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Abstract

The asymptotic behavior of the logarithm of the density of some T-martingales (in the sense of Kahane theory
[10]) is described in detail even in absence of statistical self-similarity. Poisson intensities of the form Lebesgue ® p
on R xR} are involved in the construction of these martingales. We prove that there are three possible behaviors
according to the fact that @ = limsup__,,(—loge)™! f[s 1 £du(f) is zero, positive and finite, or infinite. This
problem is closely related to the asymptotic behaviors of covering numbers in Poisson covering of the line and
Dvoretzky covering of the circle.
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Résumé

Le comportement asymptotique du logarithme de la densité de certaines T-martingales (au sens de la théorie
de Kahane [10]) est décrit de fagon précise méme en 'absence d’auto-similarité en loi. La construction de ces
martingales fait intervenir des intensités de Poisson de la forme Lebesgue ® p sur R x R%} . Nous montrons qu'il
¥y a trois comportements possibles selon que @ = limsup,_,,(—loge) ™" f[s 1 £du(£) est nul, strictement positif et
fini ou infini. Cette question est intimement liée au comportements asymp,totiques des nombres de recouvrements
dans le recouvrement de Poisson pour la droite et le recouvrement de Dvoretzky pour le cercle.
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1. Constructions of T-martingales

Let T be a locally compact metric space and (2, F,P) be a probability space. Let ({QE}, {}‘E})O<E<1
be a T-martingale in the sense that the filtration {F.}o<.<1 is nonincreasing, Q. : T x @ — R, are
T ® F-measurable, and

E(Q.(1)|F.) =Q.(t) (teT, 0<e <e<1).

We suppose that Q. (t) and Q. (') have the same probability distribution.

Such martingales appeared as densities of random measures considered by B. Mandelbrot and J.-P.
Kahane in [11,9,10] and in subsequent works. All these works consider the vague limit Qo of Q.o as
e — 0, where ¢ is a Radon measure on T. One of the main problems is to determine the local dimension

of Qo, defined by d(Qo,t) = liminf,_,o w. Under some conditions of statistical self-similarity
of Qo, the multifractal analysis of Qo concerning the level sets of d(Qo,t) was performed ([8,12,2,5]) and
d(Qo,t) was linked, via the knowledge on the distribution of Qo, to the asymptotic density

S log Q:(t)
Dy(t) =1 f——=——"
Do) = g Q. (0
Without self-similarity of Qo there is no answer to the problem of multifractality of QQo. We propose to
directly study the natural asymptotic density D, (#). In this note, we focus on two constructions.
Poissonian products of functions. They were introduced and studied in [5,3,6], also in [7] for a
special case. Let v = A ® u, where X is the Lebesgue measure on R and p is a locally finite Borel measure
on (0,1].
Let (Bg)r>1 be a partition of R x (0,1] into Borel sets such that 0 < v(B}) < oo. Let v|p, denote
the restriction of v on By, and choose a sequence ((M(k,n)) of Bj-valued random variables with

n>1
common distribution v(By) v p,. Also choose a sequence (Ni)r>1 of Poisson random variables with
parameter v(By). Assume that all the previous random variables are mutually independent. The set S =
Ues1 {M(k,1),...,M(k,Ni)} is a Poisson point process with intensity v. Let ¢ be a Hélder continuous
positive function defined on [0, 1]. Let W be a nonnegative integrable random variable and (W (k,n))k,n>1
be a sequence of independent copies of W, which are assumed to be independent of S. We will write W, ¢
for W(k,n) if M(k,n) = (s,£) € S.
For g € R, let ¢(q) = -1+ E(W?) fol ¢(s)?ds. Define the R-martingale

Q.(t) = exp ( _ ¢(1)V(Ds(t))) [I Was(eit-9), (teR 0<e<l)
(s,£)eSND,(t)
where D.(t) = {(s,0) e Rx Ry, L €[e,1), s € (t —L,t)}.
Log-infinitely divisible cascades. A special statistically self-similar cascade was introduced in [1].
Fix (m,s) € R? and 7 a nonnegative Borel measure on R which satisfies flul < Wn(du) < oo and

7((—1,1)¢)) < oo. The measure  is the Lévy measure of a real valued infinitely divisible random variable
X which has its characteristic function F(e®X ) = e¥=m.+(€) with

(pw,m,s(g) = %m§ - §£2 + / (Cigu —-1- z§ sin U) 7r(du)

R

With m, s and 7 one can associate ([13]) a random function Py, , on B(R x (0,1]) (more precisely on
Borel sets of finite v measure) such that if ¥(B) < 0o, E (e¥Fmm.s(B)) = e¢=m(OV(B) (¥ ¢ € R), and
if Ay,..., A, are pairwise disjoint Borel subsets of B then P(A;),...,P(A,) are mutually independent.
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Let I(q) = f‘u|>1 et m(du). If I(g) < oo then define 9(q) = ¢r m,s(—ig). Assume that I(1) < oo and

choose (m, s) such that ¢, m,s(—i) = 0. Then define the R-martingale
Qu(t) = e (Pe0).

