COVERING NUMBERS OF DIFFERENT POINTS
IN DVORETZKY COVERING
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ABSTRACT. Consider the Dvoretzky random covering on the circle T
with a decreasing length sequence {£}n>1 such that Y>> £, = co. We
study, for a given 8 > 0, the set Fg of points which are asymptotically
covered by a number SL, of the first n randomly placed intervals where
L = >7%_, %. Three typical situations arise, delimited by two “phase
transitions”, according to @ is zero, positive-finite or infinite, where
a = limsup,,_, _f)ﬁ- More precisely, if £, tends to zero rapidly
enough so that @ = 0 then, with probability one, dimg Fg = 1 for all
B > 0; if £, is moderate so that 0 < @ < +oo then, with probability
one, we have dim Fg = dg(83) for B € Jx and F3 = & for 8 ¢ J5 where
dz(B) = 1+a(B—1—plog B) and Jx is the interval consisting of 8’s such
that dg(8) > 0; eventually, if £, is so slow that @ = lim, _{(‘)ﬁ =
+o00 then, with probability one, Fi = T. This solves a problem raised
by L. Carleson in a rather satisfactory fashion.

Analogous results are obtained for the Poisson covering of the line,
which is studied as a tool.

1. INTRODUCTION

We consider the circle T = R/Z which is identified with the interval
[0,1), a decreasing sequence {/,},>1 (0 < £, < 1) which tends to 0 at
oo and such that Y 02, 4, = oo, and a sequence of i.i.d. random variables
{wn}n>1 of the uniform distribution (i.e. Lebesgue distribution). We denote
by I, = w, +(0,£,) the open interval of length £,, with left end point w,,. In
this paper, we study how a given point ¢ € T is covered by these intervals
I,.

The Dvoretzky covering problem is to find necessary conditions and suf-
ficient conditions on the length sequence {/,} for the whole circle T to be
covered almost surely, or equivalently for T to be covered infinitely often.
That is to say

IP’(’]I‘: ﬁ G In> =1 (1.1)

N=1n=N
where P is the probability measure of the underlying probability space
(©2, A,P). The problem was raised in 1956 by A. Dvoretzky [D]. It attracted
attentions of P. Lévy, J.P. Kahane, P. Erdos, P. Billard, B. Mandelbrot who
made significant contributions (see [K1]).
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2 Covering numbers in Dvoretzky covering

We first observe that, with probability one, almost every point in T with
respect to the Lebesgue measure is covered by an infinite number of inter-
vals I,. Furthermore, we have the following quantitative description of this
infinity, i.e. with probability one for almost every ¢t € T, we have

lim k=1 Lo,e0) (t — wi)

n—00 ZZ:I ek

where 14 denotes the characteristic function of a set A. In fact, for any

] 1 t—wy)—4
t € T the series Y po; %kk)k

> %_1 %k, because the partial sums of the series form a martingale which

is L2-bounded by > %, e’“(lL%e’“) < oo (the last series does converge and
its verification is left to the reader). Hence (1.2) follows from this conver-
gence, the Kronecker lemma and the Fubini theorem. However, the condition
Y ome 4 = oo is not sufficient for every point ¢ € T to be covered.

In 1972, after the works of the authors mentioned above, L. Shepp [S]
obtained a complete solution to the problem by finding a necessary and
sufficient condition for covering (i.e. for (1.1) to be realized):

o

1
Z -3 exp(fy + -+ + £,) = c0. (1.3)

n=1

=1 (1.2)

converges almost surely, where L, =

To get more information on further developments and related topics of the
subject, we may refer to Kahane’s book [K1] and his survey papers [K4, K5,
K6].

When Shepp’s result is established, a natural problem, which was raised
by L. Carleson (communication to J. P. Kahane who transmitted it to the
second author), is how to describe the infinity of the set of intervals covering
a given point. First works in this direction appeared in [F1, FK1].

We describe the Carleson problem in the following manner. Define, for
n > 1, the nth covering number of t € T by

n
No(t) =Card{l1 <j<n:I, 3t} = 1)t —w)
k=1
which is the number of those intervals covering ¢ among the first n intervals.
Since the expectation EN,, (¢) of N, (t) is equal to L,, we are naturally led
to compare the asymptotic behavior of N,,(t) with that of L,,. Thus, for any
B > 0, we define the (random) sets
N,
Eﬂ:{te'ﬂ‘:liminf#:ﬂ},

n—o0 n

Fg= {t € T : limsup Nz(t) = ﬁ} ,
n—o0 n
Fy=Fs()Fp.

A previous work [F3] showed that, in the case £, = & (a > 0), these sets
may be non-empty for a certain interval of 8. In other words, points on the
circle may be differently covered. As we shall prove, it is not the case for all
length sequences {£,} (¢, = l%glﬂ being a counter-example, see Theorem 1.3,
i.e. in this case every point is covered in the "same” way).
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In this paper, we will prove, under some regularity conditions on £,,, that
there exists a deterministic interval J of 8 such that with probability one,
the sets Fg, Fz and ?g are non-empty for every 8 € J. Furthermore, we
determine the size of these sets by computing their Hausdorff dimensions,
which are given by an explicit formula (Theorem 1.1, 1.2 and 1.3). No-
tice that the interval J may be the infinite interval Ry = [0,00), a finite
subinterval or a singleton.

As we have already pointed out, the asymptotic behavior of Nf—ff) was
first investigated in [F1] and [FK1], especially in the case £, = . In this
case (£, = ), the Hausdorff dimension of Fg was calculated almost surely
for a given £, but not almost surely simultaneously for all £ in a nontrivial
interval [F3]. A similar problem on {0,1}" (in place of T) was treated in
[FK2].

In order to state our result, we define

Z?:l 4

o = limsup —/——~ 14
n—)oop - log 4y ( )
2ot;efp-tntm) pn) b
o = inf lim sup su J ’ 1.5

where b > 2 is an integer. For 0 < € < 1, let
Ae={j>1 e<t; <1}

Our results concern three classes of sequences {/,},>1, roughly described
as rapid sequences for which we have @ = 0, moderate sequences for which
0 < @ < oo and slow sequences for which @ = +oc.

We will make one of the two following regularity assumptions (the first
one is made for the classes qualified by @ = 0 or 0 < @ < 00, and the second
one for the class qualified by @ = 00):

(H) lim supné, < oo
n—oo

(Hoo) lim né, = oco.
n—oo

An equivalent formulation of (H) is

lim sup eCard A, < co.
e—0

An equivalent formulation of (Hy) is

lim eCard A, = 0.
e—0

The assumption (H) implies 0 < @ < co. One always has @ < @. One also
has @ = @ = 0 as soon as lim, nf, = 0. Some of these assertions are easy
to check. Others will be checked in the last section (Appendix).

To state our results, we also need to introduce the function

da(B) =1+ (B —1 - Blog p) (1.6)

defined for o > 0 and 8 > 0. In the following, dim F' denotes the Hausdorff
dimension of a set F.
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Theorem 1.1 (Case @ = 0). Assume (H), i.e. limsup,,_,., nl, < oo.
Suppose @ = 0. With probability one, for all 8 > 0 such that dz(8) > 0 we
have

dim(Fy) = dim(F ) = dim(Fg) = 1. (1.7)

Theorem 1.2 (Case 0 < @ < 00). Assume (H), i.e. limsup,,_, ., nly <
o0o. Suppose 0 < @ < oo. With probability one, for all § > 0 such that
dz(B) > 0, we have

dim(Fj) = da(f) (18)
and
Fy=o (820, da(B) <0). (1.9)
If, moreover, @ is defined by a limit (not just a limsup), (1.8) and (1.9) hold
for Fg and Fj3 instead of Fj.

Theorem 1.3 (Case @ = +00). Assume (Hy), i.e. lim, o nl, = oco.
Then almost surely we have

Na(t)

lim =1 (VteT).
n—oo n
Theorem 1.3 says that when /,, tends slowly to zero (e.g. £, = 105"), every

point ¢t € T is covered by a same covering number of intervals. This is a new
phenomenon, which was not known and which is not produced for moderate
sequences like £, = 2 (see Theorem 1.2). The quick sequences like m
share another extreme property that all numbers are possible, according
to Theorem 1.1. We may say that there are two ”phase transitions”, from
quick sequences to moderate sequences and from moderate sequences to slow
sequences.
Let us consider the following family of parameterized sequences

B «
" nlog?(n+1)
where @ > 0 and —o0 < 7y < 1 (remark that > ¢, < oo if ¥ > 1). Then we
have
1. if 0 <y <1, then a = 0 and the assumption (H) is satisfied.
2. if y =0, then & = a > 0 and the assumption (H) is satisfied;
3. if 7 < 0, then @ = @ = 0o and the assumption (Hy,) is satisfied.

o=
a=

In this family we find representatives of all three cases.

Let us consider another family of sequences all of which tends quickly to
zero. First notice that @ = 0 implies @ = 0. So, when @ = 0, as corollary of
Theorem 1.1, we get that with probability one the formula (1.7) holds for
all B > 0. Here is a family of quick sequences satisfying (H): for n large
enough we have
B @

n(log" n)” H;;ll log® n

where o > 0, v € (0,1), 7 > 1 is an integer and log™ z means the j-fold
composition of log z. In this case, we have

n

L, ~ ﬁ (log°" n) =,
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The assumption (Hy,) is satisfied by the following families of slow se-
quences (for n large enough):

log”
by =« o8 1
n
(a,y > 0) for which L, ~ ﬁ log! ™+ n;
log®™ n)7
0, = a%
(r>1,a>0,v>0, 0<o<1) for which L, ~ %nlfﬁ(logw n)7;
«
/A —
" (logOT fn,)’Y

(r>1, a> 0,7y >0) for which L, ~ an(log®" n)~"7.

The set Fy (i.e. 8 = 0) contains the set F = T\ limsupI, consisting
of points which are only finitely covered. Points in F are described by
N, (t) = O(1) and those in Fy by N, (t) = o(L,). The Shepp condition is an
exact condition for F = @&. We don’t know similar condition for Fy = @.
However, Theorem 1.1 and Theorem 1.2 show that for a regular sequence
satisfying @ = @ we have

a< 1= Fy# g, a>1=Fy=0.
It was known ([K1], p. 160) that dimF =1—a > 0 when 0 < @ < 1. Then,
Fy # & and even dim Fjy > dg(0) = 1—a > 0. So, new information provided

by Theorem 1.2 for Fj is that the preceding inequality is an equality. When
a = 1, it is possible that Fy # @ although dim Fy = 0. Indeed, it is the case

for 5
1 1
by =~ (1— i )
n logn

with & > 0, for which the Shepp condition (1.3) is violated.

