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(Random Multiplicative Multifractal Measures, Part I)
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ABSTRACT. This is the first of three papers devoted to a class of random
measures generated by multiplicative processes.

This Part I surveys the main motivations that led B. Mandelbrot to intro-
duce such statistically self-affine multifractal measures, from the initial limit
lognormal processes to multiplicative cascades of random weights, and finally
the multifractal products of pulses. A discussion contrasts the recent class
of multifractal products of cylindrical pulses with the well-known canonical
cascade measures.

Part II will present these examples as particular elements of a class of
random measures generated by multiplications of functions for which several
fundamental problems, namely non-degeneracy, finiteness of moments, dimen-
sion of the carrier and multifractal analysis can be studied and solved. The
results complete Kahane’s general theory of T-martingales and will be applied
to new examples.

Part IIT will provide the proofs of the results obtained in Part II.

1. INTRODUCTION

This paper describes the main motivations that led from the limit lognormal
multifractals to the canonical cascade measures (CCM) and then, more recently,
to the “multifractal products of pulses”(MPP). The main mathematical related
problems are discussed for CCM and a subclass of MPP, namely the “multifractal
products of cylindrical pulses” (MPCP) (an alternative account of the CCM and
their extensions is found in [P2]).

The Kolmogorov lognormal hypothesis for intermittent turbulence [Ko] was in-
spiring but very sketchy. Implementing the underlying idea mathematically turned
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2 Introduction to multifractal multiplicative measures

out to be difficult. To do so, [M2] introduced measures that are limits of suitable se-
quences of lognormal random processes. Such sequences form measure-valued posi-
tive martingales. They converge but may almost surely converge to zero. Therefore,
the first fundamental problem raised in [M2] was to determine whether or not the
limit measure is non-degenerate, that is, positive with a positive probability. A suf-
ficient condition for degeneracy was provided, as well as a necessary and sufficient
condition (NSC) of convergence in L? (p integer > 2), yielding sufficient conditions
for non-degeneracy; a NSC was only conjectured. Another fundamental question
was raised and partially answered as a corollary. When the limit measure is non-
degenerate, which is the necessary and sufficient condition for a moment of given
positive order to be finite ? This question was reformulated in [M4] as the one of
divergence of high moments.

All those questions turned out to be too difficult for the conjectures to be
tackled in complete rigor. In response, [M4] and [MS5] introduced and discussed
an alternative class of martingale limit measures, namely the canonical cascade
measures (CCM). The presence of a cascade is a strongly restrictive but simplifying
element. It allowed the previous conjectures about non-degeneracy and moments
to be reformulated and again partially solved, and a third main conjecture about
the dimension of the turbulence carrier was proposed. All these questions were
answered in [K1], [P1] and [KP].

It is time to introduce the notion of multifractality. The first result was that,
when a CCM p is non-degenerate, it possesses p-almost everywhere the same Hélder
exponent D. This result yields the value fg(D) = D for the function fy that
is now commonly called multifractal spectrum of CCM. The D, conjectured in
[M4, MS5] and confirmed in [KP], solves the “dimension of the carrier” problem.
Moreover, [M5] studied the probability distribution of the martingale defining CCM
using the Cramer—Chernoff large deviation theorem. That theorem involves the
Legendre transform and yields preasymptotic results that are formally identical to
the expression now called large deviations spectrum of CCM.

The values of the Legendre transform f(«) were interpreted as fractal dimen-
sions in [FrPa], which also introduced the term “multifractal”. Then a number of
deterministic multifractal measures were exhibited and studied; the heuristic inter-
pretation of f(a) in [FrPa] was confirmed ((HaJeKaPrSh], [CoLePo], [BoRa],
[Ra], [BrMiP]), giving birth to the term “multifractal formalism”. In [M7, M9],
CCM were shown to be complex enough to illustrate a new concept associated
with randomness, that of (latent) negative values for the “dimension” f(«). Later,
in the 90’s, the technique used in [KP] became a basic tool in several studies of
the multifractal spectrum of CCM ([K5], [HoWa], [Mol], [B2]). As multifractal
analysis developed, controlling moments of negative orders of the total mass of
martingale-limit measures also became a fundamental problem.

