nj (q) = µ̃q,nj (q) ◦ π−1. So, for n � 1 and
a ∈An,

µq(Ia)= lim
nj (q)→∞

∫
Ia

Pn(t)
qPn,nj (q)(t)

q dt
∫
[0,1]Pn(t)qPn,nj (q)(t)

q dt
.

Thefact that
∫
Ia

Pn,nj (q)(t)
q dt doesnot dependon a ∈ An together with the same useof

Lemma2 as in theproofof Theorem2 yield for n largeenough,a ∈An ands ∈ Ia ,

e−|q|ϕ(n) b−nPn(s)
q

∫
[0,1]Pn(t)q dt

� µq(Ia) � e|q|ϕ(n) b−nPn(s)
q

∫
[0,1]Pn(t)q dt

.

Now, proceedingas in theproofof Theorem2, we obtainfor P-almost every ω ∈Ω∗, for
every q ∈ R such that−τ ′sgn(q)(q)q + τ (q) > 0, for all β ∈R,

lim
n→∞

1

n
logb

∫

[0,1]

µ
(
Ib−n(t)

)β
µq(dt)= τ (β + q)− τ (q).

Thenmimicking the proof of Theorem1 in [12] or the oneof Theorem2.18 in [23]
(they use a standardLarge Deviationstheorem(see [8])) we obtain thatµq is carriedby
V−τ ′+(q) ∩ V −τ ′−(q). Thisyields thelower boundfor thedimensions.

Theupperboundsfor thedimensionsareobtainedas in [12,Theorem1]. An alternative
approachis to useTheorem2.24,Propositions2.5and2.6,andLemma4.4in [23].Notice
thatto makeuseof [23], it isneverthelessnecessary to replace(it isimmediate)theproperty
of the measure in [23] to be a doubling measure by the following: via Lemma2, with
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probability one, there exists a constant C > 0 such that for all r small enough,for all
t ∈ [0,1],

µ(I2r(t)

µ(Ir (t))
� CeCϕ([− log(r)])

with limr→0ϕ([− log(r)])/logr = 0.
(ii) It isa consequenceof Lemma4.4in [23]. �

Proof of Proposition 5. Since ∂A∗ is totally disconnected, for all ω ∈Ω∗, for all q ∈ R,
for all a ∈A∗,

µ̃q(Ca)= lim
nj (q)→∞

∫
Ia

Pn(t)
qPn,nj (q)(t)

q dt
∫
[0,1]Pn(t)qPn,nj (q)(t)

q dt
.

Then, computations similar to those performedin the proof of Theorem2 yield for
P-almost every ω ∈Ω∗, for every q ∈ R, for all β ∈ R,

lim
n→∞

1

n
logb

∑

a∈An

µ̃q(Ca)
β+1 = lim

n→∞
1

n
logb

∫

∂A∗

µ̃q

(
Cn(t̃ )

)β
µ̃q(dt̃ )

= τ
(
(β + 1)q

)
− (β + 1)τ (q).

Here again, the Large Deviations theory yields the conclusion on the logarithmic
density. �

Proof of Corollary 2. Consequenceof Proposition 5 applied at q = 1, the existence
of τ ′(1), togetherwith theBillingsley lemma[5, pp.136–145]. �

6. Multifractal function and spectrum of ν

If W is Hölder continuous, we consider the measureν obtainedin Section 1: ν = µ if
µ is nondegenerateandν is the weaklimit of µn/‖µn‖ otherwise. Due to Theorems3.1
and3.2 in [17], themeasureν is almost surely equivalent to a probability measureµω

logW

such that theprobability measuredefined on R/Z×Ω by

µlogW (dt,dω) := µω
logW (dt)P(dω)

is ergodic with respect to the skew product (t,ω) �→ (bt, θ(ω)). It follows that, almost
surely, ν andµω

logW havethesamemultifractalnature.Theresults onmultifractalanalysis
of Gibbsmeasuresin [19] would providetheHausdorff dimension of thelevel setsXα only
for all α almost surely instead of almost surely for all α. But we keepfrom theapproach
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in [19] (Section 5) the following information: with probability one (with the notations of
Section 1) the limit function

q ∈ R �→ lim
n→∞

1

n
logb

∫

R/Z

L
θn−1ω
logW q ◦ · · · ◦Lθω

logW q ◦Lω
logW q (1)(t)dt (20)

existsand isstrictly convex,andanalytic; moreover,by definition it isequal to q �→ψW (q).
Define for ν andα � 0 thesetsXν

α , Xν
α , Xν

α , V ν
α andV ν,α asXα , X α , Xα , Vα andV α

werefor µ.

Theorem 5. With probabilityone:

(i) The multifr actal function of ν is strictly convex and analytic, and is almost surely
givenbyτν(q)= 1− q(1+ψW (1))+ψW (q).

(ii) For all q ∈ R, E ∈ {X,X,X} andL ∈ {H,P }, dimL Eν
−τ ′ν (q)

=−τ ′ν(q)q + τν(q).