If @ = @ > 0, as a corollary of Theorem 1.2 we get that with probability
one, the formula (1.8) holds for all § > 0 such that dz(8) > 0, and F = @
if dg(B8) < 0. It is the case when ¢, = a/n with @ > 0. Recall that in this
case L, ~ alogn.

We treat the above Dvoretzky covering problem on the circle by a closely
related Poisson covering of the real line which was introduced by B. Mandel-
brot [M1, M2]. The idea was exploited in [K3] and [F3]. We point out that
the idea of using Poisson processes was also used in [J1, J2] in a different
context (covering with intervals of same size, or with sizes aX,, where a > 0
and {X,} is an i.i.d. sequence). Another idea comes from [B], which consists
of simultaneously constructing a class of random measures, called Poisson
multiplicative chaos, and simultaneously estimating their dimensions. Con-
struction of single random measure is provided in [K2] in its full generality.
Single measure corresponding to a fixed § was already introduced in [F3].
The main difference of the present paper from [F3] is that we are now able
to prove that these single measures for different 8’s can be simultaneously
constructed and their dimensions simultaneously computed.

We organize the paper as follows. In Section 2, we simultaneously con-
struct Poisson multiplicative chaos, and we prove a lower bound for their
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Hausdorff dimensions. Then we specify such a multiplicative chaos adapted
to the study of Dvoretzky covering numbers. In Section 3, we prove that
almost surely, each of multiplicative chaos is supported by one of the sets
Fg. This, together with what we obtained in Section 2, yields the lower
bounds for the Hausdorff dimensions of Fg’s in Theorems 1.1 and 1.2. Sec-
tion 4 is devoted to the study of upper bounds concerning Theorems 1.1
and 1.2. Section 5 proves Theorem 1.3. Section 6 states analogous results
for covering numbers associated with the covering of real line by random
Poisson intervals. The last Section 7 (appendix) discusses properties of the
sequence {/,}, which are useful throughout the paper.

2. SIMULTANEOUSLY CONSTRUCTED POISSON MULTIPLICATIVE CHAOS

The problem concerning the Dvoretzky covering will be converted into a
similar problem related to a Poisson covering. That is to say, we will con-
struct random measures using Poisson point processes. These measures are
called Poisson multiplicative chaos (see [K2] for a general account of multi-
plicative chaos). We will calculate the Hausdorff dimensions of these random
measures, because these measures are supported by the sets in questions, as
we shall prove in Section 3.

2.1. Dimensions of Poisson multiplicative chaos. In this subsection,
we show how to construct the needed random measures and state the results
about their Hausdorff dimensions.

Let A\ = dt be the Lebesgue measure on R and let u be a measure on
R* = (0, 400) which is assumed finite on compact subsets and concentrated
on the interval (0,1). The product measure v = A\ ® p is defined on the
upper plan R x RT. We consider the Poisson point process (X,,Y,) with
intensity v. For a Borel subset B of R x Rt define

N(B) = Card ({(Xn,Yn)} N B).
For t € R and 0 < € < 1, denote
D(t)={(z,y) e RxRY : 1>y>et—y<z<t}.
For a fixed positive number 0 < a < 0o, we define
Pt) = Wexp[(1 — a)v(De(t))] (tER, e>0) (2.1)
where
N[ (t) = N(Dc(t))

is the number of points in the domain D.(t) of the Poisson process with
intensity v. In the setting of Poisson covering, NZ'(t) is also called the
number of intervals (X,,, X, +Y,) with ¥;, > € which cover ¢, i.e. t €
(Xn, Xn + Yn).

We use P? to denote the measure P2(t)dt restricted on the interval [0, 1].
According to [K2], for every fixed 0 < a < oo the random measure P*(t)dt
converges almost surely to a limit random measure as € — 0. We will prove
that under some condition on v there exists an interval J of a such that with
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probability one the random measure P?(t)dt converges for every a € J. In
order to give a precise statement, we need the following notation. We define

a’ = limsup V(De(t)) (2.2)
e—0 - log €
AP s o V(Dy—(nsm) (t) \ Dyp-n(2))
= infl . 2.
R el log b™ 23

Notice that both v(D(t)) and v(Dy-(nt)(t)) \ Dp-n (t)) do not depend on
t, so sometimes we will write v(D,) for v(D,(t)). Also notice that &” < a’.

We will need an analog of the assumption (H) involved for the Dvoretzky
covering, namely :
(HP) lim sup ep([e, 1)) < oo.

e—0

Under (HP), Fubini Theorem shows that both @” and @ are finite; more-

over, when
/ exp {/ u((s,1)) ds} dt < oo
[0,1] (t,1)

(for instance when @” < 1), the Hausdorff dimension of the uncovered set
R =R, \ Upn(X,, X, +Y,) is equal to 1 — @’ It is actually equal to the
lower index of the Laplace exponent associated with the subordinator range
R\ Up,x,>0(Xn, X5 + Yy,) (see [Be] or [FiFrS]).

For a measure o, dim ¢ denotes the Hausdorff dimension of the measure,
or more precisely the lower Hausdorff dimension in the terminology of [F2].
That is to say, there is no charge on any Borel set with Hausdorff dimension
strictly smaller than dim ¢ but some Borel set of dimension dim ¢ is charged
by the measure. See also [Mat].

Theorem 2.1. Suppose @’ = 0. Then

(1) With probability one, for all a > 0, the measure P® converges, as
e — 0, to a positive measure P* whose support is [0, 1].

(13) Assume moreover that (HP) is satisfied. With probability one, for all
a > 0 such that dgzr(a) > 0, we have dim P* = 1.

Theorem 2.2. Suppose 0 < a’’ < co. Then
(i) With probability one, for all a > 0 such that dzr(a) > 0, the measure
P® converges, as € — 0, to a positive measure P® whose support is [0, 1].

(13) Assume moreover that (HP) is satisfied. With probability one, for all
a > 0 such that dgzr(a) > 0 we have dim P* > dr(a).

The parts (i) of these theorems will be proved in the subsection 2.3. and
the parts (ii) in the subsection 2.4. In the next subsection 2.2., we mainly
show how to construct simultaneously the measures P?.

2.2. Simultaneously constructed b-adic multiplicative chaos. In or-
der to prove Theorem 2.1 and Theorem 2.2, we convert our problem to one
on a b-adic tree.

Fix an integer b > 2. For any integer m > 0 we denote by A™ the set of
finite words of length m on the alphabet {0,...,b—1} (by convention, A° =
{@}). We use |w| to denote the length m of w € A™ and I,, to denote the
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closed b-adic subinterval [Y 1" w;b ¢, b7™ + Y- w;b~¢] of [0, 1] naturally
encoded by w = w - - - wy,. Let A* = J%o_j A™ and §A* = {0,...,b— 1}V
The set AU A is equipped with the concatenation operation. For w € A*,
Cw = wOA denotes the cylinder determined by w, i.e. Cp, = {ww' : w' €
0A*} . Let A be the o-field of 0A* generated by all cylinders.
Let m be the mapping from 9A* into [0, 1] defined by
b Gl f G c04”),

bt
=1

Let A be the natural measure on (9A*, A) defined by \(Cy,) = b~*! for
all w € A*. Notice that A, the restriction on [0, 1] of the Lebesgue measure,
is the image of X under 7, i.e. A= Xox L.

For 0 < a < oo and € > 0, we denote by 136“ the measure on (0A*, A)
whose density with respect to X is equal to P%(x(%)).

The P%mass of the cylinder C,, will be denoted by

Ye(w,a) = P(Cu)

and it can be written as

Y, (w,a) = / Pa(r(@di= [ Po(t)dt (2.4)

w Iy
where I, = 7(Cy)-
The essential point of Theorem 2.1 (i) and Theorem 2.2 (i) is the follow-
ing proposition that we will prove by studying the family indexed by w of
functional martingales {Y} jw+m (W, ) }m>1-

Proposition 2.3. Let b > 2 be an integer and let K be a compact subin-
terval of R.. Suppose @” < oo and infyck dgr(a) > 0. Then, with proba-
bility one, for all w € A*, the function Y.(w,-) converges uniformly on K,
as € = 0, to a positive analytic function Y (w,-).

Corollary 2.4. We make the same assumptions as in Proposition 2.3.
With probability one, for all a € K, the measure Pea converges weakly, as
e = 0, to a measure P® such that P*(Cy)=Y (w,a) for every w € A*.
Moreover, the support of P4 is QA*. Consequently, the measure P® converges

weakly, as € = 0, to the measure P® = Peo 7L, whose support is [0,1].

For w € A*, the restriction of P " jwl, t0 Oy can be written as

APy = Py - AP (2.5)
where P& is the measure on (C,wA) whose density with respect to X is
dPe% o Bnd®,
dA Pyl (F)

Notice that

pe w t P ) _ NP e
é—lTlle((f)) = " (O) 10 (0) exp [(1 — a)v (Dy-jul \ Dy-ju)] -

(2.6)
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p—Iwl

b~lwle

FIGURE 1. The regions defining P;—m and Pﬁ’cw

This is a consequence of the following decomposition: for any 0 < €,¢’ < 1
we have

De’e(t) = (De’e(t) \ Dy (t)) UDe (t)
The P*%-mass of Cy,, magnified by b“l, will be denoted by
Ze(w,a) = b*IP&Ce (C,,)
and it can be written as

a a
Ze(w,a) = b*! MI:U“" Bt (2.7)

Chw Pb_|w| (t) T Pb—lﬂ)l (t)
Fix an integer b > 2. Define

27— ey AP 01\ Dyn ()
n—oo m>1 log b™

The following proposition will be useful for proving Theorem 2.1 (ii) and
Theorem 2.2 (ii). We will prove the proposition by studying the family
indexed by w of functional martingales {Zy-m (w, ) }m>1.

Proposition 2.5. Let b > 2 be an integer and let K be a compact subin-
terval of R, .

(i) Suppose @’ < oo and infuck d_r(a) > 0. Then, with probability one,
for all w € A*, the function Z.(w,-) converges uniformly on K, as € — 0,
to a positive analytic function Z(w,-).

(i4) Suppose moreover that infeex dgr(a) > 0 and choose b such that &
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is close enough to a@F to insure infqc g da,f’(a) > 0. There exists p > 1 such

that
P
> < 0.