[K2] returned to the limit lognormal model of [M2], confirmed its conjectures,
and developed the notion of “Gaussian multiplicative chaos”. For certain limits
of log-normal multiplicative cascades that can be related to some CCM, definitive
results were obtained for the three problems mentioned above: non-degeneracy,
high moments, and dimension. To study more general “positives martingales and
random measures” and their applications, [K2, K3, Fal, K4, Fa2, K5, Fa3, Fa4]
developed a number of further tools.
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CCM simplified the limit lognormal construction in [M2] by injecting a pre-
scribed b-adic grid of intervals of [0,1]. While this grid was necessary for technical
reasons, it has no counterpart in nature. Moreover, in addition to the canonical
cascades, [M4] had considered microcanonical cascades that are locally conserva-
tive (see also [dW, Y]). In every way, the move from microcanonical to canonical
randomness brought far richer structure, hinting that the removal of the grid might
also yield additional interesting results.

For these reasons, a new class of random multifractal measures called “multi-
fractal products of pulses”, MPP, was introduced in [M10] together with a num-
ber of heuristic arguments and corresponding mathematical conjectures. The key
virtues of the MPP are that — just as the limit lognormal multifractals — the MPP
involve no b-adic grid, and that — contrary to the limit lognormal multifractals —
the MPP are not bound to limit lognormality.

The MPP construction was inspired by the sums of pulses introduced in [M8]
and developed in [M14]. Those processes do not involve a grid and are not bound to
normality. Sums and products illuminate each other. Both were motivated directly
by the modeling of situations in which power laws characterize both the tail of the
marginal distribution and the long statistical dependence. These are two charac-
teristics of what [M11] calls “wild variability” in natural and social phenomena,
and their joint occurrences provided a strong challenge to the probabilists.

Let us outline the reasons, so-far unpublished, which suggested that those con-
crete requirements may be fulfilled by using pulses. The underlying basic structure
to be used in Figure 1 had already been introduced when [M3] set up the problem
of the covering of the real line by intervals. In terms of the present discussion,
removal of an interval (or “trema”) is equivalent to the multiplication of a density
by a pulse equal to 0 in the interval and to 1 elsewhere.

In the specific case of sums of pulses, the point of departure was the classical
series that defines the Weierstrass continuous non-differentiable function. In [M6],
the original non random terms were multiplied by Gaussian prefactors and random
phases were introduced. However, this procedure was restrictive, insofar as all the
cycles of the sine function were randomized simultaneously and identically. The
goal being to represent intermittent phenomena, it seemed better for each cycle’s
amplitude and phase to be randomized separately and independently. The resulting
pulse was one half period of the sine function. The next step was to allow pulses
that are not sinusoidal. The simplest are the cylindrical ones, but other shapes
were examined and the behavior of sums of pulses was found to greatly depend on
the pulse shape. In a last step, the Weierstrass discrete (lacunary) distribution of
pulse lengths was made continuous, as in [M3].

In the case of canonical cascade measures, the definition already included cylin-
drical pulses of random amplitude. Therefore the first innovation consisted in free-
ing the pulse shape and injecting a random phase. This in turn allowed a second
innovation consisting in eliminating the base b, in analogy to [M3] and what had
been done for sums of pulses.

The subclass MPCP of MPP was studied in [BM2], which solved almost com-
pletely the three main problems and also obtained the multifractal spectrum of
MPCP.

Sections 2 and 3 will define these MPCP and contrast them on several accounts
with the familiar CCM. The absence of grid brings in a great increase of realism and
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versatility which is very valuable for the applications ((M13]). Those improvements
are due to several novelties, essential to a varying degree, that Section 3 will discuss.
It will be noted that an irreducible part of the common role of the basis will be
played by a constant p, called “density”, which is formally a generalized replacement
for 1/ log b. A third family, natural “semi-grid free” intermediate between CCM and
MPCP will also be introduced, and denoted as Poisson canonical cascade measures,
PCCM.

The theory in [K3] applies to CCM, PCCM and MPCP, but is too general to
yield the finest results on non-degeneracy, finiteness of moments, and dimension of
the carrier. On the other hand, it was observed in [BM2] that techniques developed
in [KP] to study CCM can be adapted for MPCP. In fact, we shall see that the
structure of MPCP turns out to be complex enough to allow the techniques used
for MPCP to be also applicable to a larger subclass of the general construction
in [K3]. This class will be studied in Part IT [BM3] and illustrated with new
examples, including MPP.