(iii) V ν
α ∩ V ν,β = ∅ for all (α,β) such thatα � β and[α,β] �⊂ −τ ′ν(R).

Proof. The existenceof the limit function τν(q) is obtainedas in Section 5.2 for µ. The
multifractalspectrumof ν isderived liketheoneof µ in Section 5.3.Thenew point hereis
only thestrict convexity andtheanalyticityof τν which follows from the existence of the
limit in (20). �

Remark 8. If W satisfiesonly satisfies (H2) and (H3), after replacingτ by τν , the
conclusionsof Theorem4aretruealmost surely forany limit ν of asubsequenceof νn. This
holdsfor alargerchoiceof functionW , sinceW doesnotnecessarily satisfy property (v) of
Theorem1. In particular, givena densecountablesubsetS of [0,1], it is easy to construct
W jumping at every point of S and satisfying (H3).

7. A mult iplicativecascadecounterpart

Themeasuresstudiedin previoussectionsdeserveto becomparedto thoseobtainedby
a multiplicativecascadeconstruction.

Let (W0, . . . ,Wb−1) beanonnegativerandomvector in Rb suchthatb−1∑b−1
j=0Wj = 1

almost surely. Let ((W0, . . . ,Wb−1)(n))n�1 be a sequenceof independentcopies of
(W0, . . . ,Wb−1). Then let µ be the almost sure weaklimit of the sequence of probability
measuresµn on [0,1] given by:

dµn

d�
(t)=

n∏

k=1

Wak (k) if t ∈ Ia1...an

for every a = a1 . . . an ∈An. Thissequenceisa martingalewhich convergesalmost surely
weaklyto ameasureµ on [0,1].
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The parallel with the measure studiedin the previous sections is now easyto make by
using Proposition 1: definefor n � 1 and a ∈An the sequence(µIa

m )m�1 by:

dµIa
m

d�
(t)=

m∏

k=1

Wa′k
(n+ k) if t ∈ Iaa′1...a

′
m

for every a′ = a′1 . . . a′m ∈Am. ThenProposition 1 holdsif onespecifiesthatI isoneof the
Ia andif (6) is replacedby thesimpler relation

µm(dt)=
n∏

k=1

Wak (k)µ
Ia
m−n(dt).

The readerwill adaptthe approachused in Section4 to obtain the following result,
in this construction, the computations areeasier, becausethe auxiliary measureshave the
simple expression

µq(Ia1...an)=
∏n

k=1W
q
ak

(k)
∏n

k=1(
∑b−1

j=0W
q
j (k))

.

For β � 0 define:

{
Eβ =

{
t ∈ [0,1]: β µ(t)= β

}
, Eβ =

{
t ∈ [0,1]: βµ(t)= β

}
, Eβ =Eβ ∩Eβ ,

Uβ =
{
t ∈ [0,1]: β µ(t) � β

}
, Uβ =

{
t ∈ [0,1]: βµ(t) � β

}
.

Theorem 6. Assumethat
∑b−1

k=0 E(1{Wk>0}| logWk|) <∞. Definethe analytic decreasing

convex function τµ :q ∈ R �→ −q +E(logb

∑b−1
k=0 1{Wk>0}W

q
k ). With probabilityone:

(i) for all q ∈ R, F ∈ {E,E,E} andL ∈ {H,P }, dimL F−τ ′µ(q) =−τ ′µ(q)q + τµ(q);

(ii) Uα ∩Uβ = ∅ for all (α,β) such thatα � β and[α,β] �⊂ −τ ′µ(R).

Remark 9. (1) The level sets considered in Theorem6 are those of the multifractal
formalism developedin [6]. Indeed,because of thetreestructurein theconstructionhere,
the Large Deviations theory can be used directly in the spirit of Section 5 only in this
formalism. To get the same information for level sets involving centered intervals, it is
possible to use thegeneralapproachof [2].

(2) Themeasureconsideredin thissection isaversion,with strongercorrelations, of the
microcanonicalcascademeasurem [21] obtainedasfollows: eachnodea of A∗ isequipped
with its own copy of (W0, . . . ,Wb−1), (W0, . . . ,Wb−1)(a), and these copiesaremutually
independent; the probability measure m is the almost sure weaklimit of the sequence of
probability measures(mn)n�1 given by:

dmn

d�
(t)=

n∏

k=1

Wak (a1 . . . ak−1) if t ∈ Ia1...an .
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Let f :q �→ −q + logb E(
∑b−1

k=0 1{Wk>0}W
q
k ). Let J be the largest interval such that

−f ′(q)q + f (q) is definedandpositivefor all q ∈ J . With probability one, themultif ractal
formalism in thesense of [6] or [23] holds for m on−f ′(J ) andτm = f on J (cf. [1,2]
for details). Soin general, τµ(q) < τm(q) on J exceptfor q = 1 where τµ andτm always
coincide.It isexactly thesamephenomenonasfor µ andm in Section 1 (Remark 1).
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