It is 1mportant to point out that the restrictions on C,, of the measures
P ' 1w and P&%v are independent since they involve respectively Poisson

dZ(w,a)

sup E(Z(w,a))? < oo, sup E(‘ I

wEA* a€EK wEA* a€EK

pomts in two disjoint regions. See Figure 1: the bigger region R; for P !l

and the smaller one Ry for P2,

2.3. Proofs of Propositions 2.3 and 2.5. We give here the proofs of
Propositions 2.3 and 2.5 the first of which allows us to construct simul-

taneously the measures P4 and the second will be used in the proofs of
Theorems 2.1 (ii) and 2.2 (ii).

Proof of Proposition 2.3 We shall consider K as a compact subset in
the complex plan.
It is clear that PZ?(t) is well defined and is an analytic function of z € C.

For any w € A* and any m > 0, consider the function l//\'m(w, z) of z defined

by
’U) Z / b Jw|— t

Yin(w,z) = / sz—Iw\—m(t) exp[(1 — 2)v(Dy—jw-m)] dt,
Iy,

we see that it is an analytic extension into the complex plan of Y} ju|-m (w, a)
as function of a > 0.

By writing

First step. We first prove that there exist 1 < p < 2, a bounded complex
neighborood D of K and ep > 0 such that

sup B(|Voi1 (w, 2) — Vi (w, 2)|P) < Cb~(wl+m4Den, (2.8)
z€D
where C is a constant independent of m.

In order to prove (2.8), we write

~ ~

Y1 (w, z) — Yo (w,2) = f Ut)V(t)dt
with U(t) = P7 |, (t) and V() = P71 (8)/ P - m (t) — 1. Let
€m =0b" |w|-m~—1

Then we can write
Ut) = 2"m 1@ expl(1 - 2)u(De, )]
vty = ZNnO N ®expll - 2)u(D,,, \ Do,y )] — 1.

We divide I, into ™ equal subintervals and denote by J,, the first one from
the left. For ¢t € J, and 0 < k < b™ — 1, define

Up(t) = U@+ kb™"™), Vi(t) = V(¢ + kb~ ®I=™).
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Then for ¢ € {0,1} define
Si(t) = Z Uszk+i(t) Vak+i(t)-
0<2k+i<bm—1

By changes of variables, we get the following expression

Va1 (w,2) — T (w, 2) = / (51(t) + Sa (1)) dt.

w

Now by using the Jensen inequality and the elementary inequality
jz +ylP < 2271 (|afP + [y[P),
we get

Vo1 (w, 2) = Yo (w, 2) P

< o[ |so(t)+sl(t)p§’—:|
< 2P [ (sl +Isi0) (2.9)

w

We are then led to estimate E|S;(t)[P. For the sake of convenience, we
introduce the following function

op,2) =1 —-R=)p+ 2P -1 (peR z € C). (2.10)

Since the measure v is invariant by horizontal translation, all (Uy, V%) have
the same distribution. Since EzX = €?(¢~1 holds for any complex number z
and any Poisson variable X with parameter v, a simple computation yields
that for p € R

E(|Uk (t)[F) = exp [V(De,_ ) (s 2)] (2.11)
and forp > 1
E(Vi()F) < 27" (1+exp [v(De,, \ De,, )9, 2)])
< 2Pexp [V(De,, \ De,,_,)¢(p,2)] , (2.12)

where for the first inequality we used once more the above elementary in-
equality and for the second one we used the fact that the mapping ¢(p, 2)
is a convex function of p, null at p = 0 and non negative at p = 1, so
non-negative on [1, co).

Moreover, by construction, o(Uy; 0 < k < ™ —1) and o(V; 0 < k <
b™ — 1) are independent, and the V5;’s are mutually independent, as well
as the Vor,1’s. Indeed, if ¢ and ¢’ are two points in I, having a distance at
least b=1%+™ then

(Dery () \ Deos (8)) N (Deyy () \ Deys (¢)) = 2.

This implies the independence.
Now we can apply the following lemma to estimate E|Sy (¢)|P and E|.S; (¢)[P.

Lemma 2.6 (Von Bahr-Esseen [vBaH]). Let (U;)i>o and (V;)i>o be two
sequences of complex random wvariables such that o(U;; i > 0) and o(Vy; 1 >
0) are independent and that the V;’s are mutually independent. Assume that
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> >0 UiVi is almost surely defined and that V; is integrable with mean 0 for
all i > 0. Then for every p € [1,2]
P

E|Y UVi| <22 EUPEV;P.
i>0 i>0

It follows from this lemma and (2.11) and (2.12) that for p € (1,2] we
have

E(|S1(t)IP) + E(|S2(8)[P) < 2°Pb™ exp [v(D,, ) o (p; 2)] -
This, together with (2.9) yields
E(|Vt1 (w, 2) = Yin(w, 2)P) < Cél ' exp [1(Dey, ) (ps 2)] (2.13)

where C' = 2%~ 1p~w+P~1 We now compare v(D,, ) with — log €,

v(De,,) = (—logen) (aP + <M - aP>> .

—logep,

This allows us to rewrite the right hand side of (2.13) as follows

CE(P—I—Epcp(p,z)) ) 6—(%—513)90(10,2)
m .

" (2.14)
Consider
B(p,z) =p—1-a p(p, 2).
We have ®(1,z) = 0 whenever z € K. Moreover, we have 6¢(§;’z) =
dzr(z) (z € K); hence our assumption is
ing 2212) g
2€K Op
So we can choose 1 < p < 2 close enough to 1 such that
3ep := inf @ 0. 2.15
ep := inf ®(p,z) > (2.15)

Now, by continuity of ®(p,z) in z € C we can choose a bounded complex
neighborhood D of K such that

inf ® > %p.
inf (p,2) > 2ep

On the other hand, by the definition of @, the fact ¢(p,z) > 0 and the
boundedness of D, for large m we have

V(De)  _p
T — < éep. .
(—logem a ) o(p,2z) <ep (2.16)
Therefore it follows from (2.13)-(2.16) that for large m we have

sup E(|Vims1 (w, 2) — Yn(w, 2)|P) < CeEP = Cp~(wiHmt1)en,
2€D

This inequality holds for all m > 1 if we change C to be a suitable constant.

Second step. We follow the idea of Biggins [Bi]. Apply the Cauchy
formula to get the uniform convergence of Y;,(w,-) on the compact subsets
of D as m — oo.
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Fix an arbitrary non-empty closed disk D(zy,2p) C D. For z € D(zp, p)
and m > 0, the Cauchy formula yields

~

|Yit1(w, z) — ?m(w, z)|

1 2w ~ . ~ 3
—/ [Yina1(w, 20 + 2p€™) — Yo (w, 20 + 2pe™)|dt.
0

IA

™

It follows that

~

E sup |?m+l(waz) - Ym(waz)|

2€D(20,p)
<2 sup  E([Yii(w,z) = Yo(w,2)|)
2€D(z0,2p)
<2 sup (BYmi1(w,2) — Yin(w, 2)[P) /7.
2€D(20,2p)

By the estimate (2.8) that we got in the first step, we obtain

o0

o
B3 i) - Tl a] =0 35 0 ) <o
m=1 ZED(ZO,p) m=1

This implies that almost surely Yo (w, -) converges uniformly on D(zg,p). It

follows that almost surely Y,,(w,-) converges uniformly on some neighbor-
hood of K to an analytic function Y (w, ).

Third step. Now we prove that almost surely the function Y¢(w,-) con-
verges uniformly on K to Y (w,-) as € — 0 continuously. What we proved
in the second step is the convergence as € — 0 along a discrete sequence.

As in the second step, we apply the Cauchy formula to estimate the

derivative W. In fact,

~

p\ 1/p
Y, 2 ~ 1
E sup M < - sup (]E(\Ym(w,zﬂp)) &
2€D(20,p) dz P z2eD(29,p)
2 ~ 1/p
< — sup (E([Yo(w,2)[)
P 2eD(20,p) ( )

2 — S S 1/p
+- Z sup (]E(|Ym+1 (w, z) — Y (w, z)|p)) .
p m—0 *€D(20,p)

Consequently, by the Fatou lemma we have

Y p
E (sup (w, a) ) < 0.
acK

da

From this, the fact E|Y (w, a)|P < oo (Va € R) and the mean value theorem,
it follows that

E(sup |Y (w,a)P) < oo (2.17)
acEK
(N.B. It is possible to obtain (2.17) without using the above estimates of
derivative. However this approach of derivative estimation will be indispens-
able in the proof of Proposition 2.5).
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For t > 1, denote by F, the sub-o-field of the Borel o-field of (C(K,R), || ||cc)
generated by the random continuous functions

a€ K=Yy p(wa), (1<t <t).

Define

Mi() = E(Y (w, -)[F)
(which is well defined by (2.17)). It is clear that (M;(-), F;);>1 is a martingale
taking values in C(K,R). It follows from Proposition V-2-6 of [N] that if
the martingale M;(-) is right continuous, then it converges almost surely
in C(K,R) to Y(w,-). But this is indeed the case since we learn from the
second step that for every m > 0, we have

E(Y (w,)[Fym ) = Ypm (w, )
and that (M(-) = Y7 (w, ), Fy)

> 18 @ right continuous martingale.

Fourth step. We prove that almost surely Y (w,a) > 0 for all a € K. We
assume K = [0, 1] without loss of generality.

For any subinterval J of K and any w € A*, let
S7={weQ: FaeJ such that Y(w,a)=0}.

It is straightforward to verify that the event SY belongs to (1,,~; An Where
A, is the o-field generated by the Poisson process restricted in the strip
R x (0,1/n]. The Kolmogorov zero-one law shows that the probability of
the tail event S¥ is equal to 0 or 1. We claim that P(S%) = 0.

Otherwise, ng,l] has probability one. Then either ng,l /2] OF Sf‘l’ /2,1] has
positive probability. As we have seen above, this positive probability must be
1. Assume, for example, SESJ /2] has probability one. Then, either SESJ /4] OF
S E‘l’ /a,1] has probability one. Consequently, there exists a decreasing sequence
(Jn)n>o of dyadic intervals such that P(S7 ) = 1 for all n > 0. Let ag
be the unique point in (1,5, J,. By the continuity of Y (w,-), we have
P(Y (w,a0) = 0) = 1. However Y (w,aq) is the limit of a positive mean
LP-bounded martingale (see Second step). So, Y (w, ay) cannot be zero with
probability one. This contradiction proves the claim.