2. SKETCHES OF THE CONSTRUCTIONS OF MPCP, CCM, aAND PCCM

Measures obtained by either process will be denoted by u. We begin with
MPCP. We continue by defining CCM in the same spirit as MPCP instead of the
original construction in [M4] or [KP] involving successive generations of b-adic
subintervals of [0,1].

In the strip R x (0,1] of the plane, denote by S = {(tx, A1)} a Poisson point
process with the intensity

_ pdtd)
T2
The “cylindrical pulses” investigated in [BM2] are a denumerable family of
functions Py (t), each of which is constant and equal to 1 outside of an interval [ty —
An,th + Ap] called “trema”, and constant and equal to Wy, within [ty — Ap, th + A
Here, the weights W}, are copies of a non-negative integrable random variable W,
independent of one another and independent of S. We shall write V' = E(W).

A, (dtd))

(p>0).

One defines the approximating measures p., 0 < £ < 1, as having a density
with respect to the Lebesgue measure £ given by

dpe _
7 (t) = V-1 11 Pi(t).
(th,AR)ES, Ap>e

The measure p is defined on the whole real line as the weak limit (on compact
subsets) of the approximating measures p.. In the particular case where W = 0,
this construction is considered in [K5] in a lecture devoted to the random covering
of the real line ([M3]) by the intervals (¢, tn + Ap)-

The familiar CCM are also defined as products of cylindrical pulses, but on [0, 1]

rather than R and with the deterministic rather than random set S = {( k";i/ Sk

integer n and k; n > 1,0 < k < b"} (b > 2). In this case one must take V' > 0 and
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the countable family of approximating measures (u,)n>1 is given by
dpr, _
— )=V Py (t).
e 1) I A

(thsAR) €S, An> 5w

The intermediate PCCM are obtained by taking for S a Poisson point process
in R x (0, 1] with intensity

X 14
Ap=L®) 51080 = (p>0).
n>1
The countable family of approximating measures (un)n>1 is given by

oy =y I Pt
(th,AR)ES, AR >b—"

In all cases, the normalizing factors were selected to insure that one deals with
a measure-valued martingale. Writing b~™ = ¢ and 1/log(b) = p rephrases the
normalizing factor for CCM as £”!°8 V. Moreover, the densities of approximating
measures are formally the same for MPCP and PCCM.

It turns out from their construction that these measure share the following
important property: taking e = b=™ and p = 1/log(b) for CCM, given a point
t € [0,1], the expected number of (non-unit) factors in the previous products is
plog(1/e). For MPCP and PCCM the same holds for all t € R.

In terms of statistical self-similarity, each measure p inherits the properties of
the set S: roughtly speaking, the grid free MPCP are statistically self-similar in
the sense that, up to a multiplicative random variable, the restriction of y to any
nontrivial subinterval of R of length smaller than 1 is a rescaled copy of u. For
the semi-grid free PCCM, the same holds for subintervals of R whose length is a
negative integer power of b. For CCM, the same holds for b-adic subintervals of
[0,1].

3. Di1sScUsSION WITH EXAMPLES.

A draft of this discussion was included in [BM1], an early unpublished version
of [BM2].

Motivations. The cascades behind CCM are not part of physical reality, but
an artificial device made up to simplify definitions and proofs. The same is true of
the restriction of their self-similarity properties to reduction ratios of the form b=,
with integers b and n.

The reason why [M4] and [M5] introduced the terms “microcanonical” (often
replaced by “conservative”) and “canonical” is worth mentioning. These terms
call to two physical ensembles in the Gibbs statistical theory; canonical is less
constrained statistically than microcanonical. The Gibbs theory then continues by
introducing “grand canonical ensembles” which are made of a Poisson distributed
number of canonical ensembles, therefore are infinitely divisible [M1].

The move from CCM to MPP loosens statistical constraints in the further
spirit of grand canonical ensembles. Let us show how. The definition of the CCM
approximating measures can be restated as follows. Let W (t) be a function of
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positive ¢ that is constant in the intervals between successive integers and whose
values in different intervals are statistically independent and with the distribution
of W. Then J
%(t) =vr [ Walm),

o<m<n
where the functions W, (t) are statistically independent and distributed as W (%).
Similarly, the corresponding approximating measures of the limit lognormal mea-
sures of [M2] are products of statistically independent sinusoids. In his powerful
advocacy of Fourier analysis, Norbert Wiener often pointed out to sinusoids as
providing the proper base for the study of stationary phenomena. But, by design,
multifractals are not stationary, either visually or in the usual mathematical sense.
(They are conditionally stationary sporadic functions, as defined in chapter 10 in
[M12]). One response is to replace sinusoids by wavelets. The response of [M8]
and the present paper is to use “pulses”.