In the sequel we assume that s = 0 (without gaussian component) and flul <1 lu|m(du) < oo (giving a

control on the variations of Py m,o(De(t)) in &).

We recover a special case of the first construction with ¢ = 1 by taking 7 to be the probability law of
logW.

In this note we announce some obtained results.

2. Asymptotic behavior of log Q.(t).

For both previous constructions, we have Elog Q.(t) = (¢'(0) — ¢(1))v(D-(t)) whenever 1 is defined
near 0. We assume that I/(Ds(t)) — o0 as € — 0 and consider the following level sets. For § € R define

' (t — ) 1 <t —
EBZ{tER:hreglgf%s()):ﬁ}’ Fﬁz{tERzllr?jgp%s()):ﬂ}, ngﬂﬁﬂFﬁ.
Let
v(D.(1) YDt () \ Dyen ()

a= lirgl j(l)lp “oge and a= ;rzlfQ liTrbrL solip 7371112;; Tog b
For ¢ € R such that 9(q) is defined, let 8(q) = v¥(q) — q»(1). Let J be the interior of the interval
{g: 6(g) < oo} (we have (0,1) C J). For a > 0 and ¢ € J define

Aalg) =1+ a(6(q) — ¢0'(q)).

Theorem 1 (Case @ = 0) Assume limsup,_,qep(e, 1)) < 0o. Suppose @ = 0. With probability one, for
all g € J such that As(q) > 0, we have dim Fyi(y) = dim Fy(,y = dim Fg:(q) =1.

Theorem 2 (Case 0 < @ < o) Assume that limsup,_,; en([e, 1)) < 0o. Suppose 0 <@ < oco. If J = R,
with probability one, for all ¢ € R such that As(q) > 0, we have dim Fy: () = Az(q) and for all ¢ € R
such that Az(q) < 0 we have Fy gy = 0. If, moreover, @ is defined by a limit (not just a limsup), the
previous results hold for Fg. .y and Fgl(q) instead of Fy(q).

Theorem 3 (Case @ = +00) Assume lim. e p([e,1)) = +o00 and 0 € J. Then, with probability one,

. logQ.(t) ot
we have 51_13(1) D) 0'0) (VteR).

3. Dvoretzky covering numbers

We consider the circle T = R/Z = [0,1), a decreasing sequence {{,},>1 (1 > £, | 0) such that
Yoo by = 00 and a sequence of i.i.d. random variables {wp},>1 of the uniform Lebesgue distribution.
denote by I, = w, + (0,£,) the open interval of length ¢,, with left end point w,,. Define, for n > 1, the
nth covering number of t € T by

No(t)=Card{l1 < j<n:Iy 3t} =) () (t —wp).
k=1



Let L, = > ;_, {k- For any 8 > 0, we define the (random) sets

Na(t - Na(t _
Eg:{teﬂr;hminf Z():ﬂ}, FE:{teT:limsup#Zﬂ}, FP =FP(F5.

n—oo

n n—oo n
Define n > 0
. g . —(n+m) p—n j
aP =limsup 723_1 ], aP = inf limsup sup ti€b Ll
n—oo 10g Ly b>2 nsco m>1 108; bm
and

da(ﬂ):]-'i_a(ﬂ_]-_ﬁl()gﬂ)a 04,520-

Theorem 4 (Case @ = 0) Assume limsup,, ., nl, < 0o. Suppose @’ = 0. With probability one, for
all B > 0 such that dgo(8) > 0 we have dim FP = dim F5 = dim Fj = 1.

Theorem 5 (Case 0 < @ < o0) Assume limsup,, ., né, < 0o. Suppose 0 < al < co. With probability
one, for all B > 0 such that dyo (8) > 0, we have dim Fz = dgo (), and Fg = 0 for all B > 0 such that
dgo (B) < 0. If, moreover, @ is defined by a limit (not just a limsup), the previous results hold for Eg
and F/? instead of Fg.

N, (1)

Theorem 6 (Case @ = +o0) Assume lim,_,oo nl, = co. Then, with probability one, lim,_, = =
1 (VteT ).

4. Comments

Theorems 4-6 are proved in [4]. They complete and improve [7] which deals with the case £, = & and
obtain the dimension of Fé’ for a fixed B almost surely. The covering number N,(t) is closely related
to the Poisson covering number Card (S N D.(t)) when u =3, -, 0, . It is easy to see that if W =1
and ¢ = a we have log Q. (t) = Card (SN D.(t)) loga+ (1 — a)v(D.(t)). Actually the method used in [4]
can be adapted to study log Q. () for the general constructions presented in Section 1. One of our main

tools is to define almost surely simultaneously (in ¢) the limit measures of %)\ (see [3,6]). These

limit measures are carried by the sets in question. This yields a lower bound of the Hausdorff dimensions.
The upper bounds are estimated through the definition of Hausdorff measures by using natural coverings.
This involves uniform estimates similar to those obtained in the lower bound estimation.
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