Since A* is countable, all the previous results hold almost surely and
simultaneously for all w € A*. O

Proof of Corollary 2.4. It follows from Proposition 2.3 that with
probability one, for any a € K and for any cylinder C,, we have

lim P*(Cy)) = Y (w,a)
e—0

(the convergence is uniform on ¢ € K for any w). Since 0A* is totally dis-
connected, it follows that with probability one, for any a € K, the measure
P? converges weakly to a measure P® such that

P%(Cy) =Y (w,a)  (Vw € A*).
Consequently, with probability one, for all ¢ € K, P* converges weakly to

ES €
P% =P 1! since P* = P*on !. The support of these limit measures is

[0, 1] because of the positivity of a € K +— Y (w, a) (see Proposition 2.3). O
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Proof of Proposition 2.5.

(1) We proceed as in the proof of Proposition 2.3. Choose the same
bounded deterministic complex neighborhood D of K as in the proof of
Proposition 2.3. For w € A* and m > 0, consider the function

~

Zm(w, ) := Zy-m(w,-).

Its analytic extension, denoted by Zm(w, z), has the following expression:
P _ NP
b / e OO k(1 2Dyt (8) \ Dy ()] .
Iy

It follows from computations similar to those in the first step of the proof
of Proposition 2.3 that there exist 1 < p <2 and C > 0 such that for z € D
we have

E(|Zm1 (w, 2) = Zin(w, 2)[P)
)—v(D

v(D, _y|—m—1 —lw])
(m—l—l)( b \wllorgbm_‘rl b= vl _aP>(p(p,z)

< Cp~(mAD[p-1-a"o(p.2)]p

We notice that

P V(Dy—jwi-m-1) — V(D))
a2 lim sup log b1

So, we can conclude as in the proof of Proposition 2.3.
(#2) For m > 0, z € C and p € (1, 2] we also have
E(| Zm 41 (w, 2) = Zn(w, 2) P)

v(D, _yl=m—1)"YD, _p])
(mot1) (Do Pl ap ) ()

< Cbp—(m+D)[p—1-a] o(p,2)]},

(where @’

is replaced by @}). Since our assumption is infee i dgp (a) > 0,
the same arguments as those used in proving Proposition 2.3 allow to choose
p close enough to 1 as well as a bounded complex neighborhood D of K such
that
2ep := inf [p —-1- afw(p, z)] > 0.
z€D

By the definition of Ebp and the boundedness of D, we can fix ng > 1 such
that for all w € A* with |w| > ng and all m > 0, we have

V(Dy-jw|-m-1) = V(Dy-jw))
log pm+1

- Gbp) ¢(p,2) < ep.
It follows that for all w € A* with |w| > no and all m > 0 we have
lE(|Z\m+1(’waz) - Z\m(w,z)|p) < Cb*(erl)eD

for some suitable constant C' > 0. Then, the conclusion follows from com-
putations similar to those used to get (2.17) in the proof of Proposition 2.3,
together with the fact that Zp(w,-) =1. O
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2.4. Proofs of Theorem 2.1 and 2.2. Theorem 2.1 and Theorem 2.2 will
be proved at the same time.

() Let J = {a > 0; dzr(a) > 0} (N.B. J = (0,00) if @ = 0). The interval
J can be approximated by an increasing sequence of compact subintervals
(Kp)n>1 of J. Since dgr(-) is continuous and is positive on J, we have
infoek, dyr(a) > 0 for all n > 1. So we can apply Corollary 2.4 to get (i)
in both Theorems 2.1 and 2.2.

(ii) Let (Kp)n>1 be an increasing sequence of compact subintervals of
J ={a > 0; dzr(a) > 0} such that J = Up>1K,.
Fix K = K,,. Take p > 1 and b > 2 as in Proposition 2.5 (7).

Since P% = P%o 1, by the Billingsley Lemma (see also [F2]), it suffices
to show that B
P-a.s. Ya € K we have P%E(a)) >0 (2.18)

where

z log P%(Cs 7
E(a) = {t € 04" : timing 08 T Chr..i)

n—00 log b—n

> dgp (a)} .
Even, it suffices to show, for any € > 0, that
P-a.s. Ya€ K we have P° (nm infEn,E(a)) >0 (2.19)
n

where _
. log P*(Cy,.4,)
E - Ay =2 S Thedn) 5 g L(g) —e )
n,e(@) {t (SNe) Tog b—" >dgr(a) —¢

In order to prove (2.19), by the Borel-Cantelli Lemma, it suffices to show
that for every ¢ > 0 we have

P-a.s. Ya € K we have Zﬁa(Efl,E(a)) < 0. (2.20)
n>1

(So, liminf, B, . (a) has full P*-measure).

Consider ¢ — P%(Cj, ;) as a random variable with respect to the prob-
ability measure P?/||P?||. The formula (2.20) means that the variable takes
large values, i.e.

PGy 4) > bar @)
1...Ln
with small probability.
For any positive number 7 > 0, the Tchebychev inequality leads to

P(Byc(a)t) < bmldsr@=2) / (Be(Cy, 1)) PO (di)
OA*

pmdar (@=6) N " (P(Cy)) T (2.21)
wEA™
where the last equality is due to the fact that the variable is constant on
each n-cylinder.

We are now led to estimate the (1 + 7)-moment of P%(C,,). For a single
parameter a, the estimation is rather easy. But what we have to do is an
estimation which is uniform on @ € K. This is more difficult, as we shall see
now.
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FIGURE 2. The regions D!, B! and T!

Take M > max(1,sup K). For any interval I we define

D' =Dy (infI)(\Dy(sup), B =JDyn(t)\ D"
tel
See Figure 1. Keep in mind that B’ is much smaller than D’ in the sense
I
that Zg,; — 0 as the length |I| — 0. For every w € A* and t € I;,, we have
D' C Dy-m(t) and Dy-m (t) \ D'* C Blw. Tt follows from (2.5) that almost
surely, for every a € K, and w € A*

P(Cy) < MNB™)gND™) exp[(1 — a)u(D,1w))]b~ " Z(w,a).  (2.22)

This, together with (2.21), shows that for an arbitrary > 0 we have

P*(Bpe(a)%) < fan(a) := Fi(a)Fa(a) (2.23)
with
Fi(a) = brtldar(@==Dlexp[(1 —a)(1 + n)v(Dy-n)]
B = Y (MN(BIW)GN(DIw)Z(w,a))H"_
wEAP

The positive number € > 0 being fixed, the problem is reduced to find a
positive number 7 such that

P-a.s. Ya € K an’n(a) < 0.
n>1

(recall that f,,(a) is defined in (2.23)). This will be done if we find n > 0
such that
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(I) There exists a constant C' = C(K,7n) > 0 such that for all n > 1,
sup E(| f,, ,(a)]) < Cnb™"%. (2.24)
a€EK

(II) Let ap = inf K. We have

P-a.s. an,n(ao) < 00 (2.25)
n=1

Indeed, if (I) holds, by the Fubini Theorem

E/KT;V’IL’"(G)M“:/I(;E‘fﬁ,n(aﬂda<oo.

Therefore P-almost surely [ 37, |f}, . (a)lda < co. Then by the mean
value theorem, P-almost surely for all a € K we have

> Unal@) = funfan)| < 3 [ 1gfa)ldu < c.
n=1 n=1"K
This, together with (II), allows us to conclude:
P-a.s. sup an,n(a) < 00.
acK

We prove now (I) and (II). Since F} is a deterministic function, we have

E| fnq (@)l < |FY(a)[EF(a) + Fi(a)E|F; (a)]-

However
Fi(a) = Fi(a) [dy(a)nnlogh — (1+n)v(Dy-n)]
Fia) = (1+n) Z MmN (Bw) .N(Dlw)a(1+n)N(D’“’)—1 - Z(w,a)'t"
wEAN
+(1+7) Z MIADNB™) | (UnNDI) | 70 0)1 7 (w, a)’
wEAR

Before estimating E| f;, , (a)|, we remark the following facts

(R1) For all w € A* and a € K, the random variables N (D),
N(B™) and Z(w,a) are independent;

(R2) Ifp > 0 is small enough, E (Z(w,a)'™) and E(Z(w, a)"|Z' (w, a)|)
are uniformly bounded over a € K and w € A*;

(R3) The function d_p(a) is bounded over K;

(R4) If v(B) < 0o and 7 > 0 one has

E(T‘N(B)) — eu(B)(r—l)
and then by differentiation with respect to r we get
E(N(B)rNEB)-1) = y(B)e’ B

(R5) v(B!») is bounded for all » > 1 and all w € A™;
(R6) v(DIw) — v(Dy-n) = O(1) for all n > 1 and all w € A", and



Julien Barral and Ai-Hua Fan 19

In fact, (R1) follows from the construction because the three variables in
question depend on the Poisson process restricted on three disjoint domains
in R x Rt, namely D!, B! and T! (see Figure 1); (R2) is a consequence
of Proposition 2.5 (i¢) and the Hoélder inequality; (R3) is obvious; (R4)
is explained by itself; (R5) is due to the fact v(Bfw) < 2b="u([b™",1))
(Vw € A™) and the hypothesis (HP); the first assertion of (R6) is deduced
from (R5) and the second one is a consequence of (R5) and the fact

v(Dy-n) — v(B*) < v(D*) < v(Dy-n) = O(logd") = O(n).

All these remarks together imply if 1 is small enough then there exists a
constant C' = C(K,n) > 0 such that for all w € A™ and all a € K we have

]E(‘fll,n(a)D CnFl(CI,) . bneV(Dl)(al"‘ﬂ_l)
< Cnbldgp (@ —e=1][(1+m(1—a)ta 7 —1y(D, )

IA

=  Cnb~"netmn(a)) (2.26)
where
@) =11~ dgr (@) + (14 1) — 1) — (@7 - )20
Let
Ho(n) = (1+n)(a—1) — (@' - 1).
We write
mx@:=M1—d¢4@)+ﬁamﬁfﬂ+ﬁhw>(ﬁiﬁ;)—EP)-

Notice that
H,(0) =0, H.(0)=a—1-aloga, H!(n) = —a""log?a.
So, we have
Hy(n) = Hy(0)n + O(n’)
where the constant involved in O(n?) is independent of a. Recall that
d_r(a) =1+ @l H!(0). Thus we get

%wzmﬁ+mw(

v(Dp—n) ap) .
log b"

Since Hy(n) = O(n) and limsup V(lgg”gf ) — &P , for fixed € > 0, some small
7 and all large n > 1 we have

m@| <5 (VaeK). (2.27)

Finally, from (2.26) and (2.27), we get (I), i.e.
sup E ( |f7'L,,7(a) D < Cnb ™%,
a€K

The fact (II) is easier to obtain, by similar computations showing that

sup E(fry(a)) < Cch "7,
a€EK
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2.5. Poisson process associated with the Dvoretzky covering. We
have been working exclusively with the Poisson process. Now we show how
the Dvoretzky covering is associated with a Poisson covering. In other words,
we will construct a special Poisson process closely related to the Dvoretzky
covering, as was done in [K3, F3].