Digression on a generalization. The product [[ W, (b"t) remains mean-
ingful if the base ceases to be an integer. It is made more elegant and extended
from [0,1] to R if random phases ¢,, are introduced and the multipliers replaced
by W, (b™t + ¢y,).

The multifractal functions 7(q) and f(a). Among several possible choices
for the function 7 associated with a positive measure g on [0, 1], the simplest uses
a b-adic grid (see for example [HaJeKaPrSh, BrMiP]) and takes the form

7(g) = liminf —% log,, Z p([kb™™, (k+1)b~™)".

n—oQ
0<k<bn
Authors who also deal with thermodynamic formalism often prefer to eliminate

the base b and use the integral / u(B(t, 7‘))(1_1 du(t) instead of the sum in the
[0,1]

above expression when r & b~".

A third approach, adopted in [O], consists in defining multifractal functions
as dimensions associated with multifractal generalizations of Hausdorff or packing
measures. All these definitions coincide for the measures we deal with. For the
equality of 7(g) defined above and the functions considered in [O], see [BBeP] and
Part II Section 5.3 of [BM3].

Given the b-adic grid, the function f(«) is defined by

log;, Pu<{2—n(a+s) < M(In(m)) < 2—j(a—s)})
f(a) =1+ lim lim sup

>0
e=0 p 500 n (Oé jl )a
where P, is the uniform probability on [0,1) and I,,(x) is the b-adic interval of the
n** generation, semi-open to the right, containing z. When p is close to being sta-
tistically self-similar (as is the case for the measures we deal with), the “multifractal
formalism” holds: if f(a) > 0 then (A) f(«) is equal to the Legendre transform
of 7 at a, that is inf,er ag — 7(g), denoted 7*(); (B) this infimum is also the
logu(In(z)) _ a}.

logE(In (m))

A source of novelty is that 7(q) takes altogether different forms for CCM and
(PCCM, MPCP). For the former, 7(q) was conjectured in [M4], [M5] and confirmed

Hausdorff dimension of the set {a: : lim, oo
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by numerous authors under various assumptions ([KP], [K5], [HoWa], [Mol],
[B2], [B3]). The now classical expression is conveniently written

Tcom(g) = =1+ ¢[1 +log, V] —log, E(1 w0y W1).
For the sake of symmetry with mypcp, it is best to inject p = 1/log b and write

Toem(q) = =1+ ¢[1 + plog V] — plog E(1 w03 W1).

On the contrary, [BM2], and Parts IT and III ((BM3, B4]) examine the function
7 for PCCM and MPCP and find when W > 0 that

(3.1) mpcem(q) = Tvpep(g) = =1+ g1+ p(V — 1)] — p(E(W?) — 1).

The role of 7/(1): condition of non-degeneracy and dimension of the
non-degenerate “support”. While the form of 7(g) changes, the condition for
the non-degeneracy of u remains 7/(1) > 0 (see Theorems 5.3 and 6.6 of Part
IT ((BM3])). When it holds, 7/(1) is the Hausdorff-Besicovitch dimension of the
“support” of the measure. For CCM, this is shown in [M4], [P1], [KP]. For MPCP,
this is shown in [BM2] when W > 0. We shall see in Part II that this also holds
for PCCM.

(th, An)

L

t th — An th th+Ap t t"

Fi1GURE 1. Each pulse is represented by an address point
in the “address space” Rx (0, 1]. To the left: set in Rx (0, 1] containing the addresses
of those pulses that affect a given ¢ in R. Middle: set on the time axis R containing
the instants ¢ affected by a pulse (¢4, Ap). To the right: sets in R x (0, 1] containing
the addresses of those pulses that affect, respectively, a given ¢’ but not a given ",
both ¢ and t", and " but not ¢'.

Covariance and the role of 7(2). Given ¢ > 0, denote by u. the density of
the approximating measure . and consider two points t' and t" with r = |t/ —¢""| >
2¢. If p is a non-degenerate MPCP, the dependence between p. at t' and ¢ is
measured by

Elpuz (¢') e ()] = 2V - VE{ [T Py (8] [T Pa ()]},

where E denotes the expected value and II. and II” are products of the pulses that
rule ¢’ and t".