Define two new sequences (£;,)p>1 and (4 )p>1 built from (£,),>1 as fol-
lows

! ! ! . !
mim—1) 4 — "= gm(m+1) = Ay, with Ay = Cnime)
—a tl B 2
and
" _ /) o\ . n
mm=1) g T T Pmimtn) = A with )‘m—ewﬂ-

For ¢t € T and n > 1 define
n n
Ny = eyt —wk),  NY@E) =D 1t —w) (2.28)
k=1 k=1

We define the quantities {L!}, {AL}, @ and &' associated to {/,,}, as we
define {L,}, {A.}, @ and @ associated to {£,}. Similarly, we define {A”},
@' and & associated to {£}. Clearly, we have

L, <L, <Ly, N <Nyt) <N(1).

The following lemma shows that both sequences (¢),) and (£!) are not
significantly different from (£,). It is a consequence of Propositions 7.4 in
the Appendix.

Lemma 2.7. Assume (H). Then Y (£) — £]) < oco. Consequently L., ~
L, ~ L! asn— co. Moreover, (£) and (£) obey (H) and

CaJlrdA;)_,c ~ Card Ay ~ Card Ag_k; od=a=a; a=a=7a".

Let 4 be the measure defined by
o o
w= Z(S% = Z m(S)\Im. (2.29)
n=1 m=1

As in [F3], we construct a Poisson point process closely related to {wp}n>1,
whose intensity is given by ¥ = A® p. Such a Poisson process with intensity
v is constructed as follows.

Fix the segment J,, = [r,r + 1] x {€},} (r € Z,n > 1). Let N,, be
a Poisson variable with mean value 1. A Poisson process with intensity
A®de |7, is a set of the points {(r—l—nﬁfg,%)}lggmm where {777%}3'21 is an
i.i.d. sequence variables uniformly distributed in [0, 1], which is independent
of N;,. The union of all such random sets, assumed independent, is a
Poisson process with intensity v.

We identify [0, 1] with T and use the i.i.d. sequence {w;} as part of {77(()]’%}
We could say that we modify the preceding Poisson point process to get a

new one. Let
m(m+1)/2

Nm = Z NO,n

n=m(m—1)/2+1
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which is a Poisson variable with mean value m. We modify the preceding
Poisson point process on [0,1] x {\ } as follows: if N,,, < m, we take the
first Ny, variables in {wp,(m—1)/24;} (1 < j < m) to be the variables 77(()],%; if
Ny > m, we take all variables in {wp,(m—1)/24+;} (1 < j < m) and keep the
other N,, — m supplementary variables n(()],%.

By the Lemma 2.7, the assumptions (H) made on the sequence {/,}
implies that the assumption (HP) is satisfied by the measure v = A® p with
p =3 ,_16¢ . Moreover, we have @ = @” and @ = @’ (see Proposition
7.2).

3. PROOFS OF THEOREMS 1.1 AND 1.2: LOWER BOUNDS

3.1. Lower bounds. Without loss of generality, we assume that £, < § for
some 0 € (0,1/2). Then, if ¢t € [§,1 — ¢], any arc of the form (wp,wy + £)
containing t with £ € {£,,,£.,,£!'} can be identified as a subinterval of (0, 1) (i.
e. it contains neither 0 nor 1). Moreover, when (wp,£},) is a point (Xp,Y))
of the (modified) Poisson point process, a point ¢ € [§,1 — §] is covered
by (wn,wn + £],) in the Dvoretzky covering if and only if it is covered by
(Xp, Xp + Y)) in the Poisson covering.
The case f = 1 was discussed in the introduction. Let

J={8>0: da(B) >0} \ {1}.
For b > 2 and k > 1, define

ml(cb) =min{j : v([277,1]) > klogb} = min{j : Z £, > klogb} (3.1)
n:f,>2-7

n® = Card{n > 1: b ™ < <1} =Cardd .  (3.2)
b "k

The following proposition involves the Poisson multiplicative chaos intro-
duced in the Section 2.

Proposition 3.1. Assume (H). Let K be a compact subinterval of J
and let b > 2 be an integer such that a{f is close enough to @ so that
infge i da{:(ﬂ) > 0. With probability one, for all § € K, for P5-almost

every t € [§,1 — 6], we have

NGO N0
lim inf —* > B, lim sup —* < B.
k—o00 n(® k—o0 n(®

k k

Proposition 3.1, Theorems 2.1 and 2.2 immediately lead to the desired
lower estimates.

Corollary 3.2 (Lower bound). Under the assumption (H), with proba-
bility one, for all B > 0 such that dz(8) > 0, we have

dim(Fg) > 1+ a(8 —1— Blog B).
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3.2. Proof of lower bounds. We give here a proof of the Proposition 3.1.
As we shall see, the Corollary 3.2 is an easy consequence of the Proposi-
tion 3.1.
Both the case f = 0 and the case § = 1 were discussed in the Introduction.
Since the integer b > 2 is fixed, we write

myg = ml(cb)’ ng = ng))

Without loss of generality, assume that § = b=™°. For every 8 € K, k >0
and € > 0, define

) e 1y, N0
B = {re -y 220 <ol
B0 = frepmon—pm Tl 50

By the Borel-Cantelli Lemma, it suffices to show that for every ¢ > 0, we
have

P—a.s. VBEK Y PP(E; (B)) <oo, Y PP(E} (B) <oo. (3.3)
k>0 k>0

We will only prove (3.3) when K C Jn (0,1). The case K C Jn (1,00)
may be similarly treated.

Fix M = (min(K))™! (so, M > 1 > max(K)) and € (0,1). For
B € K C(0,1) and k£ > 0, the Tchebychev inequality gives

P < g [ RO, 6

PO(EL () < pUP+OL / BN P (ar).  (3.5)
’ [b—™0,1—b—™0]

For w € A™* such that I, C [b7",1 — b~™0], define

sy (w) = sup Ny, (8) = N2 (B)],

sp(w) = sup [Ny (t) = N, (1)].
tely
Notice that
N () < N(B') + N(D™)  (Vt€ L)
This, together with (2.22) and the equality L;, = v(Dy-m, ), shows that for
all 8 € K we have

’ B O PP (dt) < b= exp[(1 = B)v(Dy-rmy )] Z(w, B) Agy (w, B)  (3.6)

BN PP (dt) < b= exp [((1 = B)v(Dy-my )] Z(w, B) By (w, B)

Iy
(3.7
where Ay, ,(w,3) and By ,(w, ) are two random variables defined by

App(w, B) = MOFMN(B)+as; (w) g(1+n)N(D™) (3.8)
By p(w,B) = A+ N (B )+ns) (w) 5(1 —n)N(D") (3.9)
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Take respectively summation of (3.6) and (3.7) over w. It follows from (3.4)
and (3.5) that

PP(E; (B)) < grn(B), (3.10)

PP(E} (B)) < hy(B) (3.11)
with

Gen(B) = b fTE" M exp [(1 = B)(Dy-mi )] Y Z(w, B) Apy(w, B)

hiy(B) = b~ BT 0k exp [(1 — B)1(Dy-mi )] D Z(w, B) Bry(w, B)

where both sums are taken over w € A™k such that I, C [b™™0,1 — b~ "™0].
So, in order to prove (3.3), we have only to find a small n > 0 such that

P—a.s. VBEK Y gin(B) <oo, Y hyy(B) < oo (3.12)

k>0 k>0

The functions g ,(8) and hy,(6) are continuous functions of 5. We are
going to show the uniform convergence of the first series in (3.12). That of
the second one may be proved in the same way. We will follow the same
approach as in the proofs of Theorems 2.1 and 2.2. Since L;lk ~ klogb by

(b)

the construction of ny = n,’ (see (3.2)), we have only to show that there
exist n > 0 and C' = C(K,n) > 0 such that for all £ > 0

9 e
sup Elgt,, (8)] < CL, exp =21, | (3.13)
BEK
where o = infge i | log(B)|, and that
P—a.s. Y grn(Bo) < o0 (3.14)
k>0

where Sy = inf(K).

Let us prove (3.13) and (3.14). Notice that the variable Z(w, () is inde-
pendent of N(B'»), s}(w) and N(D'»). It is then independent of Ay, (8).
Thus, the same arguments as in the proofs of Theorems 2.1 and 2.2 show
that there exists a constant C' = C(K,n) such that for all § € K and k > 1,

Elgp, , ()| < OB~ exp [(1 — B)v(Dy-my )]
XE(((Dy +) + N(D") Ap(w, )  (3.15)
where w is a typical element of A™* such that I,, C [b~™9,1 — b~"™0] and
the expectation is independent of w. We estimate the expectation at the

right hand side of (3.15) by using the Holder inequality with the conjugate
exponent (p,q), i.e. p ! 4+ ¢! =1, such that

1-|—772
n?

p=1+n*<2, g¢=

Thus we get
E ([v(Dy-ms) + N(D')] A y(w, B))
<

(E[V(Dbfmk ) + N(D")Jp 5?(1+77)N(D1w)) Lp

y (EMq(1+n)[N(B1w )+S’k(w)]) Ha (3.16)
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In order to estimate the last two expectations, we will use the following
lemmas, whose proofs are postponed in the next subsection.

Lemma 3.3. Let N be a Poisson variable with parameter &. For any
positive number a > 0 and b > 0 we have

E(a + N)2Y = [(a + b¢)? + beg] 1.

Lemma 3.4. For any r > 0, there exist C = C(r) > 0 such that for all
k > 1 we have

]Eers’k (w) <C, Eers’k’ (w) <C.

Notice that 0 < v(D') < v(Dy-m,). Applying the Lemma 3.3 to a =
v(Dy-my,), b= and £ = v(D'v), we get

Elv(Dy-my ) + N(DIw)]Pﬁp(l—i-n)N(Dlw)
AT P

Notice that Ee"V(B™) is bounded for any fixed r > 0 and for all w. In order
to estimate the second expectation at the right hand side of (3.16), we apply
the Holder inequality and the Lemma 3.4. We get

EAaCHnIN (B 1 4s,w)] < o (3.18)
Let
n?
U,B(n) = 1412 —n(B — €)log B,

UM (+n®) _ 1
1+ n?

Vs(n) = 1-B+
It is clear that

Us(n) = —n(B—e)logB+O(n°),

Vs(n) = nBlogB+O(n?).

In both above expressions, the constant involved in O(n?) is independent of
B. Since v(Dy-m;,) = Ly, , combining (3.15)-(3.18) gives rise to

Elgi,(8)] < Cv(Dy-+)? - exp (Us(n) Ly, + Vs(n)v(Dy-my))
CL'y, exp (Ln, [Us(n) + Va(m)

CL", exp (L, [nelog B+ O(n?)])

CL',ZIIc exp (L;L’C % log ,8)

if n is sufficiently small (recall that g € K C (0,1)).
Similarly, we show that

IN

IN

BEK
Od

Proof of Corollary 3.2. Notice that
! n
Nl () < Ny (8) < N (1)
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for any ¢. It follows from Proposition 3.1 that, with probability one, for
all B > 0 such that dz(8) > 0, there exists an integer b > 2 such that for
P#A_almost every t € [§,1 — 8], we have

N, ()

li =p.

Koo L ®) p
Tk

Recall that L, ~ Lj, as n — oco. Moreover, by construction L' ;) ~ L', .
nk n

k+1
We deduce that with probability one, for all # > 0 such that dz(5) > 0, for

P#A-almost every t € [§,1 — 4],
n
That is to say, F carries the restriction of P? to [§,1 — §]. So, dim Fj >

dim P#. However dim P? is larger than or equal to 1 — @(1 — 8 + Blog 3)
(Theorems 2.1 and 2.2). O

lim

n—0o0

3.3. Proofs of Lemmas.

Proof of Lemma 3.3 It is a consequence of EbY = ¢£(*~1) Differentiating
it with respect to b leads to

ENbY = gbef=D, ENZBN = ¢b(1 + £b)et Y.
It follows that
E(a + N)2bY = (a® + 2ab + £b(1 + £b))ef~1.
O

Proof of Lemma 3.4. We first estimate Fe"%.
Fix £ > 1 and w € A™*. For any integer m > 1 such that Al, > b~™* let

Dlv = Dlvn(Rx {\,}), Bl =DBlnRx{\,}).

In other word, D!v and Blv are respectively the intersections of D'» and
Blv with the horizontal line in the plan of height \/.. We call {(wy, £,,)} the
Dvoretzky points in the plan (they are all located in the strip [0,1] x R+
or more precisely in the square [0,1] x [0,1]). For any plan Borel set B,
we denote by D(B) the number of Dvoretzky points contained in B. This
definition is similar to that of N(B) which is the number of Poisson points
contained in B. Recall that the intensity of the Poisson process is A ® u
with m = ZZO:I (5%.

According to the construction of the Poisson process, it is easy to geo-
metrically check that

sk(w) < N(B™) + D(B™) + |N(D™) — D(D)|.

So, by using the Holder inequality, we have only to show that for any r > 0
there exist constants C = C(r) > 0 such that

EerN(B) < C. EerP(B™) < c, EeIN(DT)=D(D™)| <« ¢ (3.19)
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The validity of the first inequality in (3.19) concerning a Poisson variable
is due to the fact that v(B») is bounded for all w. For the second one,
remark that

m(m+1)
2

D(B™)= > > g (wa, ).

m:A,, >b™ "k HZW—H

This is a sum of ny identically distributed independent random variables,
each variable taking the value 1 with probability 2b™™* and the value 0 with
probability 1 — 2b7™k. So, it is a binomial variable. It follows that

B P(B™) = (1 — 267 4 25~k el < 200 e — (1)

because b~ ny = b~ Card(A}_, ) = O(1), by the assumption (H).
The main difficulty is the proof of the third one. To prove it, we use the
following trivial estimate

IND™) -DD™) < Y vn

m:A, >b~ "k

where
vm = |N(DJ¥) — D(D}v)|.

The number v,, is nothing but the (absolute value) of the difference between
the number of Poisson points and the number of Dvoretzky points located
on the segment DIv. Since the v, are independent, we will finish the proof
by showing that there is some constant ¢ = ¢(r) > 0 such that

Ee™m < tVmAm (3.20)

because due to (H)

mg 00
Ee™k < H Ee™™ < exp <c Z \/ﬁ/\m) < o0. (3.21)
m=1

m=1

When it is conditioned on the event {N,,, = n}, vy, is a binomial variable.
Actually, when N,, = n < m, vy, is equal to the number of those Dvoretzky
POInts (Wpy(m—1)/2+4j> M) With Ny = n < j < m located on the segment
DIv. Such a point is located on D/* with probability equal to the length
of the segment D/ say J,,. All these points are mutually independent and
independent of N,,. So we have

m m—n
E(].ngme""um) = Z]P)(Nm = n) Z (m Z_ n) J:n(l o Jm)m—n—ieri
n=0 =0

= Y P(Np =n)(1+ Jn(e" —1))"".

When Ny, =n > m, vy, is the number of those ng’, withm+1<n < Ny,
(see the construction of the Poisson process the Section 3.1), which are
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located on DIv. It follows that

[e o] n—m
E(1Npsme™™) = Y P(Np = ( ) (1= Jp) ™ e
n=m-+1 =0
o
= > P(Np=n)(1+Jn(e" —1))"™"
n=m-+1

To go further, we will use the following special Taylor formula

m n « m
Z a_' =e” (1 —/ e_“u—'du>
. 0 m.

n=0
which is equivalent to

B m
E / e L du.
m!

n= m+1
Recall that P(N,, =n) = e ™Zr. Let

z=1+Jp(e" —1), Ap,=e€ mxmem/z B,, = e Mz "Mt

Using the above two identities (« = m/z, 8 = mz), we get

- (m/w)”
D — efmxmz o e My ™ Z
n=0

n=m+1
m/x u™
= An+ (Bn — Am)/ efu—|du
0 m.:
me LU
+Bp, U du. (3.22)
m/:c m:

Elementary calculations give
Ap=1+0(mJ2),  Bp=1+0(mJ2). (3.23)
It follows that B, — A, = O(mJ2). For the two integrals, we claim that

/ m e—uﬂdu —0(1) (3.24)

/7;: —du— (e -1 \/7\/_J Im)- (3.25)

Combining (3.22)-(3.25) and the fact J,, < A, we will get (3.20).

We finish the proof by showing (3.25). The proof of (3.24) is simpler and
actually the integral in (3.24) is equivalent to 1/2 as m — co.

Let z = 1+ 6, with §,,, = Jp,(e" — 1) — 0. Then the integral in (3.25) is

equal to
m(1+¢5m) um m—|—1 1+0m
/ 'd ' / e ™™ dv
m/(1+<5m) m: m: 1/(14-6m)
mm+1 Om
=—F—e" / e (1 +t)™ dt. (3.26)
m: 1/(146m)—1
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By the Stirling formula, we have

mm+1 m m 1
e = Mﬂ—i—o(mz). (3.27)

On the other hand, we have e ™ (1+¢)™ < 1 for allt € [1/(1+6,) — 1, 6]

So,
Om m
/ e—mtud,ﬁ = (5m_ 1 +1>
1/(146m)~1 m! 1+ 0m

(26, + O(82))
2(e" —1)J, +O(JZ).  (3.28)
Finally, (3.25) follows from (3.26), (3.27) and (3.28). O

Now estimate Ee™%. Fix k > 1 and w € A™*. For any integer m > 1
such that AL, > b~™ let

Bl = Bl U ([min(,) — X, min(Z,,) — A7) x {Ar, }-
Denote Bl = Ut >p=m Blv. We have
s{(w) < N(B') + D(B") + |N(D") — D(D")|.

Therefore, we have only to show that EerP(B™) is bounded by a constant
independent of k. The reason for this boundedness is the following

E (exp (rD(Efw)))

m(m+1)

= H f[ lE(exp (157’,1” (wn,)\;n)r))

m: A, >b" Mk HZW-H
< I @+er = A, +207m))™

m: X, >b~ ™k

<exp|e¢€ Z (20~ ™em + (NI — XL )m

m: A, >b" "k

= exp (O(b”™kny)) X exp (e’" Z m(\r — )\'m))

m=1

= 0(1).

The last sum is bounded because of the Lemma 2.7. O

4. PROOFS OF THEOREMS 1.1 AND 1.2: UPPER BOUNDS

4.1. Upper bounds. Assume @ > 0 (there is nothing to prove when a@ = 0
since the lower bounds found in Section 3 are equal to 1).

For k > 1 define my = mff) and ng = ng) as in Section 3 (see (3.1)

and (3.2)). Since Ly, ~ Ly, ~ klog2 ~ L, and £, is decreasing, by the

NEg41
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definition of @, we may find a strictly increasing sequence of integers (k;);>1
such that

lim
j—oo — log Enkj

When the limsup defining @ is a limit, we can take k; = j. For 8 > 0, define

Ny, ()
me {t € T : liminf I: < ﬁ}

]4)00

| \/

= {t eT: hmlnf ﬁ}
j—o0
= {t eT: hmsup ﬂ}

j—o0
P =SteT: hmsup >pB
j—o0

I/\

Define

Bmin = lnf{ﬂ >0: da(ﬁ) > O}a
ﬁmax = Sup{ﬁ >0: dE(IB) > O}

We put our estimates on the Hausdorff dimensions of the four sets defined
above into two propositions. The second proposition may be proved as the
first one with minor changes.

Proposition 4.1. With probability one, we have

1. dim(Fy") < da(B) for all B € [0,1) N [Buin, Bnax;

—inf

2. F,B =@ for all B € [0, 1) \ [,Bminaﬂmax]f'
3. dim(F"®) < dg(B) for all B € (1,00) N [Bmin, Bmax);

4. EZUP =g for all 8 € (1,00) \ [Bmin, Bmax]-

Proposition 4.2. With probability one we have
1. dim Fi§* < dg() for all B € [0,1) N [Bmin, Bmax);
2. Fi§' = @ for all B € [0,1) \ [Bmin, Bmax);
3. dlmFﬂ“p < dg(B) for all B € N(1,00) N [Bmin, Bmax);
4. F3® = @ for all B € (1,00) \ [Bmin; Bmax]

In order to deduce from the above propositions the desired upper bounds
on dim Fg and dim Fg, we need the following proposition.