Denote by N, and Ng the numbers of pulses associated with points in Rx (e, 1]
that only affect #' and #”. The pulses that affect only ¢ or ¢, but not both,
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contribute VNL+N® in the product IILI1”. The Ny pulses associated with points in
R x (e,1] that affect both #' and #" contribute [E(W?2)]No.

Since € < r/2, the A,-measure of the subset S(¢',¢") of R x (0, 1] whose pulses
rule both # and t" does not depend on & (see Figure 1). Moreover, elementary
computations based on the construction (and helped by Figure 1) yield

E(V NetNr)E(1 Vo2 = g=20(V-1),
E(V No) = ASE AN (V-1)
E([E(W?2)]No) = A ) EW?) 1)
Thus
Elul (#) ! (£")] = eA(S(t’,t”)){[lE(WZ)71172(V71)},

which does not depend on . The correlation of u at t' and ¢” is the limit as e — 0

of
Elpe (¢) e (¢")]
(Bt ()]
Since [E(p. (#'))]* = 1 and A(S(#',t")) behaves like —plog (r/2) as r < 2, this
correlation behaves like r7(?)~1 as r <« 2 (7(2) — 1 < 0 if W is not the constant 1).
For r > 2, the correlation vanishes.

The same holds for PCCM. For CCM, a formally identical expression of the cor-
relation holds but with the physical Euclidean distance between ¢’ and t" replaced
by the artificial ultrametric distance.

Upper critical power ggit.pos and conditions under which it is finite.
For non-degenerate CCM, PCCM or MPCP, E[u([0,1])] < oo and if ¢ > 1, the
condition of finiteness of E[u([0,1])9] is 7(q) > 0.

The critical power gerit.pos was introduced in [M4, MS5] for a CCM as the
supremum of {g > 0: E(u([0,1])?) < co}. It is also defined for MPCP, and when
the equation 7(¢) = 0 has a solution > 1, that solution is gerit.pos-

Conditions for finiteness of erit.pos- These conditions bring out a third differ-
ence between (PCCM,MPCP) and CCM, and a third source of novelty.

For a non-degenerate CCM, gcrit.pos = 00 holds for the elementary examples
(binomial and multinomial), and in all the cases when W < bE(W). The latter
condition necessarily holds for the conservative — as opposed to canonical — cascades.
In fact, one has gerit.pos < 00 if and only if P({W > bE(W)}) > 0 or P(W =
b) > 1/b. That is, the finiteness of gerit.pos depends on b and the tail of W. A
finite gerit.pos is widely perceived as an anomaly. In terms of f(a) it is associated
with the complication of negative Holder-like components and negative dimensions
described in [M9]. Indeed, the condition 7(g) = 0 expresses that the tangent of
7*(a) whose slope is g crosses the vertical axis of abscissa o = 0 at the point of
ordinate 0. This is well-known to be the case for ¢ = 1. But for ¢ > 1, this cannot
be the case unless the graph of 7*(a) crosses into the lower left quadrant where
a<0and ™ <0.

This behavior of 7* () and the fact that gerit.pos < 00 0occur in the limit lognor-
mal multifractals introduced in [M2]. But those multifractals are not as widely
known as they deserve to be. In any event, the deep importance of the case
erit.pos < 00 is not sufficiently widely appreciated and its frequent occurrences
in applications continue to be a source of surprise.
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For PCCM and MPCP, to the contrary, a simple sufficient condition for gerit.pos <
oo is that max W > 1. If so, the term E(W?) in mvpcp(q) does not vanish at oo,
implying lim,, . TmMpcp(g) = —0.

A guess. Consider the following sequence of multifractal processes: non-
random cascades, conservative cascades, “effectively conservative” cascades defined
as having the same 7(g) as a non-random or conservative cascade, canonical cas-
cades and (PCCM,MPCP). For the binomial and other “effectively conservative”
cascades, those constraints were natural. But otherwise, each of the above steps
eliminates some constraint on randomness that simplified the theory but was arbi-
trary.

As a result, the following tentative conclusion deserves careful attention. It
may be that in further evolution of the models, the cases where gy = oo will
increasingly become ”anomalous” and the cases where g.it < 0o will increasingly
become the norm.