Proposition 4.3. Assume (H) and @ = lim,,_, or (Hy). With

probability one,

Ly
—log ly’

23

sup Y Lot —wn) = o(Ln,).
teT =
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Proof. For k > 1, denote by X}, the supremum in question. Let ¢ > 1 be
any constant larger than 1. It was proved in [FK1]| (Lemma 1 with evident
changes) that for & > 1 and A > 0 we have

Mg

exp | a(e* — 1) Z L,

n=ng_1+1

E(exp(AXg)) < m

This yields that for every £ > 1, a > 1 and ¢, A > 0,

P(Xy > eLy,,) < exp (a(e)‘ - 1)(Lp, — Lp,_,) — )\eLnk) .

1
T (a— 1)y,

Now, distinguish the cases (H) and @ = lim,,_, and (Hy).

Ly
—log
Suppose (H) and @ = lim,_, o #gén holds. It follows from Proposi-
tion 7.4 and the definitions of {£/,} and @ that
log((€n)™") = O(Ly) = O(L).
So there exists C > 0 such that for k£ large enough

1 1
% < % < exp(CLy,).

On the other hand, there exists C’ > 0 such that for k large enough we have
Lp, —Lp,_, <Ly —L, +L, —L, <,

Np—1 Ng—1
since L;, ~ klog2 by construction and Ly — Lj, = O(1) by Proposition 7.4
again.

The last estimates show that for fixed a > 1, A > 0 and ¢ > 0, if k is

large enough we have

exp (a(e* —1)C")
a—1

Recall that L, ~ L;Lk ~ klog2. To conclude, take A > 2C/e and apply the

Borel-Cantelli lemma.

P(Xy > €eLy,) <

exp ((C — Ae)Ly,) -

Suppose (Hu) holds. We have 1 = o(£,,). Hence, we have (one can also
use (7.4))

lognkNZ —0<Z€'> = o(Ly, ) ~ o(Ly,),

where we used Propos1t10n 7.4 for the last equivalence (actually we have
logn = o(Ly)). It follows that

1/£nk < 1/£;1k = O(Hk) = O(eXp(O(Lnk)))'
We also have

Ly, = Lny,_, < Ly, — Ly, + Ly, — Ly, = o(Ly,)

Ng—1 Ng—1

since L ~ L} by Proposition 7.4.
The last estimates show that for fixed @ > 1, A > 0 and ¢ > 0,

P(Xy > €Ly, ) =0 (exp (((1 + a(et - 1)) 0(Ly,) — )\eLnk)> .
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Since for k large enough one has o(Ly, ) < €?Ly, , taking A = /€ shows that
for fixed a > 1, for every € > 0 small enough, there exists C' > 0 such that
for k large enough,

]P)(Xk: > eLnk) < Oexp(_GS/ank)'

The conclusion follows as in the previous case.

: ! !
Since Ly, ~ L Lnk+1, we have

Fﬂcfi; for B < 1; Fg C Fy® for p>1.

So, the upper bounds concerning dim Fjg in Theorems 1.1 and 1.2 follow
from Proposition 4.1. Of course, they also follow from Proposition 4.2.

If the limsup defining @ is a limit, by taking k; = j and applying Propo-
sition 4.3 we get

—inf —sup inf
FgCFg NFy Fg CFg' nFy®

(use the fact that Ly, N_L' ~ Ly, ., ~ klog2). Then we can get the upper
bounds concerning dim F'g and dim F'z as stated in Theorem 1.2.

4.2. Proof of Proposition 4.1. Without loss of generality, we can only
consider F5 N [6,1 — 6] and Fg N [6,1 — 8], where § = 27 ™. For sake of
simplicity, we will still write them as Fg and Fﬂ.

We will use H*(FE) to denote the a-dimensional Hausdorff measure of a
set F. We will estimate the Hausdorff measure of a set by using dyadic
intervals. For this reason, we will consider the dyadic tree A* = |J,,_, A"
with A = {0, 1}.

We have only to show that for every small enough € > 0, with probability
one, we have

Hda(ﬂ)+\/_( mf) = 0, (V,B € [ﬁminaﬁmax] n [Oa 1) (4'1)
Hd5(5)+\/_(Esﬁup) = 0, (V,B € [,Bmina ;Brnax] N [15 OO) (4'2)

Given a closed interval [ag, as] C (0,1), et K = [a,a2] U{0}. In order to
prove (4.1), it is enough to show that for small € > 0, with probability one,
we have

H=0tV (Fy) =0, (V8 € K). (4.3)

Fix0<e<1—agand M > % Assume 8 € K. For t € FB, there exists
n > 1 such that for every k > n

N, (8) < (B+9Th, (4.4
(we used the facts N/ (t) < N,(t) and L/, ~ Ly,). It follows that

1nf C U Flnf

where
Fy'(n)={t: N, (1) < (B+e)Ll, Vk>n}.

n
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So, by the sub-additivity of the Hausdorflf measure, (4.3) is reduced to the
fact that for small € > 0 and for any n > 1, with probability one, we have

Hda(ﬁ)h/?(ff;f(n)) =0, (VB € K). (4.5)
Since S+ € < ay + € < 1, the fact (4.4) implies
1< (B+e) (g 47 n 749, (4.6)

Let I, with w € A™*k be a dyadic interval containing a point ¢ such that
(4.6) holds (for such a I, we have I, N (6,1 — ) # @). Then

1< M5B 4 )N P™) (B 4 )~ Lny (B+e), (4.7)

In fact, (4.7) is a direct consequence of (4.6) when N(D'*) < N}, (t). As-
sume now N (D) > N{Lk (t). Then (4.7) will follow from (4.6) and the fact

Mo <(B+ 6) (Dfe) =Ny, (t), which follows from €5(®) < eN(Dlw)_Nak (*)
(notice that M~ < ¢). Indeed, the last fact is true because

Np, () > —sj(w) + N3 (t) > —sj(w) + N (D),
a fortiori, sk(w) > N(D'w) — N}, . (t). So, for such an interval I,, we have
|1,|( =BV < g=mu(de(B)+vE) . prsi(w)(B 4 )N D’w)(5+€)—L'nk(ﬂ+6) (4.8)
It follows from (4.8) that
—5inf ..
HOHV(F ' (n)) < liminf f4(6)

where
AOEE A CICE D R D DI A CE R
weAmk
Cl6,1-4]

Let (kj);>1 be the sequence chosen at the beginning of the present section.
We claim that for every small enough € with probability one,

> i (B) <o (VB EK) (4.9)
i>1
which implies (4.5). We will prove the claim by distinguishing 8 = 0 and

B € la1,as].
Consider first 8 = 0. We have

fr(0) = Z o~ (dx(0)+ve) | prsi(w) , [N(D™w) —ely,

wEA™k
I, C[8,1-6]

So,
E(fx (0)) < 2™ 9=y (dz(0)++/€) (—€Ln, | E(Ms’k (w) N(DTw )) (4.10)

where w € A™* is generic such that I,, C [d,1— d]. Since s}, is exponentially
integrable (Lemma 3.4), by the Holder inequality, we get

E(Ms;(w)eN(wa)) < C, (Ee(lJre)N(wa))l/(Hf)

1+e€
€ -1
Ceexp (ﬁ%)

IN
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where in each inequality above C is a constant depending on €, but indepen-
dent of k (we used the facts L], = v(Dy-m) and 0 < v(Dy-m, ) —v(D') =
O(1)). Thus, using the fact dz(0) = 1 — @, we get

1— 1+e
F(fi(0)) < Cexp |mi(@— ve)log2 — I, (T +eclog )}
€
Notice that
1—elte
1+e€
and that for large j we have

L;ij > —(a—e¢)log bny,; > (@ — €)(mg; — 1) log(2).

+eloge =1+ O(e|logel)

Then, for small € > 0, we have
SRS (0) < €Y a7 (VEroldiosd) < o, (4.11)
J J
Next suppose that 3 € [a1,as]. We have
]Efk (,8) < 2mk2—mk(da(/3)+\/€)(’8+ )_(ﬂ+5)L{rLk
x E(M @) (B 4 ¢)N(P™)) (4.12)
In the same way, we apply the Holder inequality to get
1+e
E(M%®)(B + e)NP™)) < C, exp (—(ﬂ + 1€)+ 1L;zk) .
€

However
B+e)lte—1
% — (B+e)log(B+€) =B —1—Blog(B) + O(e)

which is negative for small € and again Llnkj > (a—e) (mkj — 1)1og(2) for

large j. So, we can get

SEfi () < Y 2V < o, (4.13)

The same approach as the one used in proving Proposition 3.1 will show
that
Z max Efk ) < Ce Y k227 VoV <o (4.14)

B€la1,a2]

where fkj denotes the derivative of fi,. The combination of the last two
estimates implies

Z]E max _fi. (8) < oo (4.15)

Finally, we get (4.9) from (4.11) and (4.15).

The part 1 of Proposition 4.1 is proved.

To prove part 2, we make the following observations: even if a number
d is negative, one can define formally by the usual way the d-dimensional
Hausdorff measure of a set; this measure is equal to +o0o0 for any non-empty
set. Another observation is that the above estimations remain true even
when dg(8) < 0. These two observations allow us to conclude for part 2.
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The parts 8 and 4 may be proved in the same way with minor changes.
Let us just point out what should be changed. Now we work with [a1,as] C
(1,00). Instead of (4.4), we will have

The counterpart of fx(f) is

gr(B) = 27TV gL (=9 S yN(B)Fs(w) (g g ) ND),

weAk
IwC[(Sa]-_J]

4.3. Proof of Proposition 4.2. We have only to make a small change
of the proof of Proposition 4.1. The estimations obtained in the proof of
Proposition 4.1 are still useful. Actually we have used the fact that the se-
quence f;(8) (as well as g, ) tends uniformly to zero but we have proved the
uniform convergence of the series ) fi;(3) (as well as the series involving
gkj). Now we really need the uniform convergence of the series.