The concrete importance of gerit.pos < 00 and more generally of f(c) that is
negative for some a (see [M7, M9]). In that case, a single sample of the process
can only yield f(«) where it is positive. The negative f(«) can only be obtained by
“supersampling” and characterize the level of randomness of the process. Therefore,
if the above guess proves correct, random multifractals will prove to be typically
highly random.

Lower critical power. The exponent gcrit.neg and conditions under
which it is finite. All non-degenerate CCM, PCCM and MPCP also involve a
second critical power erit.neg = inf{q : E[11,(0,17)>01#([0,1])7] < oo}.

For CCM, [B1, B2] obtained

derit.neg = binf{g : E(WY) < oo}

when W > 0, and [Lil, Li2] obtained

b—1
Gerit.neg = inf{q : bliqviq(P(N = 0)) ’ E(I{W>0} Wq) < 1}
when P(W = 0) > 0. In both cases gcrit.neg depends on W and also the artificial
base b for CCM. To the contrary, providing a fourth source of novelty,
Gcrit.neg = inf{q : TMPCP(CI) > —OO} = inf{q : ]E(Wq) < OO}

for PCCM and MPCP when W > 0. S0 gcrit.neg Only depends on W and not on
the counterpart of b provided by p.

Comment. Despite the symmetry between the definitions, the two critical power
are extremely different in nature.

The role of E(W); CCM only depend on W/E(W), while PCCM and
MPCP also depend on E(W); this dependence is a major source of ver-
satility. The PCCM and MPCP exhibit a major fifth source of novelty that is
clarified by writing W = W1V, where Wy = W/E(W), therefore E(W;) = 1. For
CCM, the normalization needed to define y yields

Toem () = =1+ ¢ — plog E(1{w, »01 WY).
That is, V drops out and 7 is independent of V. To the contrary,

mmpcp(q) = =1+ q[L+p(V = 1)] = p[V/E(WY) — 1]
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involves both W; and V explicitly and inseparably. So does the dimension
mupcp(l) =14 p[(V —1) = Viog V — VE(W; log Wy)].
So do 7(2) and gerit.pos- To the contrary, gerit.neg 0Only involves Wi.

Special case 1: pulses of non random height V. They correspond to
W1 = 1. For MPP, this case suffices to generate an interesting random multifractal
measure with a single parameter V. This measure has no counterpart in CCM.

To pinpoint the origin of this novelty, recall the approximating measures p.
obtained by pulses of width > . For CCM, the number of pulses that affect u. at
a fixed ¢ is non random and independent of ¢. Therefore, when W is non random,
it degenerates to a constant that is eventually renormalized to 1. For PCCM and
MPCP, this number is a Poisson random variable and its randomness suffices to
create a non-degenerate process. It may, but need not, be useful in modeling.

Remark on a class of multidimensional Poisson random wvariables. Contrary to
the Gaussian, the Poisson distribution has no intrinsic multivariable version. The
logarithm of p. provides a “natural” candidate that is, insofar as we can tell,
new: in the case of two instants ¢’ and ¢”, the values of logu. are of the form
log pL(t") = Pr + Py and log ,u’s(t”) = Py + Pg, where P , Py, and Pg are
independent Poisson variables that correspond to the three areas to the right of
Figure 1. The same expressions (with Poisson replaced by Gaussian) hold for
positively correlated Gaussian variables.

Special case 2: W uniformly distributed between 0 and 2V. Fix V > 0
and assume that W € [0,2V] and W is uniformly distributed. Since V' = E(W)

dx
Py (dz) = 10<w<av} v

Then for every ¢ > —1,

(2V)1
EW?) = .
(W) g+1
Both 7ccm and 7pcom = Tmpcp are elementary functions and the degeneracy of
and the finiteness of the critical values of ¢ can be discussed explicitely.

e The CCM case. This case was studied in [M7] in the base b = 2. For every
b > 2, we have P(W < bE(W)) = 1 and, independently of V,

@ = —00 if ¢g<-1
TEOMW =\ —1 4 q(1 —log,(2)) +logy(g +1) if ¢> —1.

Thus limy_, o Tocm(g) > 0; 50 T4y (1) > 0 hence 1 is non-degenerate, and gerit.pos =
00. Moreover, gerit.neg = —b.

¢ The PCCM and MPCP cases. For a general W, when max W < 1,
Qerit.pos 18 either < 0o or = oo according to the value of p. E(W?) vanishes at oo
and

mapcp(l) = 1+ p(V = 1) — pE(W log W)
with E(W log W) < 0. There are two subcases:
(1)1/p>1-V, thatis 1+ p(V — 1) > 0, and lim;_,o, 7mpcp(g) > 0. Then
erit.pos = 00. Moreover, such a p yields always 7 pap(1l) > 0 as can be seen on
the expression of 7ypcp(1).
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(2)1/p<1-V,thatis 14+ p(V —1) <0, and lim,_,o, Tmpcp(g) = —0c. Hence
Gerit.pos < 00. Non-degeneracy holds if and only if 1+ p(V — 1) — pE(W log W) > 0.
This yields the following condition to be satisfied by p:

1-V4+EWIlogW)<1l/p<1-V.

Furthermore, in the special case 2

B —c0 if ¢g<-1

mvece(9) = 4 +q(1+p(V —-1)) - P((iﬂq -1) if ¢g>-1
and
with

0(V) =V [log(2V) — 1/2].

Then, one has to distinguish the following cases:

e V > 1/2: in this case max W > 1 and gerit.pos < 00 as long as p is non-
degenerate. Moreover, the condition 7{;pcp (1) > 0 is equivalent to 1/p > 1 -V +
(V).

e 0 <V <1/2: in this case max W < 1, (V) < 0 and the following three
situations arise:

(1)If1/p>1—V then mpep(1) > 0 and gerit.pos = 0.

2 If1-V+6(V)<1/p<1—-V then mpcp(l) > 0 and gerit.pos < 00. One
can check that 1 — V + 6(V') describes [1/4,1), so in this case p must be in (1,4).

(3) In all other cases, p is degenerate.

Moreover, in all cases of non-degeneracy, gerit.neg = —1, @ special case of the
general rule.

Special case 3: pulses with V = 1. For them, mpcp(1l) takes a form
familiar from the CCM case.

The general case W = W1V, with P({W; = 1}) <1 and V > 0. Ob-
serve that in the formula for the codimension 1 —7;pcp(1), every term contains V.
Therefore the codimension corresponding to W1V is not the sum of the codimen-
sions corresponding to W1 and V' taken separately. That is, the “typical behavior”
of the intersection of “independent” sets is not applicable.

Marginal distribution of density for the approximating measures.
Assume W > 0 almost surely. Then, up to the constant p(V —1) log €, the quantity
log(du./df) is the sum of N independent random variables of the form log W,
where N is a Poisson random variable of expectation —ploge, independent of the
Ws. When W =V, log(du./df) is a Poisson random variable. In all other cases,
log(du./df) is a very special infinitely divisible random variable. The early de
Finetti theory, later generalized by Lévy and Khinchine (see [GKo] p 68) involved
the sum of this very special variable and of a Gaussian.

The Gaussian term alone is the foundation of the ”limit lognormal” multifrac-
tals (LLNM) introduced in [M2]. In the Gaussian context, the whole process is
determined by its covariance. In the context of of MPCP and more generally MPP
(see Part II), it is not the case.
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Scientific models often compromise between the numbers of parameters, the
ease of calculation and the quality of fit. LLNM, PCCM and MPCP with W equal
to a constant involve a single parameter. PCCM and MPCP are far easier to
calculate.

Critical density. When W is fixed, the condition 7/(1) = 0 defines a critical
density peris(1) beyond which g = 0. For CCM, there is also a critical p, but a
critical base is only defined when exp(1/pcrit(1)) is an integer. There is also for
each ¢ a critical density perit(g) beyond which E[u([0,1])?] = co. For Wy =1 and
V < e, the function perit(1) is two-to-one, that is, the same criticality 4 = 0 can be
achieved by a small V and a V close to e.

Final remarks. (1) The criteria of non-degeneracy and finiteness of moments
obtained for statistically self-similar examples are not exhaustive. Generalized Riesz
products with i.i.d. uniform random phases provide additional special examples of
statistically self-similar measures obtained as limit of multiplicative martingales.
For them [BCM] shows that the CNS for non-degeneracy differs completely from
7'(1) > 0. Moreover, the non-degeneracy of the limit measure p implies that
[|u|]] = 1 almost surely. Hence the problem of the finiteness of moments is empty.

(2) [BaMu] generalizes the MPCP construction: a larger class of infinitely
divisible laws is allowed for the logarithm of p(t), including the Gaussian case.
Moreover, the limit measures in [BaMu] possess an exact scaling property.
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