For every € > 0 and $ € [0,1), we have

Eiﬂnf C ﬂ U Eglf(.j)
n>1j>n
where
Eglf(j) = {t : N;ij () <6+ E)L;”“j } ’

It follows that for n > 1

da(b’ )+ me < Z Z ‘I |d—(ﬁ)+\/_

2—mk
jzn

where the second sum is taken over all w € A™* such that
C[6,1—46], 3te€ I, such that N,’zkj (t) < (B+e)L,

By using the estimations obtained in the proof of Proposition 4.1, we get
that with probability one

d (/3 +\[ Flnf < Zf
k;
2 j>n

Thus we get the parts 1 and 2.
For 8 € (1,00), we may prove in a similar way that with probability one,

HEOWVCEED) < g, (8)
jzn
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5. PROOF OF THEOREM 1.3

Recall that £/, and £!! were defined in the subsection 2.5 and my = msc )
and ng = n,(f) were defined in the subsection 3.1.

Due to Proposition 4.3, it suffices to show that for every 8 < 1 close
enough to 1, with probability one,

—5sup

f
FrtuF =0

where {k;} = {j} is chosen for defining F§* and F,".

We proceed as in the proof of Proposition 4.2, but instead of cutting
[0,1 — 6] into subintervals of length 2™k we divide it into subintervals of
length (1 — 26)/ng. We denote this collection of intervals by J.

We compare the Dvoretzky covering with the Poisson covering by defining,
for each interval I € Jj, the quantities

§(I) =sup|N,, (t) = N, (t)],
tel
() = stIEI?INle( ) = N2, @)

(Analogous quantities were introduced and studied in the subsection 3.1.)
In order to estimate the size of these variables, we introduce

—I . —I —I
D" = Dy, (inf I) [\ Dyp-my (sup I), B =) Dp-mi () \ D"

tel
For any integer m > 1 such that A}, > b~k denote

Dl =D'n®x{\)}), B.L=B n@®x{}

We also introduce . "

B= |J B,
m:AL, >b~ ™k

where

By, = BL [ Jlinf I — X, inf T — M ] x {\,}.

(Analogous sets were introduced in the subsection 2.4.)
We need the following intermediate result.

Lemma 5.1.

1. L' ~ L.

2. For any r > 0, there ezist constants C1 = C1(r) and Cy = Ca(r) such
that for any I € J, we have

FeN(B) +IEe’"D(§I) <c
Ee™ () 1+ Ee™" () < exp(o(Ln,)-

ENO) PP < orexp (G S VmX,

m: N, >27""k

~1
Ee'PB ) < Crexp | Oy Z m(Xr — X))
A >27 ™k
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The first point L], ~ L! is contained in Proposition 7.4. The other es-
timates follow the same lines as those proved in Section 3 for analogous
quantities.

Now continue our proof. Fix f € (0,1) and d < 0. Let M = 1/3. For
€ >0 and k > 1, define

7.(8) = ”J;dﬁ_%’“ (B+¢) Z ME’(I)ﬁN(EI)’
1€ Jy,
, _ —=I\ a5
gk(ﬂ—l) _ nI;dIBLnk(,B €) Z MN(B )+3 (I),B N(D )
IeJy
Choose € > 0 such that 8+ ¢ < 1 and 87! — € > 1. The computations
performed in the previous section yields

HLL(F) < (1- 200 S T5(8)

Jzk
HiAF) < 020" S a,87)
Jjz

Notice that both Efé‘f and FZUP are increasing functions of g € (0,1).
Since d < 0, we have to show that for any fixed # we have

ZEfj(ﬁ) < 00, ZES_Jj(ﬁ) < 00.
J J

In fact, writing
dlz) =xz—-1-zlogz,
by Lemma 5.1, we get

Ef ;(8) = ny~"exp (o(Ly,) + (d(B) + O(e)) L1,,) (5.1)
and
Eg;(8) = ny % exp (o(Ly,) + (d(1/8) + O(e)) Ly,,) (5.2)
Since d(x) < 0 for every z € (0,00) \ {1} and L; ~ klog2, in order to
conclude, we have only to choose a small number ¢ > 0 and to show that
log ny, = o(L;Lk). This was done in the proof of Proposition 4.3.

6. ANALOGOUS RESULTS FOR POISSON COVERINGS

We consider a Poisson point process as was constructed in Section 2. We
assume that v(D,) — oo as € — 0 and define

_ s NE®)
FY={tecR,: llglglf (DY) B},
— _ NFP(t
Fj = (ecRe st g =)

P _ pPMFL
Fj = F5(Fp.
Recall that the assumption (HP) was defined in Section 2. There is a
counterpart of (Hy), namely

(HP ) lim € u([e, 1)) = +o0.
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We state the following results whose proofs are somehow easier.

Theorem 6.1 (Case @’ = 0). Assume (HP), i.e. limsup,_,eu(fe, 1)) <
oc. Suppose aX’ = 0. With probability one, for all 8 > 0 such that dgzr(8) >
0, we have

dim(Ff) = dim(F5) = dim(Fj) = 1. (6.1)

Theorem 6.2 (Case @”’ > 0). Assume that (HP), i.e. limsup,_,,eu(fe, 1)) <
0o. Suppose 0 < @’ < oco. With probability one, for all B > 0 such that
dgr(B) > 0, we have

dim(F§) = da(B); (6.2)
and for all > 0 such that dzr(B) < 0 we have
Fy =o. (6.3)

If, moreover, @ is defined by a limit (not just a limsup), (6.2) and (6.3)
hold for E/‘g and F; instead of F;.

Theorem 6.3 (Case @’ = +o0). Assume (HP ), i.e. limeoepu(fe, 1)) =
+00. Then almost surely we have

NP
i Ve ()
e—0 Z/(De)

=1 (VteR).

As in case of the Dvoretzky covering, we make the following remark on
FP. By Theorem 6.2, @ > 1 implies F§’ = @; @ < 1 then dim(F{) =
1—a” > 0. When @ = 1, dim(F{) =0 and F{ # @ if

/ exp {/ (s, 1) ds} dt < oo.
(0,1) (t,1)

7. APPENDIX

Here we get together some properties of the sequence {£,, } under different
conditions.

Proposition 7.1. We have the following equivalences.
(1) The assumption (H) is equivalent to limsup,_,;, € Card A, < oo.

(73) The assumption (Hyo) is equivalent to lime_,o e Card A = +00.

Proof. (i) Recall that CardAc = 37, .. 1. Suppose Card A¢ < Ce '. Fix
N > 1. There exists a unique k such that 27% < ¢5 < 27%+1, Then
2C
N S CardAQ—k = (2_kCaI‘d A2—k)2k S e—.
N
That is to say /x < 2C/N. Suppose £, < D/n for all n. Fix € € (0,£;) and
k > 1 such that 27% < e < 27%*1, We have

Card A, < Z 1< 2De .
n:D/n>2-k
(43) Fix N > 1. Choose k such that 27% < £y < 27%+1. We have
1

N > Card A27k+1 = (2”“+1Card A2—k+1)2k71 > (27k+1A27k+1)W,
N
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that is

1
NEN Z 52_k+1A2—k+1 .

Consequently, lim,_,¢ eCard A, = 400 implies (Hy).

Now suppose (Hy,) hold. For any large number M > 0, there exists
ng > 1 such that nf, > M for all n > ny. Fix € € (0,4;) and k > 1 such

that 27%F < € < 27%+1, We have

CardA, > Z 1= Z 1

n: £y, >2-k+1 n: n<(néy,)2k-1

M
Z 1=M2¥1 —ng> 5 — "o
no<n<M2k-1

Vv

It follows that
liminfe Card A, > M.

e—0

This finishes the proof since M may be arbitrary large.

Recall that N
Y
@ = limsup 72”:1 iy
N—oo — log eN

_ . Zn:ﬁnzb—’“ ln
ap = limsup ——"=——
k—o0 log b
where b > 2 is an integer.

Proposition 7.2. We have oy = @ for all b > 2.

Proof. Fix k > 1. For sake of convenience, let Ny = Card Ay-x. Then

In+1 < bk < Ly,. For any € > 0 and large k, we have

Ny
Yoot = D ta<(@+e)(—logly,) < (@+€)logbF.
nily >b—k n=1

It follows that ap < @.

Fix N > 1. There exists a unique k£ such that b=k < ¢y < b k*1, Then

for any € > 0 and large N

N
Sl <Y by < (@ +€)loghF < (@ + €) log(bly").
n=1

n:ly >b—k

It follows that @ < @j.

As is pointed out in [K1] (p. 161), there is another formula for a:

_ . 2221 £
a = limsup .
n—oo  lOgm

Proposition 7.3. We have
(i) a<a;
(ii) The assumption (H) implies @ < co.

(7.4)
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Proof. (i) Fixn > 1 and b > 2. For every N > 1 denote by ky the integer
such that b= ¥¥~1 < ¢ < b~ Since for N large enough

E;V:1 ej < Zéje[b*kal,b—"] £+ Zeje(b—n,l] £

—loglny ~ log bk~
Write ky +1 = n+m with m = ky +1—n. Then log b*¥ = log b™+log " !
and we see that

& < limsup otep-m-np-n1 b+ e ep-n 1 i
o m—00 log bm
- 2 tjelbm—n 5 &
Tom>l log b™ '

We conclude by using the definition of a.
(ii) Let p = 372, dg;- For n,m > 1 and b > 2, one has

b—n
Z L= /_ ydu(y / / dzdu(y

g;e[b—m—n b—n]

Using Fubini Theorem yields
b*n
>4 = @)+ [ (e e

Lielb-m—n b e

n+m
< (D + Y p(b G -6,

k=n+1

However u([b~*,1]) is nothing but CardA,~x. By the assumption (H),
p([67*,1])b~* = O(1) and then the last sum is O(m). So, (ii) is proved. O

Proposition 7.4. Under the assumption (H), i.e. limsup, nf, < oo, we
have
L' — L =0().
Under the assumption (Hy), i.e. lim, nf,, = oo, we have
L'~ L.

Proof. For any integer n > 1 there exists an integer m such that ™ (m+1) <

n < w We have

nm ! !
Ln - Ln = Lm(m+1) Lm(m+1) + @) (mEm(n;-i-l)) .
2

The the assumption (H) implies that m£m@m+1) is bounded. So, we have
2

only to show that L',;(m ) — L'm(m +1y is bounded. Indeed,

Lm(m+1) Lm(m+1) < Z]( G0 4y J<]+1>+1) Zem DIRE
j=1

The last sum is bounded, up to a multiplicative constant, by 52 =1 72

Thus the first assertion is proved.
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To prove the second assertion, we apply the assumption (Hy,) instead of
the assumption (H). It suffices to remark that

m
Me sy = 0D kligern))-
? k=1 2

This follows from

e m m m2
E klrsy > — Z Lrkrr) = —Lmimt1) -
2 2 2 2 2
k=1 k=m/2
O
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